Antibacterial Mechanism of Rhamnolipids against Bacillus cereus and Its Application in Fresh Wet Noodles
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effects of pH on the Growth of B. cereus
2.2. Antibacterial Activity of RLs against B. cereus
2.3. Effect of RLs on the Morphology of B. cereus
2.4. Effects of RLs on the Cell Membrane Permeability of B. cereus
2.5. Effects of RLs on the Oxidative Stress Response of B. cereus
2.6. Effects of RLs on B. cereus in FWN
2.7. Effects of RLs on the Quality of FWN
2.7.1. Color Changes in FWN
2.7.2. Changes in the Moisture Content in FWN
2.7.3. Alterations in the Rheology and Texture of FWN
3. Materials and Methods
3.1. Strain and Culture Medium
3.2. Reagents
3.3. Effect of pH on the Growth of B. cereus
3.4. Determination of Minimal Inhibitory Concentration (MIC) and Minimal Bactericidal Concentration (MBC)
3.5. Characterization of Antibacterial Activity of RLs against B. cereus
3.6. Observation of Cellular Morphology and Characterization of Intracellular Organization of B. cereus
3.6.1. Scanning Electron Microscopy (SEM) Analysis
3.6.2. Membrane Permeability Analysis
3.6.3. Determination of Cell Membrane Potential
3.6.4. Determination of the Electrical Conductivity
3.6.5. Determination of Released Intracellular Macromolecule
3.6.6. Determination of Reactive Oxygen Species (ROS)
3.6.7. CAT and SOD Enzyme Activities Analysis
3.7. Preparation of FWN
3.8. The Inhibition of RLs against B. cereus in FWN
3.9. Assessment of the Quality of FWN
3.9.1. Determination of the Colors of FWN
3.9.2. Determination of the Moisture Content and Freezable Water Content of FWN
3.9.3. Determination of Water Molecule Migration
3.9.4. Determination of Dynamic Rheology Properties
3.9.5. Determination of the Texture
3.10. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Franz, C.M.A.P.; den Besten, H.M.W.; Böhnlein, C.; Gareis, M.; Zwietering, M.H.; Fusco, V. Reprint of: Microbial food safety in the 21st century: Emerging challenges and foodborne pathogenic bacteria. Trends Food Sci. Technol. 2019, 84, 34–37. [Google Scholar] [CrossRef]
- Märtlbauer, E.; Granum, P.E. Bacillus cereus Toxins. Toxins 2021, 13, 295. [Google Scholar] [CrossRef]
- Dietrich, R.; Jessberger, N.; Ehling-Schulz, M.; Märtlbauer, E.; Granum, P.E. The Food Poisoning Toxins of Bacillus cereus. Toxins 2021, 13, 98. [Google Scholar] [CrossRef]
- López, A.C.; Minnaard, J.; Pérez, P.F.; Alippi, A.M. A case of intoxication due to a highly cytotoxic Bacillus cereus strain isolated from cooked chicken. Food Microbiol. 2015, 46, 195–199. [Google Scholar] [CrossRef]
- Takabe, F.; Oya, M. An autopsy case of food poisoning associated with Bacillus cereus. Forensic Sci. 1976, 7, 97–101. [Google Scholar] [CrossRef] [PubMed]
- Wijnands, L.M.; Dufrenne, J.B.; Rombouts, F.M.; Veld, P.H.I.T.; Leusden, F.M.V. Prevalence of potentially pathogenic Bacillus cereus in food commodities in The Netherlands. J. Food Prot. 2006, 69, 2587–2594. [Google Scholar] [CrossRef]
- Wu, L.-m.; Lai, L.; Lu, Q.; Mei, P.; Wang, Y.-q.; Cheng, L.; Liu, Y. Comparative studies on the surface/interface properties and aggregation behavior of mono-rhamnolipid and di-rhamnolipid. Colloids Surf. B Biointerfaces 2019, 181, 593–601. [Google Scholar] [CrossRef] [PubMed]
- Hamzah, N.; Kasmuri, N.; Tao, W.; Singhal, N.; Padhye, L.; Swift, S. Effect of rhamnolipid on the physicochemical properties and interaction of bacteria and fungi. Braz. J. Microbiol. 2020, 51, 1317–1326. [Google Scholar] [CrossRef]
- Rocha, V.A.L.; de Castilho, L.V.A.; de Castro, R.P.V.; Teixeira, D.B.; Magalhaes, A.V.; Gomez, J.G.C.; Freire, D.M.G. Comparison of mono-rhamnolipids and di-rhamnolipids on microbial enhanced oil recovery (MEOR) applications. Biotechnol. Prog. 2020, 36, e2981. [Google Scholar] [CrossRef]
- Irfan-Maqsood, M.; Seddiq-Shams, M. Rhamnolipids: Well-Characterized Glycolipids with Potential Broad Applicability as Biosurfactants. Ind. Biotechnol. 2014, 10, 285–291. [Google Scholar] [CrossRef]
- Costa, S.G.V.A.O.; Nitschke, M.; Haddad, R.; Eberlin, M.N.; Contiero, J. Production of Pseudomonas aeruginosa LBI rhamnolipids following growth on Brazilian native oils. Process Biochem. 2006, 41, 483–488. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, M.; Li, J.; Su, Y.; Gu, L.; Yang, Y.; Chang, C. Construction of egg white protein particle and rhamnolipid based emulsion gels with β-sitosterol as gelation factor: The application in cookie. Food Hydrocoll. 2022, 127, 107479. [Google Scholar] [CrossRef]
- Kralova, I.; Sjöblom, J. Surfactants Used in Food Industry: A Review. J. Dispers. Sci. Technol. 2009, 30, 1363–1383. [Google Scholar] [CrossRef]
- Campos, J.M.; Stamford, T.L.; Sarubbo, L.A.; de Luna, J.M.; Rufino, R.D.; Banat, I.M. Microbial biosurfactants as additives for food industries. Biotechnol. Prog. 2013, 29, 1097–1108. [Google Scholar] [CrossRef]
- De Rienzo, M.A.D.; Stevenson, P.; Marchant, R.; Banat, I.M. Antibacterial properties of biosurfactants against selected Gram-positive and negative bacteria. FEMS Microbiol. Lett. 2015, 363, fnv224. [Google Scholar] [CrossRef]
- Magalhães, L.; Nitschke, M. Antimicrobial activity of rhamnolipids against Listeria monocytogenes and their synergistic interaction with nisin. Food Control 2013, 29, 138–142. [Google Scholar] [CrossRef]
- Ferreira, J.d.F.; Vieira, E.A.; Nitschke, M. The antibacterial activity of rhamnolipid biosurfactant is pH dependent. Food Res. Int. 2019, 116, 737–744. [Google Scholar] [CrossRef]
- Bertuso, P.d.C.; Mayer, D.M.D.; Nitschke, M. Combining Celery Oleoresin, Limonene and Rhamnolipid as New Strategy to Control Endospore-Forming Bacillus cereus. Foods 2021, 10, 455. [Google Scholar] [CrossRef]
- Bertuso, P.d.C.; Marangon, C.A.; Nitschke, M. Susceptibility of Vegetative Cells and Endospores of Bacillus cereus to Rhamnolipid Biosurfactants and Their Potential Application in Dairy. Microorganisms 2022, 10, 1860. [Google Scholar] [CrossRef]
- Bharali, P.; Saikia, J.P.; Ray, A.; Konwar, B.K. Rhamnolipid (RL) from Pseudomonas aeruginosa OBP1: A novel chemotaxis and antibacterial agent. Colloids Surf. B Biointerfaces 2013, 103, 502–509. [Google Scholar] [CrossRef]
- Shu, Q.; Niu, Y.; Zhao, W.; Chen, Q. Antibacterial activity and mannosylerythritol lipids against vegetative cells and spores of Bacillus cereus. Food Control 2019, 106, 106711. [Google Scholar] [CrossRef]
- Shuangshuang, W.; Siyu, L.; Guo, H.; Lili, Z.; Xin, L.; Haiyan, W.; Long, W.; Jiaying, Z.; Wupeng, G. Antimicrobial activity and mechanism of isothiocyanate from Moringa oleifera seeds against Bacillus cereus and Cronobacter sakazakii and its application in goat milk. Food Control 2022, 139, 109067. [Google Scholar]
- Sotirova, A.V.; Spasova, D.I.; Galabova, D.N.; Karpenko, E.; Shulga, A. Rhamnolipid-biosurfactant permeabilizing effects on gram-positive and gram-negative bacterial strains. Curr. Microbiol. 2008, 56, 639–644. [Google Scholar] [CrossRef]
- Sana, S.; Datta, S.; Biswas, D.; Sengupta, D. Assessment of synergistic antibacterial activity of combined biosurfactants revealed by bacterial cell envelop damage. Biochim. Biophys. Acta (BBA)-Biomembr. 2018, 1860, 579–585. [Google Scholar] [CrossRef] [PubMed]
- Nescerecka, A.; Hammes, F.; Juhna, T. A pipeline for developing and testing staining protocols for flow cytometry, demonstrated with SYBR Green I and propidium iodide viability staining. J. Microbiol. Methods 2016, 131, 172–180. [Google Scholar] [CrossRef]
- Mitchell, P. Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biol. Rev. 1966, 41, 445–502. [Google Scholar] [CrossRef] [PubMed]
- Han, Q.; Feng, L.; Zhang, Y.; Zhang, R.; Wang, G.; Zhang, Y. Effect of Juglone against Pseudomonas syringae pv Actinidiae Planktonic Growth and Biofilm Formation. Molecules 2021, 26, 7580. [Google Scholar] [CrossRef] [PubMed]
- Kohanski, M.A.; Dwyer, D.J.; Collins, J.J. How antibiotics kill bacteria: From targets to networks. Nat. Rev. Microbiol. 2010, 8, 423–435. [Google Scholar] [CrossRef]
- Salehi, F.; Behboudi, H.; Kavoosi, G.; Ardestani, S.K. Oxidative DNA damage induced by ROS-modulating agents with the ability to target DNA: A comparison of the biological characteristics of citrus pectin and apple pectin. Sci. Rep. 2018, 8, 13902. [Google Scholar] [CrossRef]
- Hao, M.; Liu, R. Molecular mechanism of CAT and SOD activity change under MPA-CdTe quantum dots induced oxidative stress in the mouse primary hepatocytes. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 220, 117104. [Google Scholar] [CrossRef]
- Castro-Alférez, M.; Polo-López, M.I.; Marugán, J.; Ibáñez, P.F. Mechanistic model of the Escherichia coli inactivation by solar disinfection based on the photo-generation of internal ROS and the photo-inactivation of enzymes: CAT and SOD. Chem. Eng. J. 2017, 318, 214–223. [Google Scholar] [CrossRef]
- Eslami, P.; Hajfarajollah, H.; Bazsefidpar, S. Recent advancements in the production of rhamnolipid biosurfactants by Pseudomonas aeruginosa. RSC Adv. 2020, 10, 34014–34032. [Google Scholar] [CrossRef] [PubMed]
- Ajila, C.M.; Aalami, M.; Leelavathi, K.; Rao, U.J.S.P. Mango peel powder: A potential source of antioxidant and dietary fiber in macaroni preparations. Innov. Food Sci. Emerg. Technol. 2010, 11, 219–224. [Google Scholar] [CrossRef]
- Li, M.; Dhital, S.; Wei, Y. Multilevel Structure of Wheat Starch and Its Relationship to Noodle Eating Qualities. Compr. Rev. Food Sci. Food Saf. 2017, 16, 1042–1055. [Google Scholar] [CrossRef]
- Sun, Q.; Li, C.; Xu, X.; Zhao, H.; Liu, C. Novel application of agarose in cultivating microorganisms in the stomach and rapid drug susceptibility testing of Helicobacter pylori. Mater. Express 2021, 11, 880–887. [Google Scholar] [CrossRef]
- Comas, J.; Vives-Rego, J. Assessment of the effects of gramicidin, formaldehyde, and surfactants on Escherichia coli by flow cytometry using nucleic acid and membrane potential dyes. Cytometry 1997, 29, 58–64. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, X.; Wang, Y.; Jiang, P.; Quek, S. Antibacterial activity and mechanism of cinnamon essential oil against Escherichia coli and Staphylococcus aureus. Food Control 2016, 59, 282–289. [Google Scholar] [CrossRef]
- Mi, J.; Liang, Y.; Lu, Y.; Tan, C.; Cui, B. Influence of acetylated potato starch on the properties of dumpling wrapper. Ind. Crops Prod. 2014, 56, 113–117. [Google Scholar] [CrossRef]
- Shi, Z.; Liu, L.; Zhang, K.; Wang, X.; Ma, Z.; Ren, T.; Li, X.; Xu, B.; Hu, X. Effect of sheeting thickness on the processing quality of wheat-oat blended flour noodles. J. Cereal Sci. 2021, 99, 103223. [Google Scholar] [CrossRef]
RLs Content (mg/L) | Colony Count of B. cereus (log CFU/mL) | Killing Rate of B. cereus (%) |
---|---|---|
0 (Control) | 5.50 ± 0.06 a | 0 |
2.0 | 5.12 ± 0.18 b | 56.59 |
4.0 | 5.29 ± 0.13 c | 37.45 |
8.0 | 4.78 ± 0.05 d | 81.17 |
16.0 | 3.33 ± 0.35 ab | 99.16 |
32.0 | ND | ≥99.90 |
48.0 | ND | ≥99.90 |
64.0 | ND | ≥99.90 |
Color Value | RLs Content (mg/kg) | Storage Time/h | |||||
---|---|---|---|---|---|---|---|
0 | 12 | 24 | 36 | 48 | 60 | ||
L | 0 (Control) | 76.65 ± 0.13 a | 76.05 ± 0.02 a | 76.03 ± 0.19 ab | 69.21 ± 0.30 a | 69.91 ± 0.85 bc | 67.39 ± 0.13 bc |
16.0 | 76.17 ± 0.11 b | 76.44 ± 0.22 ab | 75.62 ± 0.36 bc | 69.30 ± 0.35 a | 71.52 ± 0.22 a | 70.57 ± 0.35 a | |
32.0 | 76.46 ± 0.18 ab | 76.58 ± 0.49 ab | 75.89 ± 0.27 abc | 68.28 ± 0.25 b | 70.36 ± 0.77 b | 67.61 ± 0.45 b | |
64.0 | 76.37 ± 0.30 ab | 76.85 ± 0.02 b | 76.26 ± 0.23 a | 69.22 ± 0.68 a | 69.55 ± 0.17 bc | 66.89 ± 0.08 c | |
128.0 | 76.16 ± 0.12 b | 76.71 ± 0.10 b | 75.49 ± 0.21 c | 68.33 ± 0.21 b | 68.45 ± 0.17 d | 67.38 ± 0.21 bc | |
1024.0 | 76.23 ± 0.13 b | 76.57 ± 0.32 ab | 75.63 ± 0.11 bc | 68.42 ± 0.10 b | 69.30 ± 0.19 cd | 67.73 ± 0.14 b | |
a | 0 (Control) | −0.68 ± 0.04 d | −1.08 ± 0.04 a | −0.63 ± 0.04 ab | −1.89 ± 0.03 a | −2.00 ± 0.01 b | −2.01 ± 0.01 a |
16.0 | −0.65 ± 0.03 cd | −0.75 ± 0.02 b | −0.61 ± 0.06 ab | −1.85 ± 0.04 a | −2.08 ± 0.02 a | −2.08 ± 0.03 b | |
32.0 | −0.55 ± 0.07 b | −0.56 ± 0.03 c | −0.58 ± 0.05 b | −1.85 ± 0.05 a | −1.94 ± 0.04 c | −2.01 ± 0.02 a | |
64.0 | −0.54 ± 0.04 b | −0.43 ± 0.03 d | −0.67 ± 0.02 a | −1.84 ± 0.03 a | −2.02 ± 0.05 b | −2.07 ± 0.04 b | |
128.0 | −0.59 ± 0.04 bc | −0.46 ± 0.12 cd | −0.57 ± 0.03 b | −1.84 ± 0.00 a | −1.99 ± 0.02 bc | −2.12 ± 0.03 b | |
1024.0 | −0.44 ± 0.02 a | −0.40 ± 0.05 d | −0.47 ± 0.02 c | −1.74 ± 0.01 b | −1.80 ± 0.03 d | −1.96 ± 0.02 a | |
b | 0 (Control) | 18.36 ± 0.24 ab | 17.75 ± 0.15 ab | 18.44 ± 0.66 a | 11.70 ± 0.17 a | 11.92 ± 0.22 a | 11.43 ± 0.26 a |
16.0 | 19.21 ± 0.36 a | 18.74 ± 0.10 c | 18.91 ± 0.13 a | 12.03 ± 0.15 a | 12.16 ± 0.14 ab | 11.35 ± 0.08 a | |
32.0 | 17.87 ± 0.09 b | 18.25 ± 0.34 abc | 18.75 ± 0.50 a | 11.76 ± 0.14 a | 11.57 ± 0.24 c | 10.79 ± 0.21 bc | |
64.0 | 17.79 ± 0.44 b | 17.70 ± 0.72 a | 18.90 ± 0.23 a | 11.80 ± 0.30 a | 11.94 ± 0.04 a | 10.73 ± 0.32 bc | |
128.0 | 18.22 ± 0.78 ab | 18.1 ± 0.29 abc | 18.75 ± 0.36 a | 12.03 ± 0.15 a | 12.29 ± 0.03 b | 10.57 ± 0.25 c | |
1024.0 | 18.36 ± 0.88 ab | 18.43 ± 0.10 bc | 19.29 ± 0.11 a | 11.99 ± 0.09 a | 12.11 ± 0.10 ab | 11.04 ± 0.05 ab |
RLs Content (mg/kg) | Hardness/g | Springiness | Cohesiveness | Chewiness | Resilience |
---|---|---|---|---|---|
0 (Control) | 960.033 ± 27.75 e | 0.941 ± 0.005 a | 0.876 ± 0.005 a | 791.636 ± 26.201 a | 0.621 ± 0.011 a |
16.0 | 1008.009 ± 65.46 de | 0.943 ± 0.012 a | 0.859 ± 0.010 ab | 816.339 ± 49.019 ab | 0.610 ± 0.030 a |
32.0 | 1184.668 ± 22.21 a | 0.931 ± 0.012 a | 0.828 ± 0.014 bc | 912.874 ± 19.603 c | 0.546 ± 0.014 c |
64.0 | 1137.953 ± 24.80 ab | 0.939 ± 0.004 a | 0.833 ± 0.014 abc | 890.236 ± 2.617 bc | 0.569 ± 0.010 bc |
128.0 | 1105.841 ± 25.41 bc | 0.946 ± 0.010 a | 0.873 ± 0.013 a | 913.700 ± 33.171 c | 0.592 ± 0.017 ab |
1024.0 | 1049.238 ± 19.15 cd | 0.928 ± 0.018 a | 0.811 ± 0.049 c | 790.800 ± 66.200 a | 0.544 ± 0.008 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niu, Y.; Sun, Y.; Yang, Y.; Niu, B.; Wang, Y.; Qiao, S. Antibacterial Mechanism of Rhamnolipids against Bacillus cereus and Its Application in Fresh Wet Noodles. Molecules 2023, 28, 6946. https://doi.org/10.3390/molecules28196946
Niu Y, Sun Y, Yang Y, Niu B, Wang Y, Qiao S. Antibacterial Mechanism of Rhamnolipids against Bacillus cereus and Its Application in Fresh Wet Noodles. Molecules. 2023; 28(19):6946. https://doi.org/10.3390/molecules28196946
Chicago/Turabian StyleNiu, Yongwu, Yiming Sun, Yanxiao Yang, Ben Niu, Yuchen Wang, and Shan Qiao. 2023. "Antibacterial Mechanism of Rhamnolipids against Bacillus cereus and Its Application in Fresh Wet Noodles" Molecules 28, no. 19: 6946. https://doi.org/10.3390/molecules28196946
APA StyleNiu, Y., Sun, Y., Yang, Y., Niu, B., Wang, Y., & Qiao, S. (2023). Antibacterial Mechanism of Rhamnolipids against Bacillus cereus and Its Application in Fresh Wet Noodles. Molecules, 28(19), 6946. https://doi.org/10.3390/molecules28196946