One-Pot Synthesis of 3,4-Dihydrocoumarins via C-H Oxidation/Conjugate Addition/Cyclization Cascade Reaction
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
4. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Kamat, D.P.; Tilve, S.G.; Kamat, V.P.; Kirtany, J.K. Syntheses and Biological Activities of Chroman-2-ones. A Review. Org. Prep. Proced. Int. 2015, 47, 1. [Google Scholar] [CrossRef]
- Musa, M.A.; Cooperwood, J.S.; Khan, M.O.F. A review of coumarin derivatives in pharmacotherapy of breast cancer. Curr. Med. Chem. 2008, 15, 1664. [Google Scholar] [CrossRef] [PubMed]
- O’Kennedy, R.; Thornes, R.D. Coumarins: Biology, Applications, and Mode of Action, 1st ed.; Wiley: Chichester, UK, 1997. [Google Scholar]
- Kontogiorgis, C.A.; Hadjipavlou-Litina, D.J. Synthesis and Antiinflammatory Activity of Coumarin Derivatives. J. Med. Chem. 2005, 48, 6400. [Google Scholar] [CrossRef] [PubMed]
- Lu, D.F.; Li, Y.J.; Gong, Y.F. Organocatalytic Asymmetric Tandem Michael Addition−Hemiacetalization: A Route to Chiral Dihydrocoumarins, Chromanes, and 4H-Chromenes. J. Org. Chem. 2010, 75, 6900. [Google Scholar] [CrossRef] [PubMed]
- Li, J.L.; Zhou, S.L.; Han, B.; Wu, L.; Chen, Y.C. Aminocatalytic asymmetric inverse-electron-demand aza-Diels–Alder reaction of N-Ts-1-aza-1,3-butadienes based on coumarin cores. Chem. Commun. 2010, 46, 2665. [Google Scholar] [CrossRef]
- Kuang, Y.L.; Liu, X.H.; Chang, L.; Wang, M.; Lin, L.L.; Feng, X.M. Catalytic Asymmetric Conjugate Allylation of Coumarins. Org. Lett. 2011, 13, 3814. [Google Scholar] [CrossRef]
- Hong, B.C.; Kotame, P.; Lee, G.H. Asymmetric synthesis of 3,4-dihydrocoumarin motif with an all-carbon quaternary stereocenter via a Michael-acetalization sequence with bifunctional amine-thiourea organocatalysts. Org. Lett. 2011, 13, 5758. [Google Scholar] [CrossRef]
- Jacobsen, C.B.; Albrecht, Ł.; Udmark, J.; Jorgensen, K.A. Enantioselective Formation of Substituted 3,4-Dihydrocoumarins by a Multicatalytic One-Pot Process. Org. Lett. 2012, 14, 5526. [Google Scholar] [CrossRef]
- Niharika, P.; Ramulu, B.V.; Satyanarayana, G. Lewis acid promoted dual bond formation: Facile synthesis of dihydrocoumarins and spiro-tetracyclic dihydrocoumarins. Org. Biomol. Chem. 2014, 12, 4347. [Google Scholar] [CrossRef]
- Engl, O.D.; Fritz, S.P.; Kaslin, A.; Wennemers, H. Organocatalytic Route to Dihydrocoumarins and Dihydroquinolinones in All Stereochemical Configurations. Org. Lett. 2014, 16, 5454. [Google Scholar] [CrossRef]
- Zhou, D.; Mao, K.; Zhang, J.; Yan, B.; Wang, W.; Xie, H. Organocatalytic annulation of aldehydes and o-quinone methides: A facile access to dihydrocoumarins. Tetrahedron Lett. 2016, 57, 5649. [Google Scholar] [CrossRef]
- Wu, B.; Yu, Z.; Gao, X.; Lan, Y.; Zhou, Y.-G. Regioselective α-Addition of Deconjugated Butenolides: Enantioselective Synthesis of Dihydrocoumarins. Angew. Chem. Int. Ed. 2017, 56, 4006. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Song, R.; Liu, Y.; Ooi, C.Y.; Jin, Z.; Zhu, T.; Wang, H.; Hao, L.; Chi, Y.R. Carbene and Acid Cooperative Catalytic Reactions of Aldehydes and o-Hydroxybenzhydryl Amines for Highly Enantioselective Access to Dihydrocoumarins. Org. Lett. 2017, 19, 5892. [Google Scholar] [CrossRef] [PubMed]
- Alden-Danforth, E.; Scerba, M.T.; Lectka, T. Asymmetric cycloadditions of o-quinone methides employing chiral ammonium fluoride precatalysts. Org. Lett. 2008, 10, 4951. [Google Scholar] [CrossRef]
- Lv, D.; Zhao, M.; Wang, Y.; Zhou, Z. 3-Nitro-3,4-dihydrocoumarins: Valuable precursors for the synthesis of enantiomerically enriched masked quaternary α-amino acid derivatives with a 3,4-dihydrocoumarin scaffold. Org. Biomol. Chem. 2019, 17, 9636. [Google Scholar] [CrossRef]
- Caruana, L.; Fochi, M.; Bernardi, L. The Emergence of Quinone Methides in Asymmetric Organocatalysis. Molecules 2015, 20, 11733. [Google Scholar] [CrossRef]
- Jaworski, A.A.; Scheidt, K.A. Emerging Roles of in Situ Generated Quinone Methides in Metal-Free Catalysis. J. Org. Chem. 2016, 81, 10145. [Google Scholar] [CrossRef]
- Huang, Y.; Hayashi, T. Asymmetric Synthesis of Triarylmethanes by Rhodium-Catalyzed Enantioselective Arylation of Diarylmethylamines with Arylboroxines. J. Am. Chem. Soc. 2015, 137, 7556. [Google Scholar] [CrossRef]
- Zheng, J.; Lin, L.; Dai, L.; Yuan, X.; Liu, X.; Feng, X. Chiral N,N′-Dioxide–Scandium(III) Complex-Catalyzed Asymmetric Friedel–Crafts Alkylation Reaction of ortho-Hydroxybenzyl Alcohols with C3-Substituted N-Protected Indoles. Chem. Eur. J. 2016, 22, 18254. [Google Scholar] [CrossRef]
- Hsiao, C.-C.; Raja, S.; Liao, H.-H.; Atodiresei, L.; Rueping, M. Ortho-Quinone Methides as Reactive Intermediates in Asymmetric Brønsted Acid Catalyzed Cycloadditions with Unactivated Alkenes by Exclusive Activation of the Electrophile. Angew. Chem. Int. Ed. 2015, 54, 5762. [Google Scholar] [CrossRef]
- Xu, M.-M.; Wang, H.-Q.; Wan, Y.; He, G.; Yan, J.; Zhang, S.; Wang, S.-L.; Shi, F. Catalytic asymmetric substitution of ortho-hydroxybenzyl alcohols with tetronic acid-derived enamines: Enantioselective synthesis of tetronic acid-derived diarylmethanes. Org. Chem. Front. 2017, 4, 358. [Google Scholar] [CrossRef]
- de Castro, P.P.; Carpanez, A.G.; Amarante, G.W. Azlactone Reaction Developments. Chem. Eur. J. 2016, 22, 10294. [Google Scholar] [CrossRef] [PubMed]
- Uyanik, M.; Nishioka, K.; Kondo, R.; Ishihara, K. Chemoselective oxidative generation of ortho-quinone methides and tandem transformations. Nat. Chem. 2020, 12, 353. [Google Scholar] [CrossRef] [PubMed]
- You, Y.; Li, T.-T.; Yuan, S.-P.; Xie, K.-X.; Wang, Z.-H.; Zhao, J.-Q.; Zhou, M.-Q.; Yuan, W.C. Catalytic asymmetric [4+2] cycloaddition of 1-((2-aryl)vinyl)naphthalen-2-ols with in situ generated ortho-quinone methides for the synthesis of polysubstituted chromanes. Chem. Commun. 2020, 56, 439. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Liu, Y.; Guo, J.; Lin, L.; Xu, Y.; Liu, X.; Feng, X. Enantioselective synthesis of dihydrocoumarin derivatives by chiral scandium(iii)-complex catalyzed inverse-electron-demand hetero-Diels–Alder reaction. Chem. Commun. 2015, 51, 3835. [Google Scholar] [CrossRef]
- Kim, K.S.; Jang, J.; Kim, D.Y. Organocatalytic Enantioselective Cycloaddition of o-Quinone Methides with Oxazolones: Asymmetric Synthesis of Dihydrocoumarins. ChemistrySelect 2020, 5, 13259. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, M.-L.; Gao, X.; Jiang, G.-F.; Zhou, Y.-G. Bifunctional squaramide-catalyzed synthesis of chiral dihydrocoumarins via ortho-quinone methides generated from 2-(1-tosylalkyl)phenols. Chem. Commun. 2017, 53, 3531. [Google Scholar] [CrossRef]
- Parvin, T.; Yadav, R.; Choudhury, L.H. Recent applications of thiourea-based organocatalysts in asymmetric multicomponent reactions (AMCRs). Org. Biomol. Chem. 2020, 18, 5513. [Google Scholar] [CrossRef]
- Patel, D.B.; Parmar, J.A.; Patel, S.S.; Nail, U.J.; Patel, H.D. Recent Advances in Ester Synthesis by Multi-Component Reactions (MCRs): A Review. Curr. Org. Chem. 2021, 25, 539. [Google Scholar] [CrossRef]
- Jung, H.I.; Kim, D.Y. Synthesis of β-Selenylated Cyclopentanones via Photoredox-Catalyzed Selenylation/Ring-Expansion Cascades of Alkenyl Cyclobutanols. Synlett 2019, 30, 1361. [Google Scholar] [CrossRef]
- Park, J.W.; Jang, S.; Choo, M.H.; Kim, D.Y. Enantioselective Organocatalytic Michael Addition and Ring Closure Cascade Reaction of o-Quinone Methides with Nitriles. Bull. Korean Chem. Soc. 2020, 41, 570. [Google Scholar] [CrossRef]
- Kim, K.S.; Kim, D.Y. Electrochemical C−H Oxidation/Conjugate Addition/Cyclization Sequences of 2-Alkyl Phenols: One-Pot Synthesis of 2-Amino-4H-chromenes. Asian J. Org. Chem. 2022, 11, e202200486. [Google Scholar] [CrossRef]
- Jeong, H.J.; Kim, D.Y. Enantioselective Decarboxylative Alkylation of β-Keto Acids to ortho-Quinone Methides as Reactive Intermediates: Asymmetric Synthesis of 2,4-Diaryl-1-benzopyrans. Org. Lett. 2018, 20, 2944. [Google Scholar] [CrossRef] [PubMed]
- Bu, H.-Z.; Li, H.-H.; Luo, W.-F.; Quin, P.-C.; Ye, L.-W. Synthesis of 2 H-Chromenes via Unexpected [4 + 2] Annulation of Alkynyl Thioethers with o-Hydroxybenzyl Alcohols. Org. Lett. 2020, 22, 648. [Google Scholar] [CrossRef] [PubMed]
- Lam, H.; Qureshi, Z.; Wegmann, M.; Lautens, M. Transition-Metal-Free [4+3]-Cycloaddition of ortho-Quinone Methides and Isomünchnones: Catalytic and Diastereoselective Assembly of Oxa-bridged Oxazocine Scaffolds. Angew. Chem. Int. Ed. 2018, 57, 16185. [Google Scholar] [CrossRef]
- Wong, Y.F.; Wang, Z.; Hong, W.X.; Sun, J.J. A one-pot oxidation/cycloaddition cascade synthesis of 2,4-diaryl chromans via ortho-quinone methides. Tetrahedron 2016, 72, 2748. [Google Scholar] [CrossRef]
- Wu, B.; Gao, X.; Yan, Z.; Chen, M.W.; Zhou, Y.Z. C–H Oxidation/Michael Addition/Cyclization Cascade for Enantioselective Synthesis of Functionalized 2-Amino-4H-chromenes. Org. Lett. 2015, 17, 6134. [Google Scholar] [CrossRef]
- Xiao, W.; Mo, Y.; Guo, J.; Su, Z.; Dong, S.; Feng, X. Catalytic enantioselective synthesis of macrodiolides and their application in chiral recognition. Chem. Sci. 2021, 12, 2940. [Google Scholar] [CrossRef]
- Adili, A.; Tao, Z.L.; Chen, D.F.; Han, Z.Y. Quinine-catalyzed highly enantioselective cycloannulation of o-quinone methides with malononitrile. Org. Biomol. Chem. 2015, 13, 2247. [Google Scholar]
- Alba, R.; Rios, R. Oxazolones in Organocatalysis, New Tricks for an Old Reagent. Chem.-Asian J. 2011, 6, 720. [Google Scholar] [CrossRef]
- Kim, S.M.; Lee, J.H.; Kim, D.Y. Enantioselective Direct Amination of α-Cyanoketones Catalyzed by Bifunctional Organocatalysts. Synlett 2008, 2008, 2659. [Google Scholar] [CrossRef]
Entry | Oxidant | Catalyst | Solvent | Yield [b] (%) |
---|---|---|---|---|
1 | Ag2CO3 | p-TsOH | CHCl3 | 35 |
2 | Ag2O | p-TsOH | CHCl3 | 63 |
3 | AgOAc | p-TsOH | CHCl3 | 25 |
4 | AgOTf | p-TsOH | CHCl3 | 33 |
5 | AgBF4 | p-TsOH | CHCl3 | 28 |
6 | AgNO3 | p-TsOH | CHCl3 | 18 |
7 | MnO2 | p-TsOH | CHCl3 | 41 |
8 | Mn(OAc)3 | p-TsOH | CHCl3 | 29 |
9 | Mn(acac)3 | p-TsOH | CHCl3 | 61 |
10 | K2S2O8 | p-TsOH | CHCl3 | trace |
11 | Oxone | p-TsOH | CHCl3 | trace |
12 | TBHP | p-TsOH | CHCl3 | trace |
13 | DDQ | p-TsOH | CHCl3 | trace |
14 | PhI(OAc)2 | p-TsOH | CHCl3 | trace |
15 | PIFA | p-TsOH | CHCl3 | trace |
16 | Ag2O | MsOH | CHCl3 | 61 |
17 | Ag2O | DNBS | CHCl3 | 57 |
18 | Ag2O | AcOH | CHCl3 | 15 |
19 | Ag2O | TFA | CHCl3 | 45 |
20 | Ag2O | DPP | CHCl3 | 81 |
21 | Ag2O | DPP | CH2Cl2 | 72 |
22 | Ag2O | DPP | DCE | 70 |
23 | Ag2O | DPP | EtOAc | 46 |
24 | Ag2O | DPP | EtOEt | 38 |
25 | Ag2O | DPP | THF | 58 |
26 | Ag2O | DPP | dioxane | 47 |
27 | Ag2O | DPP | benzene | 38 |
28 | Ag2O | DPP | toluene | 45 |
29 | Ag2O | DPP | p-xylene | 42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, D.Y. One-Pot Synthesis of 3,4-Dihydrocoumarins via C-H Oxidation/Conjugate Addition/Cyclization Cascade Reaction. Molecules 2023, 28, 6853. https://doi.org/10.3390/molecules28196853
Kim DY. One-Pot Synthesis of 3,4-Dihydrocoumarins via C-H Oxidation/Conjugate Addition/Cyclization Cascade Reaction. Molecules. 2023; 28(19):6853. https://doi.org/10.3390/molecules28196853
Chicago/Turabian StyleKim, Dae Young. 2023. "One-Pot Synthesis of 3,4-Dihydrocoumarins via C-H Oxidation/Conjugate Addition/Cyclization Cascade Reaction" Molecules 28, no. 19: 6853. https://doi.org/10.3390/molecules28196853
APA StyleKim, D. Y. (2023). One-Pot Synthesis of 3,4-Dihydrocoumarins via C-H Oxidation/Conjugate Addition/Cyclization Cascade Reaction. Molecules, 28(19), 6853. https://doi.org/10.3390/molecules28196853