Fingerprint Analysis of Volatile Flavor Compounds in Crassostrea gigas of Different Ploidy and Gender under High-Temperature Incubation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Analysis of GC-IMS Topographic Plots in Oysters of Different Ploidy and Gender
2.2. Qualitative Analysis of Flavor Components of Oysters with Different Ploidy and Gender under High Temperature
2.3. Fingerprint Analysis of VOCs in Oysters under High Temperature
2.4. PCA of Oysters with Different Gender and Ploidy
2.5. Analysis of Volatile Compounds in Oysters between Males and Females
2.6. Analysis of Volatile Compounds in Oysters of Different Ploidy
3. Materials and Methods
3.1. Materials
3.2. GC-IMS Injection Methods and Conditions
3.3. Identification of Flavouring Substances
3.4. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Li, W.; Xu, C.; Zhang, C.; Cao, W.; Qin, X.; Gao, J.; Zheng, H. The purification and identification of immunoregulatory peptides from oyster (Crassostrea hongkongensis) enzymatic hydrolysate. RSC Adv. 2019, 9, 32854. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.-P.; Zhang, H.-W.; Zhang, X.-M.; Yu, F.-Q.-H.; Zhang, F.; Xue, C.-H.; Xue, Y.; Tang, Q.-J.; Li, Z.-J. Identification of potential peptide markers for the shelf-life of Pacific oysters (Crassostrea gigas) during anhydrous preservation via mass spectrometry-based peptidomics. LWT 2020, 134, 109922. [Google Scholar] [CrossRef]
- Miller, P.; Elliott, N.; Vaillancourt, R.E.; Kube, P.D.; Koutoulis, A. Genetic diversity and pedigree assignment in tetraploid Pacific oysters (Crassostrea gigas). Aquaculture 2014, 433, 318–324. [Google Scholar] [CrossRef]
- Maillard, F.; Elie, N.; Villain-Naud, N.; Lepoittevin, M.; Martinez, A.S.; Lelong, C. Male triploid oysters of Crassostrea gigas exhibit defects in mitosis and meiosis during early spermatogenesis. FEBS Open Bio 2022, 12, 1438–1452. [Google Scholar] [CrossRef]
- Haure, J.; François, C.; Degremont, L.; Ledu, C.; Maurouard, E.; Girardin, F.; Benabdelmouna, A. Physiological comparisons of Pacific cupped oysters at different levels of ploidy and selection to OsHV-1 tolerance. Aquaculture 2021, 544, 737111. [Google Scholar] [CrossRef]
- Dong, L.; Zhao, L.; Zhang, E.; Li, Z.; Li, Z.; Wang, W.; Yang, J. Histological and ultrastructural observation of adductor and sperm of Crassostrea gigas with different ploidy. J. Fish. Sci. China 2023, 30, 433–446. [Google Scholar]
- van Houcke, J.; Medina, I.; Linssen, J.; Luten, J. Biochemical and volatile organic compound profile of European flat oyster (Ostrea edulis) and Pacific cupped oyster (Crassostrea gigas) cultivated in the Eastern Scheldt and Lake Grevelingen, the Netherlands. Food Control 2016, 68, 200–207. [Google Scholar] [CrossRef]
- Yeh, H.; Skubel, S.A.; Patel, H.; Cai-Shi, D.; Bushek, D.; Chikindas, M.L. From farm to fingers: An exploration of probiotics for oysters, from production to human consumption. Probiotics Antimicrob. Proteins 2020, 12, 351–364. [Google Scholar] [CrossRef]
- Grizzle, R.E.; Ward, K.M.; Peter, C.R.; Cantwell, M.; Katz, D.; Sullivan, J. Growth, morphometrics and nutrient content of farmed eastern oysters, Crassostrea virginica (Gmelin), in New Hampshire, USA. Aquac. Res. 2017, 48, 1525–1537. [Google Scholar] [CrossRef]
- Li, W.; Du, R.; Majura, J.J.; Chen, Z.; Cao, W.; Zhang, C.; Zheng, H.; Gao, J.; Lin, H.; Qin, X. The Spatial Distribution Patterns, Physicochemical Properties, and Structural Characterization of Proteins in Oysters (Crassostrea hongkongensis). Foods 2022, 11, 2820. [Google Scholar] [CrossRef]
- Liu, S.; Li, L.; Wang, W.; Li, B.; Zhang, G. Characterization, fluctuation and tissue differences in nutrient content in the Pacific oyster (Crassostrea gigas) in Qingdao, northern China. Aquac. Res. 2020, 51, 1353–1364. [Google Scholar] [CrossRef]
- Fratini, G.; Medina, I.; Lupi, P.; Messini, A.; Pazos, M.; Parisi, G. Effect of a finishing period in sea on the shelf life of Pacific oysters (Crassostrea gigas) farmed in lagoon. Food Res. Int. 2013, 51, 217–227. [Google Scholar] [CrossRef]
- Kosowska, M.; Majcher, M.A.; Fortuna, T. Volatile compounds in meat and meat products. Food Sci. Technol. 2017, 37, 1–7. [Google Scholar] [CrossRef]
- Jiao, R.; Zhang, J.; Yang, X.; Zhu, X.; Gao, W.; Wang, D. Key odorant identiffcation and odor treatment technology evaluation during the chemical synthesis process of typical pesticide. Process Saf. Environ. Prot. 2023, 173, 961–969. [Google Scholar] [CrossRef]
- Gui, X.; Zhang, X.; Xin, Y.; Liu, Q.; Wang, Y.; Zhang, Y.; Xu, Y.; Liu, Z.; Liu, W.; Schiöth, H.B.; et al. Identiffcation and validation of volatile organic compounds in bile for differential diagnosis of perihilar cholangiocarcinoma. Clin. Chim. Acta 2023, 541, 117235. [Google Scholar] [CrossRef]
- Yang, X.; Xing, B.; Guo, Y.; Wang, S.; Guo, H.; Qin, P.; Hou, C.; Ren, G. Rapid, accurate and simply-operated determination of laboratory-made adulteration of quinoa ffour with rice ffour and wheat ffour by headspace gas chromatography-ion mobility spectrometry. LWT 2022, 167, 113814. [Google Scholar] [CrossRef]
- Zhao, T.; Cao, Z.; Yu, J.; Weng, X.; Benjakul, S.; Guidi, A.; Ying, X.; Ma, L.; Xiao, G.; Deng, S. Gas-phase ion migration spectrum analysis of the volatile flavors of large yellow croaker oil after different storage periods. Curr. Res. Food Sci. 2022, 5, 813–822. [Google Scholar] [CrossRef]
- Jia, S.; Li, Y.; Zhuang, S.; Sun, X.; Zhang, L.; Shi, J.; Hong, H.; Luo, Y. Biochemical changes induced by dominant bacteria in chill-stored silver carp (Hypophthalmichthys molitrix) and GC-IMS identification of volatile organic compounds. Food Microbiol. 2019, 84, 103248. [Google Scholar] [CrossRef]
- Deng, S.; Liu, Y.; Huang, F.; Liu, J.; Han, D.; Zhang, C.; Blecker, C. Evaluation of volatile flavor compounds in bacon made by different pig breeds during storage time. Food Chem. 2021, 357, 129765. [Google Scholar] [CrossRef]
- Bi, S.; Xue, C.; Wen, Y.; Li, Z.; Liu, H. Comparative study between triploid and diploid oysters (Crassostrea gigas) on non-volatile and volatile compounds. LWT 2023, 179, 114654. [Google Scholar] [CrossRef]
- Fu, J.; Sun, Y.; Cui, M.; Zhang, E.; Dong, L.; Wang, W.; Li, Z.; Yang, J. Analysis of Volatile Compounds and Flavor Fingerprint Using Gas Chromatography–Ion Mobility Spectrometry (GC-IMS) on Crassostrea gigas with Different Ploidy and Gender. Molecules 2023, 28, 4475. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Yang, R.; Zhang, H.; Wang, S.; Chen, D.; Lin, S. Development of a flavor fingerprint by HS-GC-IMS with PCA for volatile compounds of Tricholoma matsutake Singer. Food Chem. 2019, 290, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Ge, X.; Liang, Q.; Long, Y.; Shen, H.; Zhang, Q.; Sun, Z.; Li, W. Assessment of fresh Alpinia galanga (A. galanga) drying techniques for the chemical composition of essential oil and its antioxidant and biological activity. Food Chem. 2022, 392, 133314. [Google Scholar] [CrossRef] [PubMed]
- Gu, L.; Yang, R.; Chen, Q. Determination of flavor substances in oyster by SPME coupled to gas Chromatography. China Condiment 2004, 308, 43–46. [Google Scholar]
- Seik, T.J.; Albin, I.A.; Sather, K.A.; Lindsay, R.C. Comparison of flavor thresholds of aliphatic lactones with those of fatty acids, esters, aldehydes, alcohol and ketones. J. Dairy Sci. 1971, 54, 1–4. [Google Scholar] [CrossRef]
- Zhang, Y.; Ma, X.; Dai, Z. Comparison of nonvolatile and volatile compounds in raw, cooked, and canned yellowfin tuna (Thunnus albacores). J. Food Process. Preserv. 2019, 43, e14111. [Google Scholar] [CrossRef]
- Cai, L.; Li, D.; Dong, Z.; Cao, A.; Lin, H.; Li, J. Change regularity of the characteristics of Maillard reaction products derived from xylose and Chinese shrimp waste hydrolysates. LWT 2016, 65, 908–916. [Google Scholar] [CrossRef]
- Huan, Y.; Zhou, G.; Zhao, G.; Xu, X.; Peng, Z. Changes in flavor compounds of dry-cured Chinese Jinhua ham during processing. Meat Sci. 2005, 71, 291–299. [Google Scholar] [CrossRef]
- Ge, S.; Chen, Y.; Ding, S.; Zhou, H.; Jiang, L.; Yi, Y.; Deng, F.; Wang, R. Changes in volatile flavor compounds of peppers during hot air drying process based on headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS). J. Sci. Food Agric. 2020, 100, 3087–3098. [Google Scholar] [CrossRef]
- Arief, I.; Afiyah, D.N.; Wulandari, Z.; Budiman, C. Physicochemical Properties, Fatty Acid Profiles, and Sensory Characteristics of Fermented Beef Sausage by Probiotics Lactobacillus plantarum IIA-2C12 or Lactobacillus acidophilus IIA-2B4. J. Food Sci. 2016, 81, M2761–M2769. [Google Scholar] [CrossRef]
- He, Z.; Zhang, Y.; Yang, M.; Zhang, Y.; Cui, Y.; Du, M.; Zhao, D.; Sun, H. Effect of different sweeteners on the quality, fatty acid and volatile flavor compounds of braised pork. Front. Nutr. 2022, 9, 961998. [Google Scholar] [CrossRef] [PubMed]
- Iglesias, J.; Medina, I.; Bianchi, F.; Careri, M.; Mangia, A.; Musci, M. Study of the volatile compounds useful for the characterisation of fresh and frozen-thawed cultured gilthead sea bream fish by solid-phase microextraction gas chromatography–mass spectrometry. Food Chem. 2009, 115, 1473–1478. [Google Scholar] [CrossRef]
- Mariutti, L.R.; Bragagnolo, N. Influence of salt on lipid oxidation in meat and seafood products: A review. Food Res. Int. 2017, 94, 90–100. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Li, X.; Su, M.; Zhang, M.; Hu, Y.; Du, J.; Zhou, H.; Zhang, X.; Ye, Z.; Yang, X. The Construction of Volatile Profiles of Eight Popular Peach Cultivars Produced in Shanghai Using GC-MS and GC-IMS. Horticulturae 2023, 9, 382. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, H.; Shi, H.; Xue, C.; Wang, Q.; Yu, F.; Xue, Y.; Wang, Y.; Li, Z. The flavor profile changes of Pacific oysters (Crassostrea gigas) in response to salinity during depuration. Food Chem. X 2022, 16, 100485. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Zhang, R.; Yang, F.; Xie, Y.; Guo, Y.; Yao, W.; Zhou, W. Control strategies of pyrazines generation from Maillard reaction. Trends Food Sci. Technol. 2021, 112, 795–807. [Google Scholar] [CrossRef]
- Chen, K.; Yang, X.; Huang, Z.; Jia, S.; Zhang, Y.; Shi, J.; Hong, H.; Feng, L.; Luo, Y. Modification of gelatin hydrolysates from grass carp (Ctenopharyngodon idellus) scales by Maillard reaction: Antioxidant activity and volatile compounds. Food Chem. 2019, 295, 569–578. [Google Scholar] [CrossRef]
- He, S.; Xie, W.; Zhang, P.; Fang, S.; Li, Z.; Tang, P.; Gao, X.; Guo, J.; Tlili, C.; Wang, D. Preliminary identification of unicellular algal genus by using combined confocal resonance Raman spectroscopy with PCA and DPLS analysis. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 190, 417–422. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.; Li, X.; Li, J.; Zhou, Y.; Xiang, Z.; Ma, H.; Noor, Z.; Mo, R.; Zhang, Y.; Yu, Z. Seasonal variations in biochemical composition and nutritional quality of Crassostrea hongkongensis, in relation to the gametogenic cycle. Food Chem. 2021, 356, 129736. [Google Scholar] [CrossRef]
- Qin, Y.; Li, R.; Liao, Q.; Shi, G.; Zhou, Y.; Wan, W.; Li, J.; Ma, H.; Zhang, Y.; Yu, Z. Comparison of biochemical composition, nutritional quality, and metals concentrations between males and females of three different Crassostrea sp. Food Chem. 2023, 398, 133868. [Google Scholar] [CrossRef]
- Zhou, J.; Jiang, G.; Xu, C.; Bai, X.; Li, Q. Growth, survival and gonad development of diploids, triploids and tetraploids of ‘Haida No. 3′ line of the Paciffc oyster Crassostrea gigas. Aquaculture 2023, 571, 739472. [Google Scholar] [CrossRef]
No. | Compounds | Retention Indexwas ① | Retention Times/s ② | Drift Times/ms ③ | The Peak Volume | |||
---|---|---|---|---|---|---|---|---|
2N-M | 2N-F | 4N-M | 4N-F | |||||
1 | 2,6-Nonadienal | 1737.5 | 1580.877 | 1.3853 | 3614.95 ± 625.89 a | 2638.27 ± 215.09 a | 2398.55 ± 207.31 a | 2417.17 ± 562.71 a |
2 | Phenylacetaldehyde-M | 1691.5 | 1441.904 | 1.25563 | 2962.37 ± 540.43 b | 4720.72 ± 380.44 a | 3398.64 ± 374.22 b | 4814.85 ± 436.66 a |
3 | Propanoic acid-M | 1597.9 | 1195.785 | 1.10796 | 702.04 ± 208.09 b | 1769.18 ± 231.90 a | 1988.80 ± 61.07 a | 1951.52 ± 24.93 a |
4 | Propanoic acid-D | 1603.6 | 1209.576 | 1.26464 | 259.47 ± 33.18 a | 1096.23 ± 513.26 a | 2697.14 ± 353.55 a | 3326.19 ± 468.83 a |
5 | Non-3-en-2-one-M | 1611.9 | 1229.733 | 1.37089 | 4502.48 ± 195.95 a | 3313.85 ± 254.12 b | 2358.76 ± 216.17 a | 1877.52 ± 56.64 b |
6 | Non-3-en-2-one-D | 1612.7 | 1231.854 | 1.89675 | 5894.10 ± 999.21 a | 5180.27 ± 544.60 a | 4681.11 ± 424.71 a | 3966.77 ± 212.65 a |
7 | 2-Nonenal-M | 1549.9 | 1086.517 | 1.40871 | 2203.23 ± 445.26 a | 2478.60 ± 128.62 a | 1643.50 ± 180.85 a | 1761.12 ± 366.59 a |
8 | 2-Nonenal-D | 1550.3 | 1087.265 | 1.96933 | 1155.34 ± 442.15 a | 1497.46 ± 176.40 a | 797.45 ± 110.38 a | 1081.54 ± 463.80 a |
9 | Phenylacetaldehyde-D | 1691.2 | 1441.125 | 1.53643 | 352.22 ± 134.27 b | 931.06 ± 163.63 a | 426.08 ± 77.59 b | 916.71 ± 149.26 a |
10 | Benzaldehyde-M | 1531.9 | 1048.106 | 1.1505 | 1066.71 ± 76.65 b | 1440.78 ± 33.15 a | 1019.22 + 34.12 b | 1187.27 ± 91.02 a |
11 | Benzaldehyde-D | 1529.3 | 1042.566 | 1.46691 | 929.69 ± 181.52 b | 2123.12 ± 159.67 a | 1095.86 ± 34.85 b | 1731.84 ± 148.59 a |
12 | 2,4-Heptadienal | 1503.8 | 990.859 | 1.6172 | 9300.60 ± 949.89 a | 9600.97 ± 288.00 a | 9119.32 ± 194.01 a | 9774.12 ± 538.55 a |
13 | P-methyl anisole | 1491.9 | 967.468 | 1.1157 | 1073.96 ± 115.51 a | 702.07 ± 34.32 b | 1194.09 ± 106.49 a | 862.66 ± 68.33 b |
14 | Furfural-M | 1484.8 | 953.925 | 1.08248 | 524.73 ± 24.34 b | 749.10 ± 17.31 a | 585.03 ± 27.45 b | 713.18 ± 21.01 a |
15 | 3-(Methylsulfanyl)propanal-M | 1466.1 | 918.838 | 1.08564 | 1087.48 ± 99.84 b | 1416.57 ± 51.71 a | 1238.97 ± 29.93 a | 1317.54 ± 47.63 a |
16 | 3-(Methylsulfanyl)propanal-D | 1467.4 | 921.301 | 1.39572 | 927.84 ± 189.84 b | 2754.40 ± 249.13 a | 1714.15 ± 134.28 b | 3148.18 ± 541.38 a |
17 | Furfural-D | 1484.2 | 952.694 | 1.33244 | 634.25 ± 142.30 b | 1465.46 ± 297.48 a | 1020.68 ± 208.12 a | 1889.78 ± 570.98 a |
18 | 2-Octenal-M | 1434.9 | 863.438 | 1.33086 | 2236.74 ± 98.58 a | 1919.40 ± 30.01 b | 1586.58 ± 140.09 a | 1495.10 ± 131.17 a |
19 | 2-Octenal-D | 1434.9 | 863.438 | 1.81812 | 4870.75 ± 601.37 a | 4536.22 ± 45.17 a | 3664.12 ± 437.59 a | 4084.97 ± 724.36 a |
20 | 2,4-Hexadienal-M | 1411.6 | 824.042 | 1.1157 | 364.24 ± 14.61 b | 453.00 ± 25.17 a | 372.98 ± 13.43 b | 430.13士25.58 a |
21 | 2,4-Hexadienal-D | 1413.1 | 826.505 | 1.44793 | 669.31 ± 207.58 a | 983.80 ± 122.06 a | 778.13 ± 103.80 b | 1339.22 ± 142.67 a |
22 | 1-Nonanal-M | 1403.7 | 811.116 | 1.4764 | 889.80 ± 74.43 a | 746.71 ± 28.38 b | 577.41 ± 47.94 a | 528.30 ± 79.21 a |
23 | 1-Nonanal-D | 1404.0 | 811.731 | 1.94152 | 1067.88 ± 62.11 a | 642.53 ± 19.66 b | 511.37 ± 62.42 a | 436.47 ± 147.38 a |
24 | 1 -Hexanol-M | 1370.7 | 759.409 | 1.32611 | 643.96 ± 84.80 a | 769.35 ± 208.89 a | 401.64 ± 25.94 b | 669.21 ± 118.30 a |
25 | 1 -Hexanol-D | 1369.5 | 757.562 | 1.64093 | 263.18 ± 68.64 a | 499.62 ± 258.50 a | 226.00 ± 24.56 b | 635.29 ± 157.76 a |
26 | 1-Hydroxy-2-propanone | 1313.6 | 677.539 | 1.2217 | 7858.05 ± 124.31 a | 7808.35 ± 156.96 a | 7622.40 ± 106.25 a | 7710.54 ± 227.09 a |
27 | 2-Butanone, 3-hydroxy-D | 1294.8 | 652.276 | 1.3317 | 303.62 ± 317.69 a | 744.15 ± 702.64 a | 985.74 ± 428.39 a | 1683.33 ± 569.71 a |
28 | Acetic acid | 1502.6 | 988.507 | 1.05136 | 376.67 ± 79.83 a | 586.05 ± 103.68 a | 693.37 ± 81.45 a | 748.35 ± 95.55 a |
29 | 1-Octen-3-ol | 1479.7 | 944.205 | 1.1587 | 1268.69 ± 126.73 a | 882.65 ± 101.45 b | 1010.72 ± 24.29 a | 748.78 ± 98.92 b |
30 | 2-Butanone, 3-hydroxy-M | 1296.6 | 654.891 | 1.06375 | 16.09 ± 10.35 a | 25.55 ± 11.43 a | 46.99 ± 14.53 a | 55.26 + 5.36 a |
31 | 1-Octanal | 1298.7 | 657.566 | 1.82562 | 2021.51 ± 880.19 a | 1225.73 ± 615.38 a | 433.54 ± 216.37 a | 242.30 ± 68.23 a |
32 | 2-Ethyl-3-methylpyrazine | 1426.5 | 849.028 | 1.16209 | 182.46 ± 28.86 b | 345.41 ± 34.67 a | 205.64 ± 45.11 b | 330.52 ± 60.83 a |
33 | Butyl pentanoate | 1304.3 | 665.014 | 1.40639 | 697.33 ± 80.72 a | 400.51 ± 56.36 b | 948.68 ± 286.92 a | 430.91 ± 116.68 b |
34 | 3-Octanone-D | 1265.7 | 598.497 | 1.71809 | 2962.69 ± 372.31 a | 2318.53 ± 311.79 a | 6043.67 ± 276.33 b | 4207.17 ± 401.51 a |
35 | 4-Heptenal-M | 1254.7 | 579.319 | 1.14747 | 3077.19 ± 279.21 a | 2777.98 ± 56.12 a | 2592.92 ± 90.69 a | 2320.46 ± 88.89 b |
36 | 2-Pentyl furan | 1239.0 | 552.949 | 1.25109 | 4519.06 ± 422.30 a | 4321.01 ± 395.99 a | 4193.73 ± 106.37 a | 4596.74 ± 373.05 a |
37 | 2-Hexen-1-al | 1227.3 | 534.114 | 1.51085 | 6289.12 ± 255.17 a | 6409.53 ± 197.19 a | 6276.38 ± 37.11 b | 6662.21 ± 163.24 a |
38 | 3-Methyl-2-butenal | 1211.6 | 509.799 | 1.35897 | 2267.89 ± 501.95 b | 4204.71 ± 224.04 a | 3866.57 ± 433.44 a | 4730.05 ± 528.16 a |
39 | Heptaldehyde | 1194.1 | 484.114 | 1.69822 | 1776.15 ± 254.45 a | 1542.15 ± 95.40 a | 1243.67 ± 70.05 a | 1111.35 ± 206.21 a |
40 | 1-Butanol | 1169.8 | 450.824 | 1.38425 | 2307.16 ± 140.27 a | 2514.14 ± 28.74 a | 2475.51 ± 36.51 a | 2496.20 ± 41.12 a |
41 | 2-Methylpent-2-enal | 1157.3 | 434.743 | 1.48969 | 1645.24 ± 212.60 b | 2206.08 ± 211.15 a | 1548.84 ± 112.00 b | 2322.87 ± 142.34 a |
42 | 2-Pentenal-M | 1139.8 | 413.076 | 1.35223 | 9105.77 ± 573.14 a | 9380.81 ± 90.28 a | 8989.74 ± 132.24 b | 9472.37 ± 186.12 a |
43 | 2-Pentenal-D | 1118.0 | 387.568 | 1.36614 | 1907.72 ± 214.96 a | 1600.01 ± 1210.54 a | 1613.89 ± 99.93 b | 2144.46 ± 212.64 a |
44 | 3-Penten-2-one | 1105.9 | 374.154 | 1.35167 | 831.67 ± 483.01 a | 971.24 ± 196.12 a | 2144.30 ± 297.76 a | 2590.21 ± 476.93 a |
45 | 2-Butenal | 1053.9 | 331.065 | 1.20029 | 3801.89 ± 390.19 a | 4067.09 ± 128.18 a | 3800.42 ± 44.57 a | 3871.73 ± 292.41 a |
46 | 1-Penten-3-one | 1031.9 | 315.212 | 1.31048 | 4784.76 ± 255.40 a | 4746.80 ± 119.90 a | 4109.79 ± 81.19 a | 4314.03 ± 239.13 a |
47 | 3-Pentanone | 985.5 | 285.945 | 1.35723 | 4949.16 ± 557.67 b | 5107.29 ± 1075.45 a | 6090.46 ± 152.37 a | 6186.13 ± 611.14 a |
48 | Ethyl propanoate | 961.9 | 274.969 | 1.45295 | 221.58 ± 93.33 b | 861.17 ± 56.26 a | 1584.98 ± 54.30 a | 1631.41 ± 139.55 a |
49 | 2-Butanone | 901.0 | 248.547 | 1.24704 | 3733.68 ± 357.01 a | 4144.13 ± 105.49 a | 3718.13 ± 115.57 a | 3807.81 ± 289.43 a |
50 | Ethyl Acetate | 884.0 | 241.637 | 1.33831 | 595.45 ± 30.41 a | 1023.52 ± 268.18 a | 1605.95 ± 266.81 a | 1865.56 ± 397.52 a |
51 | 3-Octanone-M | 1265.2 | 597.553 | 1.30973 | 343.27 ± 52.48 a | 212.85 ± 8.45 b | 378.17 ± 11.18 a | 268.86 ± 14.02 b |
52 | Ethyl-2-butenoate | 1150.4 | 426.075 | 1.18305 | 83.01 ± 20.17 a | 84.70 ± 37.84 a | 143.85 ± 23.22 a | 134.98 ± 9.06 a |
53 | 1-Propanol | 1043.2 | 323.287 | 1.11199 | 282.56 ± 60.58 a | 272.82 ± 65.20 a | 182.39 ± 26.25 a | 178.56 ± 9.58 a |
54 | Butanal | 896.2 | 246.591 | 1.28862 | 535.51 ± 41.09 a | 609.33 ± 93.65 a | 817.93 ± 87.41 a | 885.59 ± 118.60 a |
55 | 1-Pentanol-M | 1263.7 | 594.974 | 1.25483 | 284.90 ± 38.66 a | 263.16 ± 20.01 a | 116.72 ± 9.41 b | 161.17 ± 6.73 a |
56 | 2-Propanone | 843.9 | 226.112 | 1.11453 | 4972.37 ± 338.98 a | 5443.53 ± 37.48 a | 5267.57 ± 12.94 a | 5386.67 ± 121.03 a |
57 | 4-Heptenal-D | 1254.0 | 578.092 | 1.61885 | 684.27 ± 34.63 a | 690.08 ± 18.96 a | 608.60 ± 19.80 a | 545.10 ± 76.57 a |
58 | 2-Heptanone | 1193.4 | 483.056 | 1.65086 | 1303.53 ± 126.14 a | 1059.84 ± 49.67 b | 1129.27 ± 36.97 a | 977.68 ± 93.08 b |
59 | 2-Methyl-2-hepten-6-one | 1351.1 | 730.198 | 1.17369 | 180.69 ± 21.18 a | 131.14 ± 8.37 b | 224.38 ± 20.80 a | 151.93 ± 10.63 b |
60 | 1-Pentanol-D | 1264.4 | 596.137 | 1.51151 | 256.29 + 10.65 b | 388.89 ± 22.99 a | 108.87 ± 12.94 b | 226.49 ± 45.69 a |
61 | 2-Nonanone | 1396.2 | 799.107 | 1.40828 | 356.63 ± 13.84 a | 317.17 ± 13.22 b | 228.48 ± 43.89 a | 228.86 ± 35.64 a |
62 | 2,3,5-Trimethylpyrazine | 1393.1 | 794.156 | 1.16446 | 240.04 ± 30.66 a | 199.72 ± 11.88 a | 195.91 ± 32.88 a | 198.56 ± 24.83 a |
63 | 1-Butanol, 3-methyl | 1216.4 | 517.124 | 1.49232 | 147.21 ± 19.68 a | 290.34 ± 144.07 a | 264.46 ± 98.02 a | 467.26 ± 130.57 a |
64 | Ethyl-butyrate | 1040.9 | 321.634 | 1.56149 | 80.48 ± 3.18 a | 92.61 ± 7.40 a | 347.08 ± 9.62 a | 240.48 ± 40.62 b |
65 | 1-Octen-3-one | 1321.3 | 688.033 | 1.67936 | 260.60 ± 30.85 a | 219.09 ± 25.34 a | 128.62 ± 42.40 a | 156.76 ± 14.54 a |
66 | 2-Heptenal | 1333.5 | 704.915 | 1.6689 | 1857.34 ± 128.86 a | 1888.34 ± 78.53 a | 1593.03 ± 72.01 a | 1823.52 ± 163.56 a |
67 | 2-Ethyl furan | 957.8 | 273.08 | 1.29858 | 546.04 ± 100.35 b | 720.80 ± 58.29 a | 477.96 ± 6.32 b | 719.17 ± 46.26 a |
68 | 1-Penten-3-ol | 1171.9 | 453.687 | 0.94218 | 454.13 ± 154.65 a | 342.80 ± 58.29 a | 397.91 ± 20.56 a | 350.62 ± 22.42 a |
69 | 2-Butylfuran | 1130.9 | 402.512 | 1.17811 | 210.79 ± 67.27 a | 171.31 ± 113.98 a | 163.78 ± 19.68 a | 212.76 ± 48.90 a |
No. | Compounds | The Peak Volume | |||||
---|---|---|---|---|---|---|---|
2N-M | 3N | 4N-M | 2N-F | 3N | 4N-F | ||
1 | 2,6-Nonadienal | 3614.95 ± 625.89 a | 2298.87 ± 230.63 b | 2398.55 ± 207.31 b | 2638.27 ± 215.09 a | 2298.87 ± 230.63 a | 2417.17 ± 562.71 a |
2 | Phenylacetaldehyde-M | 2962.37 ± 540.43 b | 4634.13 ± 434.03 a | 3398.64 ± 374.22 b | 4720.72 ± 380.44 a | 4634.13 ± 434.03 a | 4814.85 ± 436.66 a |
3 | Propanoic acid-M | 702.04 ± 208.09 b | 1951.87 ± 53.57 a | 1988.80 ± 61.07 a | 1769.18 ± 231.90 a | 1951.87 ± 53.57 a | 1951.52 ± 24.93 a |
4 | Propanoic acid-D | 259.47 ± 33.18 b | 2141.86 ± 33.18 a | 2697.14 ± 353.55 a | 1096.23 ± 513.26 b | 2141.86 ± 33.18 b | 3326.19 ± 468.83 a |
5 | Non-3-en-2-one-M | 4502.48 ± 195.95 a | 2837.78 ± 297.98 b | 2358.76 ± 216.17 b | 3313.85 ± 254.12 a | 2837.78 ± 297.98 b | 1877.52 ± 56.64 c |
6 | Non-3-en-2-one-D | 5894.10 ± 999.21 a | 5683.71 ± 836.84 a | 4681.11 ± 424.71 a | 5180.27 ± 544.60 a | 5683.71 ± 836.84 a | 3966.77 ± 212.65 b |
7 | 2-Nonenal-M | 2203.23 ± 445.26 a b | 2625.30 ± 242.17 a | 1643.50 ± 180.85 b | 2478.60 ± 128.62 a | 2625.30 ± 242.17 a | 1761.12 ± 366.59 b |
8 | 2-Nonenal-D | 1155.34 ± 442.15 a b | 1760.11 ± 414.91 a | 797.45 ± 110.38 b | 797.45 ± 110.38 b | 797.45 ± 110.38 b | 1081.54 ± 463.80 a |
9 | Phenylacetaldehyde-D | 352.22 ± 134.27 b | 991.89 ± 229.70 a | 426.08 ± 77.59 b | 931.06 ± 163.63 a | 991.89 ± 229.70 a | 916.71 ± 149.26 a |
10 | Benzaldehyde-M | 1066.71 ± 76.65 a b | 1183.71 ± 79.64 a | 1019.22 + 34.12 b | 1440.78 ± 33.15 a | 1183.71 ± 79.64 b | 1187.27 ± 91.02 b |
11 | Benzaldehyde-D | 929.69 ± 181.52 b | 1194.05 ± 100.39 a | 1095.86 ± 34.85 a b | 1095.86 ± 34.85 b | 1194.05 ± 100.39 b | 1731.84 ± 148.59 a |
12 | 2,4-Heptadienal | 1731.84 ± 148.59 b | 11318.15 ± 743.89 a | 9119.32 ± 194.01 b | 9119.32 ± 194.01 b | 11318.15 ± 743.89 a | 9774.12 ± 538.55 b |
13 | P-methyl anisole | 1073.96 ± 115.51 a | 848.60 ± 69.60 b | 1194.09 ± 106.49 a | 702.07 ± 34.32 b | 848.60 ± 69.60 a | 862.66 ± 68.33 a |
14 | Furfural-M | 524.73 ± 24.34 a | 664.54 ± 127.56 a | 585.03 ± 27.45 a | 749.10 ± 17.31 a | 664.54 ± 127.56 a | 713.18 ± 21.01 a |
15 | 3-(Methylsulfanyl)propanal-M | 1087.48 ± 99.84 b | 1328.43 ± 85.16 a | 1238.97 ± 29.93 a b | 1416.57 ± 51.71 a | 1328.43 ± 85.16 a | 1317.54 ± 47.63 a |
16 | 3-(Methylsulfanyl)propanal-D | 927.84 ± 189.84 b | 1969.60 ± 420.36 a | 1714.15 ± 134.28 a | 2754.40 ± 249.13 a b | 1969.60 ± 420.36 b | 3148.18 ± 541.38 a |
17 | Furfural-D | 634.25 ± 142.30 a | 1097.83 ± 564.94 a | 1020.68 ± 208.12 a | 1465.46 ± 297.48 a | 1097.83 ± 564.94 a | 1889.78 ± 570.98 a |
18 | 2-Octenal-M | 2236.74 ± 98.58 a | 2040.14 ± 24.93 a | 1586.58 ± 140.09 b | 1919.40 ± 30.01 a | 2040.14 ± 24.93 a | 1495.10 ± 131.17 b |
19 | 2-Octenal-D | 4870.75 ± 601.37 a | 5159.56 ± 329.39 a | 3664.12 ± 437.59 b | 4536.22 ± 45.17 a b | 5159.56 ± 329.39 a | 4084.97 ± 724.36 b |
20 | 2,4-Hexadienal-M | 364.24 ± 14.61 b | 506.11 ± 5.44 a | 372.98 ± 13.43 b | 453.00 ± 25.17 b | 506.11 ± 5.44 a | 430.13士25.58 b |
21 | 2,4-Hexadienal-D | 669.31 ± 207.58 b | 1252.48 ± 270.00 a | 778.13 ± 103.80 b | 983.80 ± 122.06 a | 1252.48 ± 270.00 a | 1339.22 ± 142.67 a |
22 | 1-Nonanal-M | 889.80 ± 74.43 a | 777.07 ± 16.48 b | 577.41 ± 47.94 c | 746.71 ± 28.38 a | 777.07 ± 16.48 a | 528.30 ± 79.21 b |
23 | 1-Nonanal-D | 1067.88 ± 62.11 a | 706.59 ± 64.48 b | 511.37 ± 62.42 c | 642.53 ± 19.66 a | 706.59 ± 64.48 a | 436.47 ± 147.38 b |
24 | 1 -Hexanol-M | 643.96 ± 84.80 a | 619.10 ± 90.91 a | 401.64 ± 25.94 b | 769.35 ± 208.89 a | 619.10 ± 90.91 a | 669.21 ± 118.30 a |
25 | 1 -Hexanol-D | 263.18 ± 68.64 a | 295.86 ± 43.48 a | 226.00 ± 24.56 a | 499.62 ± 258.50 a | 295.86 ± 43.48 a | 635.29 ± 157.76 a |
26 | 1-Hydroxy-2-propanone | 7858.05 ± 124.31 a | 7596.07 ± 90.84 b | 7622.40 ± 106.25 b | 7808.35 ± 156.96 a | 7596.07 ± 90.84 a | 7710.54 ± 227.09 a |
27 | 2-Butanone, 3-hydroxy-D | 303.62 ± 317.69 b | 508.76 ± 201.58 a b | 985.74 ± 428.39 a | 744.15 ± 702.64 b | 508.76 ± 201.58 b | 1683.33 ± 569.71 a |
28 | Acetic acid | 376.67 ± 79.83 b | 520.46 ± 139.03 a b | 693.37 ± 81.45 a | 586.05 ± 103.68 a | 520.46 ± 139.03 a | 748.35 ± 95.55 a |
29 | 1-Octen-3-ol | 1268.69 ± 126.73 a | 953.30 ± 152.12 b | 1010.72 ± 24.29 b | 882.65 ± 101.45 a | 953.30 ± 152.12 a | 748.78 ± 98.92 a |
30 | 2-Butanone, 3-hydroxy-M | 16.09 ± 10.35 b | 28.85 ± 12.95 a b | 46.99 ± 14.53 a | 25.55 ± 11.43 b | 28.85 ± 12.95 b | 55.26 + 5.36 a |
31 | 1-Octanal | 2021.51 ± 880.19 a | 1341.53 ± 293.02 a b | 433.54 ± 216.37 b | 1225.73 ± 615.38 a | 1341.53 ± 293.02 a | 242.30 ± 68.23 b |
32 | 2-Ethyl-3-methylpyrazine | 182.46 ± 28.86 b | 258.66 ± 19.11 a | 205.64 ± 45.11 a b | 345.41 ± 34.67 a | 258.66 ± 19.11 b | 330.52 ± 60.83 a b |
33 | Butyl pentanoate | 697.33 ± 80.72 a b | 455.52 ± 12.51 b | 948.68 ± 286.92 a | 400.51 ± 56.36 a | 455.52 ± 12.51 a | 430.91 ± 116.68 a |
34 | 3-Octanone-D | 2962.69 ± 372.31 c | 4273.72 ± 160.13 b | 6043.67 ± 276.33 a | 2318.53 ± 311.79 b | 4273.72 ± 160.13 a | 4207.17 ± 401.51 a |
35 | 4-Heptenal-M | 3077.19 ± 279.21 a | 2799.16 ± 71.53 a b | 2592.92 ± 90.69 b | 2777.98 ± 56.12 a | 2799.16 ± 71.53 a | 2320.46 ± 88.89 b |
36 | 2-Pentyl furan | 4519.06 ± 422.30 a | 4280.96 ± 316.60 a | 4193.73 ± 106.37 a | 4321.01 ± 395.99 a | 4280.96 ± 316.60 a | 4596.74 ± 373.05 a |
37 | 2-Hexen-1-al | 6289.12 ± 255.17 b | 6850.33 ± 144.46 a | 6276.38 ± 37.11 b | 6409.53 ± 197.19 b | 6850.33 ± 144.46 a | 6662.21 ± 163.24 a b |
38 | 3-Methyl-2-butenal | 2267.89 ± 501.95 b | 2980.58 ± 390.69 a b | 3866.57 ± 433.44 a | 4204.71 ± 224.04 a | 2980.58 ± 390.69 b | 4730.05 ± 528.16 a |
39 | Heptaldehyde | 1776.15 ± 254.45 a | 1587.65 ± 115.73 a | 1243.67 ± 70.05 b | 1542.15 ± 95.40 a | 1587.65 ± 115.73 a | 1111.35 ± 206.21 b |
40 | 1-Butanol | 2307.16 ± 140.27 a | 2456.76 ± 75.36 a | 2475.51 ± 36.51 a | 2514.14 ± 28.74 a | 2456.76 ± 75.36 a | 2496.20 ± 41.12 a |
41 | 2-Methylpent-2-enal | 1645.24 ± 212.60 b | 2125.66 ± 165.99 a | 1548.84 ± 112.00 b | 2206.08 ± 211.15 a | 2125.66 ± 165.99 a | 2322.87 ± 142.34 a |
42 | 2-Pentenal-M | 9105.77 ± 573.14 a | 9677.83 ± 207.16 a | 8989.74 ± 132.24 a | 9380.81 ± 90.28 a | 9677.83 ± 207.16 a | 9472.37 ± 186.12 a |
43 | 2-Pentenal-D | 1907.72 ± 214.96 a b | 2129.03 ± 371.07 a | 1613.89 ± 99.93 b | 1600.01 ± 1210.54 a | 2129.03 ± 371.07 a | 2144.46 ± 212.64 a |
44 | 3-Penten-2-one | 831.67 ± 483.01 b | 1396.78 ± 783.10 a b | 2144.30 ± 297.76 a | 971.24 ± 196.12 b | 1396.78 ± 783.10 b | 2590.21 ± 476.93 a |
45 | 2-Butenal | 3801.89 ± 390.19 a | 4128.85 ± 142.12 a | 3800.42 ± 44.57 a | 4067.09 ± 128.18 a | 4128.85 ± 142.12 a | 3871.73 ± 292.41 a |
46 | 1-Penten-3-one | 4784.76 ± 255.40 a | 4558.64 ± 285.28 a b | 4109.79 ± 81.19 b | 4746.80 ± 119.90 a | 4558.64 ± 285.28 a | 4314.03 ± 239.13 a |
47 | 3-Pentanone | 4949.16 ± 557.67 b | 5080.89 ± 217.52 b | 6090.46 ± 152.37 a | 5107.29 ± 1075.45 a | 5080.89 ± 217.52 a | 6186.13 ± 611.14 a |
48 | Ethyl propanoate | 221.58 ± 93.33 c | 402.61 ± 96.42 b | 1584.98 ± 54.30 a | 861.17 ± 56.26 b | 402.61 ± 96.42 c | 1631.41 ± 139.55 a |
49 | 2-Butanone | 3733.68 ± 357.01 a | 3962.26 ± 104.31 a | 3718.13 ± 115.57 a | 4144.13 ± 105.49 a | 3962.26 ± 104.31 a | 3807.81 ± 289.43 a |
50 | Ethyl Acetate | 595.45 ± 30.41 b | 717.56 ± 34.30 b | 1605.95 ± 266.81 a | 1023.52 ± 268.18 b | 717.56 ± 34.30 b | 1865.56 ± 397.52 a |
51 | 3-Octanone-M | 343.27 ± 52.48 a b | 300.69 ± 21.73 b | 378.17 ± 11.18 a | 212.85 ± 8.45 c | 300.69 ± 21.73 a | 268.86 ± 14.02 b |
52 | ethyl-2-butenoate | 83.01 ± 20.17 b | 79.01 ± 17.24 b | 143.85 ± 23.22 a | 84.70 ± 37.84 b | 79.01 ± 17.24 b | 134.98 ± 9.06 a |
53 | 1-Propanol | 282.56 ± 60.58 a | 321.14 ± 22.58 a | 182.39 ± 26.25 b | 272.82 ± 65.20 a | 321.14 ± 22.58 a | 178.56 ± 9.58 b |
54 | Butanal | 535.51 ± 41.09 b | 548.74 ± 20.16 b | 817.93 ± 87.41 a | 609.33 ± 93.65 b | 548.74 ± 20.16 b | 885.59 ± 118.60 a |
55 | 1-Pentanol-M | 284.90 ± 38.66 a | 194.14 ± 23.91 b | 116.72 ± 9.41 c | 263.16 ± 20.01 a | 194.14 ± 23.91 b | 161.17 ± 6.73 b |
56 | 2-Propanone | 4972.37 ± 338.98 a | 5252.56 ± 99.67 a | 5267.57 ± 12.94 a | 5443.53 ± 37.48 a | 5252.56 ± 99.67 b | 5386.67 ± 121.03 a b |
57 | 4-Heptenal-D | 684.27 ± 34.63 a | 643.55 ± 32.90 a b | 608.60 ± 19.80 b | 690.08 ± 18.96 a | 643.55 ± 32.90 a | 545.10 ± 76.57 b |
58 | 2-Heptanone | 1303.53 ± 126.14 a | 1139.09 ± 43.70 b | 1129.27 ± 36.97 b | 1059.84 ± 49.67 a b | 1139.09 ± 43.70 a | 977.68 ± 93.08 b |
59 | 2-Methyl-2-hepten-6-one | 180.69 ± 21.18 b | 184.64 ± 3.79 b | 224.38 ± 20.80 a | 131.14 ± 8.37 c | 184.64 ± 3.79 a | 151.93 ± 10.63 b |
60 | 1-Pentanol-D | 256.29 + 10.65 a | 168.55 ± 23.99 b | 108.87 ± 12.94 c | 388.89 ± 22.99 a | 168.55 ± 23.99 b | 226.49 ± 45.69 b |
61 | 2-Nonanone | 356.63 ± 13.84 a | 365.25 ± 18.84 a | 228.48 ± 43.89 b | 317.17 ± 13.22 a | 365.25 ± 18.84 a | 228.86 ± 35.64 b |
62 | 2,3,5-Trimethylpyrazine | 240.04 ± 30.66 a | 253.86 ± 26.87 a | 195.91 ± 32.88 a | 199.72 ± 11.88 b | 253.86 ± 26.87 a | 198.56 ± 24.83 b |
63 | 1-Butanol, 3-methyl | 147.21 ± 19.68 b | 190.88 ± 6.04 a b | 264.46 ± 98.02 a | 290.34 ± 144.07 a b | 190.88 ± 6.04 b | 467.26 ± 130.57 a |
64 | Ethyl-butyrate | 80.48 ± 3.18 b | 53.45 ± 1.58 a | 347.08 ± 9.62 c | 92.61 ± 7.40 b | 53.45 ± 1.58 b | 240.48 ± 40.62 a |
65 | 1-Octen-3-one | 260.60 ± 30.85 a | 255.57 ± 12.47 a | 128.62 ± 42.40 b | 219.09 ± 25.34 a | 255.57 ± 12.47 a | 156.76 ± 14.54 b |
66 | 2-Heptenal | 1857.34 ± 128.86 a | 2012.07 ± 75.74 a | 1593.03 ± 72.01 b | 1888.34 ± 78.53 a | 2012.07 ± 75.74 a | 1823.52 ± 163.56 a |
67 | 2-Ethyl furan | 546.04 ± 100.35 b | 704.45 ± 71.84 a | 477.96 ± 6.32 b | 720.80 ± 58.29 a | 704.45 ± 71.84 a | 719.17 ± 46.26 a |
68 | 1-Penten-3-ol | 454.13 ± 154.65 a | 400.02 ± 49.66 a | 397.91 ± 20.56 a | 342.80 ± 58.29 a | 400.02 ± 49.66 a | 350.62 ± 22.42 a |
69 | 2-Butylfuran | 210.79 ± 67.27 a | 163.97 ± 69.67 a | 163.78 ± 19.68 a | 171.31 ± 113.98 a | 163.97 ± 69.67 a | 212.76 ± 48.90 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Fu, J.; Zhang, E.; Dong, L.; Cui, X.; Sun, Y.; Wang, Z.; Feng, Y.; Li, B.; Xu, X.; et al. Fingerprint Analysis of Volatile Flavor Compounds in Crassostrea gigas of Different Ploidy and Gender under High-Temperature Incubation. Molecules 2023, 28, 6857. https://doi.org/10.3390/molecules28196857
Sun Y, Fu J, Zhang E, Dong L, Cui X, Sun Y, Wang Z, Feng Y, Li B, Xu X, et al. Fingerprint Analysis of Volatile Flavor Compounds in Crassostrea gigas of Different Ploidy and Gender under High-Temperature Incubation. Molecules. 2023; 28(19):6857. https://doi.org/10.3390/molecules28196857
Chicago/Turabian StyleSun, Youmei, Jingjing Fu, Enshuo Zhang, Luyao Dong, Xuebo Cui, Yanan Sun, Zhizhong Wang, Yanwei Feng, Bin Li, Xiaohui Xu, and et al. 2023. "Fingerprint Analysis of Volatile Flavor Compounds in Crassostrea gigas of Different Ploidy and Gender under High-Temperature Incubation" Molecules 28, no. 19: 6857. https://doi.org/10.3390/molecules28196857
APA StyleSun, Y., Fu, J., Zhang, E., Dong, L., Cui, X., Sun, Y., Wang, Z., Feng, Y., Li, B., Xu, X., Luo, Q., Wang, W., & Yang, J. (2023). Fingerprint Analysis of Volatile Flavor Compounds in Crassostrea gigas of Different Ploidy and Gender under High-Temperature Incubation. Molecules, 28(19), 6857. https://doi.org/10.3390/molecules28196857