Fighting Antibiotic Resistance: New Pyrimidine-Clubbed Benzimidazole Derivatives as Potential DHFR Inhibitors
Abstract
:1. Introduction
2. Results and Discussion
2.1. In Silico ADMET Profile of Designed Molecules
2.2. Molecular Docking
2.3. Synthesis of the Selected Compounds
2.4. In Vitro Antibacterial Activity
3. Materials and Methods
3.1. Pre-ADMET Profile and Drug-Likeness Properties
3.2. Molecular Docking
3.3. Chemistry
3.4. In Vitro Biological Evaluation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Loi, V.V.; Huyen, N.T.T.; Busche, T.; Tung, Q.N.; Gruhlke, M.C.H.; Kalinowski, J.; Bernhardt, J.; Slusarenko, A.J.; Antelmann, H. Staphylococcus Aureus Responds to Allicin by Global S-Thioallylation—Role of the Brx/BSH/YpdA Pathway and the Disulfide Reductase MerA to Overcome Allicin Stress. Free Radic. Biol. Med. 2019, 139, 55–69. [Google Scholar] [CrossRef] [PubMed]
- Jouhar, L.; Jaafar, R.F.; Nasreddine, R.; Itani, O.; Haddad, F.; Rizk, N.; Hoballah, J.J. Microbiological Profile and Antimicrobial Resistance among Diabetic Foot Infections in Lebanon. Int. Wound J. 2020, 17, 1764–1773. [Google Scholar] [CrossRef]
- Anwar, K.; Hussein, D.; Salih, J. Antimicrobial Susceptibility Testing and Phenotypic Detection of MRSA Isolated from Diabetic Foot Infection. Int. J. Gen. Med. 2020, 13, 1349–1357. [Google Scholar] [CrossRef]
- Marchese, A.; Barbieri, R.; Sanches-Silva, A.; Daglia, M.; Nabavi, S.F.; Jafari, N.J.; Izadi, M.; Ajami, M.; Nabavi, S.M. Antifungal and Antibacterial Activities of Allicin: A Review. Trends Food Sci. Technol. 2016, 52, 49–56. [Google Scholar] [CrossRef]
- Hasan, M.F.; Das, R.; Khan, A.; Rahman, M. The Determination of Antibacterial and Antifungal Activities of Polygonum Hydropiper (L.) Root Extract. Adv. Biol. Res. 2009, 3, 53–56. [Google Scholar]
- Indora, N.; Kaushik, D. Design, Development and Evaluation of Ethosomal Gel of Fluconazole for Topical Fungal Infection. Int. J. Eng. Sci. Invent. Res. Dev. 2015, I, 280–306. [Google Scholar]
- Murali, T.S.; Kavitha, S.; Spoorthi, J.; Bhat, D.V.; Prasad, A.S.B.; Upton, Z.; Ramachandra, L.; Acharya, R.V.; Satyamoorthy, K. Characteristics of Microbial Drug Resistance and Its Correlates in Chronic Diabetic Foot Ulcer Infections. J. Med. Microbiol. 2014, 63, 1377–1385. [Google Scholar] [CrossRef]
- Sánchez-Sánchez, M.; Cruz-Pulido, W.L.; Bladinieres-Cámara, E.; Alcalá-Durán, R.; Rivera-Sánchez, G.; Bocanegra-García, V. Bacterial Prevalence and Antibiotic Resistance in Clinical Isolates of Diabetic Foot Ulcers in the Northeast of Tamaulipas, Mexico. Int. J. Low. Extrem. Wounds 2017, 16, 129–134. [Google Scholar] [CrossRef]
- Rengarajan, J.; Sassetti, C.M.; Naroditskaya, V.; Sloutsky, A.; Bloom, B.R.; Rubin, E.J. The Folate Pathway Is a Target for Resistance to the Drug Para-Aminosalicylic Acid (PAS) in Mycobacteria. Mol. Microbiol. 2004, 53, 275–282. [Google Scholar] [CrossRef]
- Srinivasan, B.; Tonddast-Navaei, S.; Roy, A.; Zhou, H.; Skolnick, J. Chemical Space of Escherichia Coli Dihydrofolate Reductase Inhibitors: New Approaches for Discovering Novel Drugs for Old Bugs. Med. Res. Rev. 2019, 39, 684–705. [Google Scholar] [CrossRef]
- He, J.; Qiao, W.; An, Q.; Yang, T.; Luo, Y. Dihydrofolate Reductase Inhibitors for Use as Antimicrobial Agents. Eur. J. Med. Chem. 2020, 195, 112268. [Google Scholar] [CrossRef] [PubMed]
- Wróbel, A.; Arciszewska, K.; Maliszewski, D.; Drozdowska, D. Trimethoprim and Other Nonclassical Antifolates an Excellent Template for Searching Modifications of Dihydrofolate Reductase Enzyme Inhibitors. J. Antibiot. 2020, 73, 5–27. [Google Scholar] [CrossRef] [PubMed]
- Songsungthong, W.; Prasopporn, S.; Bohan, L.; Srimanote, P.; Leartsakulpanich, U.; Yongkiettrakul, S. A Novel Bicyclic 2,4-Diaminopyrimidine Inhibitor of Streptococcus Suis Dihydrofolate Reductase. PeerJ 2021, 9, e10743. [Google Scholar] [CrossRef] [PubMed]
- Banjanac, M.; Tatic, I.; Ivezic, Z.; Tomic, S.; Dumic, J. Pyrimido-Pyrimidines: A Novel Class of Dihydrofolate Reductase Inhibitors. Food Technol. Biotechnol. 2009, 47, 236–245. [Google Scholar]
- Gebauer, M.G.; McKinlay, C.; Gready, J.E. Synthesis of Quaternised 2-Aminopyrimido[4,5-d]Pyrimidin-4(3H)-Ones and Their Biological Activity with Dihydrofolate Reductase. Eur. J. Med. Chem. 2003, 38, 719–728. [Google Scholar] [CrossRef]
- Ahmed Elkanzi, N.A. Synthesis and Biological Activities of Some Pyrimidine Derivatives: A Review. Orient. J. Chem. 2020, 36, 1001–1015. [Google Scholar] [CrossRef]
- Bhat, A.R.; Dongre, R.S.; Naikoo, G.A.; Hassan, I.U.; Ara, T. Proficient Synthesis of Bioactive Annulated Pyrimidine Derivatives: A Review. J. Taibah Univ. Sci. 2017, 11, 1047–1069. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.; Unnisa, A.; Sohel, M.; Date, M.; Panpaliya, N.; Saboo, S.G.; Siddiqui, F.; Khan, S. Investigation of Phytoconstituents of Enicostemma Littorale as Potential Glucokinase Activators through Molecular Docking for the Treatment of Type 2 Diabetes Mellitus. Silico Pharmacol. 2022, 10, 1. [Google Scholar] [CrossRef]
- Waring, M.J. Lipophilicity in Drug Discovery. Expert Opin. Drug Discov. 2010, 5, 235–248. [Google Scholar] [CrossRef]
- Lobo, S. Is There Enough Focus on Lipophilicity in Drug Discovery? Expert Opin. Drug Discov. 2020, 15, 261–263. [Google Scholar] [CrossRef] [Green Version]
- Bickerton, G.R.; Paolini, G.V.; Besnard, J.; Muresan, S.; Hopkins, A.L. Quantifying the Chemical Beauty of Drugs. Nat. Chem. 2012, 4, 90–98. [Google Scholar] [CrossRef] [Green Version]
- Kosugi, T.; Ohue, M. Quantitative Estimate Index for Early-Stage Screening of Compounds Targeting Protein-Protein Interactions. Int. J. Mol. Sci. 2021, 22, 10925. [Google Scholar] [CrossRef] [PubMed]
- Ertl, P.; Roggo, S.; Schuffenhauer, A. Natural Product-Likeness Score and Its Applications in the Drug Discovery Process. Chem. Cent. J. 2008, 2, S2. [Google Scholar] [CrossRef]
- Menke, J.; Massa, J.; Koch, O. Natural Product Scores and Fingerprints Extracted from Artificial Neural Networks. Comput. Struct. Biotechnol. J. 2021, 19, 4593–4602. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.B.; Zgair, A.; Taha, D.A.; Zang, X.; Kagan, L.; Kim, T.H.; Kim, M.G.; Yun, H.y.; Fischer, P.M.; Gershkovich, P. Quantitative Analysis of Lab-to-Lab Variability in Caco-2 Permeability Assays. Eur. J. Pharm. Biopharm. 2017, 114, 38–42. [Google Scholar] [CrossRef] [PubMed]
- Feng, B.; West, M.; Patel, N.C.; Wager, T.; Hou, X.; Johnson, J.; Tremaine, L.; Liras, J. Validation of Human MDR1-MDCK and BCRP-MDCK Cell Lines to Improve the Prediction of Brain Penetration. J. Pharm. Sci. 2019, 108, 2476–2483. [Google Scholar] [CrossRef] [PubMed]
- Xiong, G.; Wu, Z.; Yi, J.; Fu, L.; Yang, Z.; Hsieh, C.; Yin, M.; Zeng, X.; Wu, C.; Lu, A.; et al. ADMETlab 2.0: An Integrated Online Platform for Accurate and Comprehensive Predictions of ADMET Properties. Nucleic Acids Res. 2021, 49, W5–W14. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Kale, M.; Siddiqui, F.; Nema, N. Novel Pyrimidine-Benzimidazole Hybrids with Antibacterial and Antifungal Properties and Potential Inhibition of SARS-CoV-2 Main Protease and Spike Glycoprotein. Digit. Chin. Med. 2021, 4, 102–119. [Google Scholar] [CrossRef]
- Bai, X.Q.; Li, C.S.; Cui, M.Y.; Song, Z.W.; Zhou, X.Y.; Zhang, C.; Zhao, Y.; Zhang, T.Y.; Jiang, T.Y. Synthesis and Molecular Docking Studies of Novel Pyrimidine Derivatives as Potential Antibacterial Agents. Mol. Divers. 2020, 24, 1165–1176. [Google Scholar] [CrossRef] [PubMed]
- Shaaban, O.G.; Issa, D.A.E.; El-Tombary, A.A.; Abd El Wahab, S.M.; Abdel Wahab, A.E.; Abdelwahab, I.A. Synthesis and Molecular Docking Study of Some 3,4-Dihydrothieno[2,3-d]Pyrimidine Derivatives as Potential Antimicrobial Agents. Bioorg. Chem. 2019, 88, 102934. [Google Scholar] [CrossRef] [PubMed]
- Rehman, A.; Patrick, W.M.; Lamont, I.L. Mechanisms of Ciprofloxacin Resistance in Pseudomonas Aeruginosa: New Approaches to an Old Problem. J. Med. Microbiol. 2019, 68, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Liu, H.; Pan, X.; Ma, Z.; Wang, D.; Zhang, X.; Zhu, G.; Bai, F.; Cheng, Z.; Wu, W.; et al. Mechanisms for Development of Ciprofloxacin Resistance in a Clinical Isolate of Pseudomonas Aeruginosa. Front. Microbiol. 2021, 11, 598291. [Google Scholar] [CrossRef] [PubMed]
- Martin, M.V.; Dinsdale, R.C.W. Nystatin—Resistance of Candida Albicans Isolates from Two Cases of Oral Candidiasis. Br. J. Oral Surg. 1982, 20, 294–298. [Google Scholar] [CrossRef] [PubMed]
- Dallakyan, S.; Olson, A.J. Small-Molecule Library Screening by Docking with PyRx. Methods Mol. Biol. 2015, 1263, 243–250. [Google Scholar] [CrossRef]
- Rappé, A.K.; Casewit, C.J.; Colwell, K.S.; Goddard, W.A.; Skiff, W.M. UFF, a Full Periodic Table Force Field for Molecular Mechanics and Molecular Dynamics Simulations. J. Am. Chem. Soc. 1992, 114, 10024–10035. [Google Scholar] [CrossRef]
- Discovery Studio Modeling Environment, Release 3.5; Accelrys Software Inc.: San Diego, CA, USA, 2012.
- Almerico, A.M.; Tutone, M.; Lauria, A. Docking and Multivariate Methods to Explore HIV-1 Drug-Resistance: A Comparative Analysis. J. Comput. Aided. Mol. Des. 2008, 22, 287–297. [Google Scholar] [CrossRef]
- Khan, S.L.; Siddiui, F.A. Beta-Sitosterol: As Immunostimulant, Antioxidant and Inhibitor of SARS-CoV-2 Spike Glycoprotein. Arch. Pharmacol. Ther. 2020, 2, 12–16. [Google Scholar] [CrossRef]
- Khan, S.L.; Sonwane, G.M.; Siddiqui, F.A.; Jain, S.P.; Kale, M.A.; Borkar, V.S. Discovery of Naturally Occurring Flavonoids as Human Cytochrome P450 (CYP3A4) Inhibitors with the Aid of Computational Chemistry. Indo Glob. J. Pharm. Sci. 2020, 10, 58–69. [Google Scholar] [CrossRef]
- Shntaif, A.H.; Khan, S.; Tapadiya, G.; Chettupalli, A.; Saboo, S.; Shaikh, M.S.; Siddiqui, F.; Amara, R.R. Rational Drug Design, Synthesis, and Biological Evaluation of Novel N-(2-Arylaminophenyl)-2,3-Diphenylquinoxaline-6-Sulfonamides as Potential Antimalarial, Antifungal, and Antibacterial Agents. Digit. Chin. Med. 2021, 4, 290–304. [Google Scholar] [CrossRef]
- Chaudhari, R.N.; Khan, S.L.; Chaudhary, R.S.; Jain, S.P.; Siddiqui, F.A. Β-Sitosterol: Isolation from Muntingia Calabura Linn Bark Extract, Structural Elucidation and Molecular Docking Studies As Potential Inhibitor of SARS-CoV-2 Mpro (COVID-19). Asian J. Pharm. Clin. Res. 2020, 13, 204–209. [Google Scholar] [CrossRef]
- Unnisa, A.; Khan, S.L.; Sheikh, F.A.H.; Mahefooz, S.; Kazi, A.A.; Siddiqui, F.A.; Gawai, N.; Saboo, S.G. In-Silico Inhibitory Potential of Triphala Constituents Against Cytochrome P450 2E1 for the Prevention of Thioacetamide-Induced Hepatotoxicity. J. Pharm. Res. Int. 2021, 33, 367–375. [Google Scholar] [CrossRef]
- Khan, S.L.; Siddiqui, F.A.; Shaikh, M.S.; Nema, N.V.; Shaikh, A.A. Discovery of Potential Inhibitors of the Receptor-Binding Domain (RBD) of Pandemic Disease-Causing SARS-CoV-2 Spike Glycoprotein from Triphala through Molecular Docking. Curr. Chin. Chem. 2021, 2, 74–84. [Google Scholar] [CrossRef]
- Khan, S.L.; Siddiqui, F.A.; Jain, S.P.; Sonwane, G.M. Discovery of Potential Inhibitors of SARS-CoV-2 (COVID-19) Main Protease (Mpro) from Nigella Sativa (Black Seed) by Molecular Docking Study. Coronaviruses 2020, 2, 384–402. [Google Scholar] [CrossRef]
- Tutone, M.; Virzì, A.; Almerico, A.M. Reverse screening on indicaxanthin from Opuntia ficus-indica as natural chemoactive and chemopreventive agent, J. Theor. Biol. 2018, 455, 147–160. [Google Scholar] [CrossRef]
- Siddiqui, F.A.; Khan, S.L.; Marathe, R.P.; Nema, N.V. Design, Synthesis, and In Silico Studies of Novel N-(2-Aminophenyl)-2,3- Diphenylquinoxaline-6-Sulfonamide Derivatives Targeting Receptor- Binding Domain (RBD) of SARS-CoV-2 Spike Glycoprotein and Their Evaluation as Antimicrobial and Antimalarial Agents. Lett. Drug Des. Discov. 2021, 18, 915–931. [Google Scholar] [CrossRef]
Code | Physicochemical Properties | |||||||
---|---|---|---|---|---|---|---|---|
Molecular Weight | Volume | nHA | nHD | nRot | TPSA | logS | logP | |
25 | 352.08 | 321.796 | 6 | 2 | 5 | 79.37 | −3.259 | 2.224 |
26 | 428.11 | 409.106 | 6 | 2 | 6 | 79.37 | −3.862 | 3.626 |
27 | 506.02 | 428.389 | 6 | 2 | 6 | 79.37 | −4.092 | 4.499 |
28 | 446.1 | 415.173 | 6 | 2 | 6 | 79.37 | −3.932 | 3.76 |
29 | 462.07 | 424.317 | 6 | 2 | 6 | 79.37 | −4.108 | 4.333 |
30 | 442.12 | 426.402 | 6 | 2 | 6 | 79.37 | −4.008 | 4.038 |
31 | 458.12 | 435.192 | 7 | 2 | 7 | 88.6 | −4.046 | 3.705 |
32 | 444.1 | 417.896 | 7 | 3 | 6 | 99.6 | −3.713 | 3.247 |
33 | 444.1 | 417.896 | 7 | 3 | 6 | 99.6 | −3.713 | 3.27 |
34 | 476.09 | 435.476 | 9 | 5 | 6 | 140.06 | 3.766 | 2.452 |
35 | 474.11 | 443.982 | 8 | 3 | 7 | 108.83 | −3.859 | 3.201 |
36 | 458.12 | 435.192 | 7 | 2 | 7 | 88.6 | −4.027 | 3.56 |
37 | 454.12 | 441.061 | 6 | 2 | 7 | 79.37 | −4.143 | 3.796 |
38 | 478.12 | 464.46 | 6 | 2 | 6 | 79.37 | −4.21 | 4.716 |
39 | 506.08 | 462.491 | 8 | 2 | 7 | 113.51 | −4.064 | 2.474 |
40 | 471.15 | 454.695 | 7 | 2 | 7 | 82.61 | −3.681 | 3.891 |
41 | 496.09 | 444.604 | 6 | 2 | 7 | 79.37 | −4.57 | 4.465 |
Code | Medicinal Chemistry | ||||||
---|---|---|---|---|---|---|---|
QED | NP score | Lipinski Rule | Pfizer Rule | GSK Rule | Golden Triangle | Chelator Rule | |
25 | 0.827 | −1.057 | Accepted | Accepted | Accepted | Accepted | 0 alerts |
26 | 0.591 | −0.895 | Accepted | Accepted | Rejected | Accepted | 0 alerts |
27 | 0.47 | −0.943 | Accepted | Accepted | Rejected | Rejected | 0 alerts |
28 | 0565 | −1.108 | Accepted | Accepted | Rejected | Accepted | 0 alerts |
29 | 0.522 | −0.861 | Accepted | Accepted | Rejected | Accepted | 0 alerts |
30 | 0.563 | −9.932 | Accepted | Accepted | Rejected | Accepted | 0 alerts |
31 | 0.534 | −0.838 | Accepted | Accepted | Rejected | Accepted | 0 alerts |
32 | 0.514 | −0.637 | Accepted | Accepted | Rejected | Accepted | 0 alerts |
33 | 0.514 | −0.692 | Accepted | Accepted | Rejected | Accepted | 0 alerts |
34 | 0.278 | −0.358 | Accepted | Accepted | Rejected | Accepted | 1 alert |
35 | 0.462 | −0.53 | Accepted | Accepted | Rejected | Accepted | 1 alert |
36 | 0.534 | −0.863 | Accepted | Accepted | Rejected | Accepted | 0 alerts |
37 | 0.529 | −0.642 | Accepted | Accepted | Rejected | Accepted | 0 alerts |
38 | 0.371 | −0.872 | Accepted | Accepted | Rejected | Accepted | 0 alerts |
39 | 0.489 | −1.112 | Accepted | Accepted | Rejected | Rejected | 0 alerts |
40 | 0.519 | −1.024 | Accepted | Accepted | Rejected | Accepted | 0 alerts |
41 | 0.466 | −1.05 | Accepted | Accepted | Rejected | Accepted | 0 alerts |
Code | Absorption | ||||||
---|---|---|---|---|---|---|---|
Caco-2 Permeability | MDCK Permeability | P-gp Inhibitor | P-gp Substrate | HIA | F20% | F30% | |
25 | −5.323 | 6 × 10−6 | 0.001 | 0.44 | 0.016 | 0.001 | 0.009 |
26 | −5.316 | 1.1 × 10−5 | 0.02 | 0.025 | 0.005 | 0.004 | 0.002 |
27 | −5.162 | 1.4 × 10−5 | 0.37 | 0.094 | 0.053 | 0.002 | 0.002 |
28 | −5.175 | 1.1 × 10−5 | 0.141 | 0.206 | 0.005 | 0.002 | 0.004 |
29 | −5.155 | 1.3 × 10−5 | 0.06 | 0.115 | 0.005 | 0.002 | 0.002 |
30 | −5.216 | 8 × 10−6 | 0.704 | 0.106 | 0.004 | 0.003 | 0.003 |
31 | −5.337 | 7 × 10−6 | 0.126 | 0.152 | 0.005 | 0.002 | 0.011 |
32 | −5.337 | 6 × 10−6 | 0.018 | 0.057 | 0.006 | 0.003 | 0.002 |
33 | −5.613 | 6 × 10−6 | 0.025 | 0.033 | 0.006 | 0.003 | 0.002 |
34 | −6.13 | 4 × 10−6 | 0.006 | 0.59 | 0.01 | 0.07 | 0.006 |
35 | −5.593 | 5 × 10−6 | 0.028 | 0.574 | 0.009 | 0.004 | 0.009 |
36 | −5.315 | 8 × 10−6 | 0.074 | 0.246 | 0.007 | 0.003 | 0.013 |
37 | −5.238 | 1.2 × 10−5 | 0.028 | 0.02 | 0.006 | 0.002 | 0.003 |
38 | −5.253 | 9 × 10−6 | 0.166 | 0.029 | 0.005 | 0.005 | 0.002 |
39 | −5.898 | 9 × 10−6 | 0.087 | 0.199 | 0.005 | 0.002 | 0.002 |
40 | −5.313 | 9 × 10−6 | 0.714 | 0.858 | 0.009 | 0.011 | 0.009 |
41 | −5.302 | 2 × 10−5 | 0.615 | 0.062 | 0.004 | 0.002 | 0.002 |
Code | Distribution | Metabolism | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PPB | VD | BBB Penetration | Fu | CYP1A2 | CYP2C19 | CYP2C9 | CYP2D6 | CYP3A4 | ||||||
Inhibitor | Substrate | Inhibitor | Substrate | Inhibitor | Substrate | Inhibitor | Substrate | Inhibitor | Substrate | |||||
25 | 54.15 | 1.805 | 0.727 | 40.82 | 0.924 | 0.963 | 0.971 | 0.53 | 0.257 | 0.117 | 0.512 | 0.104 | 0.798 | 0.266 |
26 | 87.83 | 1.31 | 0.821 | 10.01 | 0.917 | 0.952 | 0.984 | 0.175 | 0.94 | 0.089 | 0.92 | 0.103 | 0.951 | 0.661 |
27 | 94.22 | 1.442 | 0.835 | 6.893 | 0.935 | 0.946 | 0.978 | 0.228 | 0.954 | 0.131 | 0.947 | 0.113 | 0.962 | 0.696 |
28 | 90.64 | 1.202 | 0.805 | 8.954 | 0.929 | 0.952 | 0.978 | 0.195 | 0.944 | 0.133 | 0.923 | 0.118 | 0.955 | 0.627 |
29 | 94.94 | 1.043 | 0.726 | 5.139 | 0.942 | 0.957 | 0.982 | 0.179 | 0.954 | 0.103 | 0.939 | 0.101 | 0.961 | 0.815 |
30 | 91.91 | 1.068 | 0.789 | 8.289 | 0.918 | 0.945 | 0.98 | 0.489 | 0.949 | 0.174 | 0.935 | 0.143 | 0.961 | 0.815 |
31 | 89.30 | 1.21 | 0.484 | 7.920 | 0.921 | 0.949 | 0.981 | 0.585 | 0.949 | 0.391 | 0.937 | 0.178 | 0.967 | 0.678 |
32 | 87.66 | 1.289 | 0.605 | 10.02 | 0.874 | 0.951 | 0.981 | 0.223 | 0.927 | 0.414 | 0.898 | 0.117 | 0.939 | 0.339 |
33 | 86.59 | 1.332 | 0.642 | 9.720 | 0.905 | 0.952 | 0.982 | 0.134 | 0.928 | 0.229 | 0.909 | 0.11 | 0.954 | 0.335 |
34 | 96.31 | 0.881 | 0.07 | 3.163 | 0.475 | 0.95 | 0.94 | 0.067 | 0.889 | 0.464 | 0.739 | 0.13 | 0.873 | 0.268 |
35 | 92.83 | 1.142 | 0.488 | 5.388 | 0.887 | 0.965 | 0.981 | 0.495 | 0.921 | 0.553 | 0.856 | 0.154 | 0.953 | 0.578 |
36 | 89.41 | 1.133 | 0.581 | 8.664 | 0.938 | 0.964 | 0.986 | 0.677 | 0.933 | 0.241 | 0.090 | 0.122 | 0.956 | 0.833 |
37 | 92.11 | 1.185 | 0.783 | 10.49 | 0.959 | 0.878 | 0.984 | 0.126 | 0.943 | 0.108 | 0.936 | 0.11 | 0.958 | 0.431 |
38 | 96.01 | 0.756 | 0.565 | 4.051 | 0.952 | 0.957 | 0.981 | 0.152 | 0.956 | 0.177 | 0.962 | 0.129 | 0.969 | 0.805 |
39 | 79.91 | 1.28 | 0.793 | 18.03 | 0.637 | 0.969 | 0.965 | 0.571 | 0.879 | 0.106 | 0.819 | 0.085 | 0.939 | 0.814 |
40 | 88.55 | 1.513 | 0.877 | 9.325 | 0.933 | 0.95 | 0.979 | 0.689 | 0.942 | 0.098 | 0.879 | 0.175 | 0.956 | 0.614 |
41 | 95.31 | 2.268 | 0.489 | 5.676 | 0.889 | 0.962 | 0.97 | 0.169 | 0.958 | 0.155 | 0.931 | 0.112 | 0.962 | 0.607 |
Code | Excretion | Toxicity | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
CL | T1/2 | H-HT | DILI | AMES Toxicity | Rat Oral Acute Toxicity | FDAMDD | Skin Sensitization | Carcinogenicity | Eye Corrosion | Eye Irritation | Respiratory Toxicity | |
25 | 5.157 | 0.749 | 0.701 | 0.824 | 0.022 | 0.92 | 0.932 | 0.294 | 0.171 | 0.003 | 0.011 | 0.912 |
26 | 4.619 | 0.207 | 0.808 | 0.96 | 0.417 | 0.939 | 0.951 | 0.118 | 0.077 | 0.003 | 0.008 | 0.895 |
27 | 3.126 | 0.109 | 0.498 | 0.956 | 0.041 | 0.967 | 0.957 | 0.117 | 0.11 | 0.003 | 0.007 | 0.845 |
28 | 4.672 | 0.104 | 0.878 | 0.951 | 0.591 | 0.956 | 0.968 | 0.098 | 0.095 | 0.003 | 0.007 | 0.863 |
29 | 4.404 | 0.124 | 0.763 | 0.958 | 0.359 | 0.952 | 0.955 | 0.106 | 0.078 | 0.003 | 0.007 | 0.836 |
30 | 4.578 | 0.162 | 0.792 | 0.957 | 0.438 | 0.954 | 0.953 | 0.107 | 0.086 | 0.003 | 0.007 | 0.88 |
31 | 5.029 | 0.187 | 0.817 | 0.953 | 0.767 | 0.94 | 0.949 | 0.103 | 0.062 | 0.003 | 0.007 | 0.879 |
32 | 4.884 | 0.541 | 0.749 | 0.954 | 0.177 | 0.872 | 0.933 | 0.118 | 0.094 | 0.003 | 0.007 | 0.852 |
33 | 5.058 | 0.55 | 0.175 | 0.945 | 0.122 | 0.845 | 0.954 | 0.123 | 0.081 | 0.003 | 0.007 | 0.871 |
34 | 4.12 | 0.818 | 0.556 | 0.97 | 0.09 | 0.22 | 0.891 | 0.421 | 0.085 | 0.003 | 0.008 | 0.875 |
35 | 5.168 | 0.585 | 0.779 | 0.943 | 0.168 | 0.757 | 0.941 | 0.102 | 0.067 | 0.003 | 0.007 | 0.886 |
36 | 5.004 | 0.321 | 0.77 | 0.949 | 0.493 | 0.939 | 0.947 | 0.095 | 0.072 | 0.003 | 0.007 | 0.899 |
37 | 4.314 | 0.281 | 0.862 | 0.959 | 0.703 | 0.956 | 0.949 | 0.121 | 0.065 | 0.003 | 0.008 | 0.895 |
38 | 4.459 | 0.133 | 0.878 | 0.966 | 0.893 | 0.964 | 0.962 | 0.143 | 0.17 | 0.003 | 0.008 | 0.882 |
39 | 3.046 | 0.102 | 0.957 | 0.989 | 0.023 | 0.829 | 0.954 | 0.068 | 0.127 | 0.003 | 0.005 | 0.651 |
40 | 4.899 | 0.203 | 0.871 | 0.959 | 0.917 | 0.952 | 0.93 | 0.137 | 0.194 | 0.003 | 0.007 | 0.96 |
41 | 4.747 | 0.05 | 0.921 | 0.952 | 0.032 | 0.985 | 0.959 | 0.075 | 0.072 | 0.003 | 0.007 | 0.921 |
Code | Environmental Toxicity | |||
---|---|---|---|---|
Bio Concentration Factors | IGC50 | LC50FM | LC50DM | |
25 | 0.112 | 3.994 | 3.84 | 5.635 |
26 | 0.397 | 4.215 | 4.622 | 5.922 |
27 | 0.806 | 4.769 | 5.632 | 6.517 |
28 | 0.785 | 4.481 | 4.887 | 6.707 |
29 | 0.772 | 4.69 | 5.246 | 6.315 |
30 | 0.434 | 4.408 | 4.853 | 6.068 |
31 | 0.534 | 4.531 | 5.089 | 6.357 |
32 | 0.31 | 4.681 | 4.735 | 6.019 |
33 | 0.309 | 4.642 | 4.663 | 5.986 |
34 | 0.375 | 4.644 | 4.621 | 5.93 |
35 | 0.449 | 4.694 | 4.821 | 6.267 |
36 | 0.505 | 4.455 | 4.909 | 6.144 |
37 | 1.052 | 4.641 | 6.572 | 6.504 |
38 | 0.813 | 4.852 | 5.588 | 6.329 |
39 | 0.053 | 3.525 | 3.946 | 5.536 |
40 | 0.373 | 4.621 | 4.956 | 6.331 |
41 | 1.059 | 4.615 | 5.523 | 6.622 |
2D-Binding Orientations | 3D-Binding Orientations |
---|---|
Native Ligand | |
27 | |
29 | |
30 | |
33 | |
37 | |
38 | |
41 | |
Compound Code | Antimicrobial Activity [MIC (µg/mL)] | Antifungal Activity [MFC (µg/mL)] | |||||
---|---|---|---|---|---|---|---|
E.C. | P.A. | S.A. | S.P. | C.A. | A.N. | A.C. | |
27 | NS | 50 | 25 | NS | 100 | 100 | 100 |
29 | 50 | 50 | 50 | 50 | 100 | 100 | 100 |
30 | NS | 50 | 50 | 25 | 100 | 200 | 100 |
33 | 25 | 50 | 25 | 25 | 200 | 100 | 100 |
37 | 50 | 50 | 25 | 50 | 100 | NS | 100 |
38 | 50 | NS | 25 | 50 | 100 | 100 | NS |
41 | 25 | 50 | 25 | 50 | 100 | 100 | NS |
Gentamycin | 0.05 | 1 | 0.25 | 0.5 | NA | NA | NA |
Ampicillin | 100 | NA | 250 | 100 | NA | NA | NA |
Chloramphenicol | 50 | 50 | 50 | 50 | NA | NA | NA |
Ciprofloxacin | 25 | 25 | 50 | 50 | NA | NA | NA |
Norfloxacine | 10 | 10 | 10 | 10 | NA | NA | NA |
Nystatin | NA | NA | NA | NA | 100 | 100 | 100 |
Greseofulvin | NA | NA | NA | NA | 500 | 100 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haque, M.A.; Marathakam, A.; Rana, R.; Almehmadi, S.J.; Tambe, V.B.; Charde, M.S.; Islam, F.; Siddiqui, F.A.; Culletta, G.; Almerico, A.M.; et al. Fighting Antibiotic Resistance: New Pyrimidine-Clubbed Benzimidazole Derivatives as Potential DHFR Inhibitors. Molecules 2023, 28, 501. https://doi.org/10.3390/molecules28020501
Haque MA, Marathakam A, Rana R, Almehmadi SJ, Tambe VB, Charde MS, Islam F, Siddiqui FA, Culletta G, Almerico AM, et al. Fighting Antibiotic Resistance: New Pyrimidine-Clubbed Benzimidazole Derivatives as Potential DHFR Inhibitors. Molecules. 2023; 28(2):501. https://doi.org/10.3390/molecules28020501
Chicago/Turabian StyleHaque, M. Akiful, Akash Marathakam, Ritesh Rana, Samar J Almehmadi, Vishal B. Tambe, Manoj S. Charde, Fahadul Islam, Falak A. Siddiqui, Giulia Culletta, Anna Maria Almerico, and et al. 2023. "Fighting Antibiotic Resistance: New Pyrimidine-Clubbed Benzimidazole Derivatives as Potential DHFR Inhibitors" Molecules 28, no. 2: 501. https://doi.org/10.3390/molecules28020501
APA StyleHaque, M. A., Marathakam, A., Rana, R., Almehmadi, S. J., Tambe, V. B., Charde, M. S., Islam, F., Siddiqui, F. A., Culletta, G., Almerico, A. M., Tutone, M., & Khan, S. L. (2023). Fighting Antibiotic Resistance: New Pyrimidine-Clubbed Benzimidazole Derivatives as Potential DHFR Inhibitors. Molecules, 28(2), 501. https://doi.org/10.3390/molecules28020501