Chemical Characterization of Polysaccharide Extracts Obtained from Pomace By-Products of Different White Grape Varieties
Abstract
:1. Introduction
2. Results and Discussion
2.1. Oenological Parameters of Grapes
2.2. Monosaccharide Composition and Polysaccharide Families of Grape Pomace Extracts
2.3. Molecular Weight Distributions of Polysaccharides of Grape Pomace Extracts
2.4. Total Proteins, Total Polyphenols and Monomeric Phenolic Compounds of Grape Pomace Extracts
2.5. Yield and Polysaccharide Purity of the Grape Pomace Extracts
2.6. Multivariate Statistical Analysis
3. Materials and Methods
3.1. Chemicals
3.2. Grape Pomace Material
3.3. Polysaccharide Extracts from Grape Pomaces
3.4. Oenological Parameters of Grapes
3.5. Analyses of Molecular Weight Distributions of Polysaccharides and Monosaccharide Composition of the Grape Pomace Extracts
3.6. Analyses of Total Proteins, Total Polyphenols and Monomeric Phenolic Compounds of the Grape Pomaces Extracts
3.7. Statistical Analyses
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
Abbreviations
References
- Teixeira, A.; Baenas, N.; Dominguez-Perles, R.; Barros, A.; Rosa, E.; Moreno, A.D.; Garcia-Viguera, C. Natural bioactive compounds from winery by-products as health promoters: A review. Int. J. Mol. Sci. 2014, 15, 15638–15678. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Ahmedna, M. Functional components of grape pomace: Their composition, biological properties and potential applications. Int. J. Food. Sci. Technol. 2013, 48, 221–237. [Google Scholar] [CrossRef]
- García-Lomillo, J.; González-SanJosé, M.L. Applications of wine pomace in the food industry: Approaches and functions. Compr. Rev. Food Sci. Food Safety 2017, 16, 3–22. [Google Scholar] [CrossRef] [PubMed]
- Brenes, A.; Viveros, A.; Chamorro, S.; Arija, I. Use of polyphenol-rich grape by-products in monogastric nutrition. A review. Anim. Feed Sci. Technol. 2016, 211, 1–17. [Google Scholar] [CrossRef]
- Beres, C.; Costa, G.N.; Cabezudo, I.; Da Silva-James, N.K.; Teles, A.S.; Cruz, A.P.; Mellinger-Silva, C.; Tonon, R.V.; Cabral, L.M.; Freitas, S.P. Towards integral utilization of grape pomace from winemaking process: A review. Waste Manag. 2017, 68, 581–594. [Google Scholar] [CrossRef]
- Muhlack, R.A.; Potumarthi, R.; Jeffery, D.W. Sustainable wineries through waste valorisation: A review of grape marc utilisation for value-added products. Waste Manag. 2018, 72, 99–118. [Google Scholar] [CrossRef]
- Ilyas, T.; Chowdhary, P.; Chaurasia, D.; Gnansounou, E.; Pandey, A.; Chaturvedi, P. Sustainable green processing of grape pomace for the production of value-added products: An overview. Environ. Technol. Innov. 2021, 23, 101592. [Google Scholar] [CrossRef]
- Bordiga, M.; Travaglia, F.; Locatelli, M. Valorisation of grape pomace: An approach that is increasingly reaching its maturity—A review. Int. J. Food. Sci. Technol. 2019, 54, 933–942. [Google Scholar] [CrossRef]
- Ky, I.; Lorrain, B.; Kolbas, N.; Crozier, A.; Teissedre, P.L. Wine by-products: Phenolic characterization and antioxidant activity evaluation of grapes and grape pomaces from six different French grape varieties. Molecules 2014, 19, 482–506. [Google Scholar] [CrossRef]
- Guadalupe, Z.; Ayestarán, B.; Williams, P.; Doco, T. Determination of must and wine polysaccharides by Gas Chromatography-Mass Spectrometry (GC-MS) and Size-Exclusion Chromatography (SEC). In Polysaccharides; Ramawat, K., Mérillon, J.M., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 1265–1297. [Google Scholar] [CrossRef]
- Ortega-Regules, A.; Ros-García, J.M.; Bautista-Ortín, A.B.; López-Roca, J.M.; Gómez-Plaza, E. Changes in skin cell wall composition during the maturation of four premium wine grape varieties. J. Sci. Food Agric. 2008, 88, 420–428. [Google Scholar] [CrossRef]
- Apolinar-Valiente, R.; Williams, P.; Romero-Cascales, I.; Gómez-Plaza, E.; López-Roca, J.M.; Ros-García, J.M.; Doco, T. Polysaccharide composition of Monastrell red wines from four different Spanish terroirs: Effect of wine-making techniques. J. Agric. Food Chem. 2013, 61, 2538–2547. [Google Scholar] [CrossRef] [PubMed]
- Apolinar-Valiente, R.; Romero-Cascales, I.; Gómez-Plaza, E.; López-Roca, J.M.; Ros-García, J.M. The composition of cell walls from grape marcs is affected by grape origin and enological technique. Food Chem. 2015, 167, 370–377. [Google Scholar] [CrossRef] [PubMed]
- Riou, V.; Vernhet, A.; Doco, T.; Moutounet, M. Aggregation of grape seed tannins in model wine—Effect of wine polysaccharides. Food Hydrocoll. 2002, 16, 17–23. [Google Scholar] [CrossRef]
- Waters, E.; Pellerin, P.; Brillouet, J.M. A Saccharomyces mannoprotein that protects wine from protein haze. Carbohyd. Polym. 1994, 23, 185–191. [Google Scholar] [CrossRef]
- Dupin, I.V.S.; McKinnon, B.M.; Ryan, C.; Boulay, M.; Markides, A.J.; Jones, G.P.; Williams, P.J.; Waters, E.J. Saccharomyces cerevisiae mannoproteins that protect wine from protein haze: Their release during fermentation and lees contact and a proposal for their mechanism of action. J. Agric. Food Chem. 2000, 48, 3098–3105. [Google Scholar] [CrossRef]
- Escot, S.; Feuillat, M.; Dulau, L.; Charpentier, C. Release of polysaccharides by yeasts and the influence of released polysaccharides on colour stability and wine astringency. Aust. J. Grape Wine Res. 2001, 7, 153–159. [Google Scholar] [CrossRef]
- Pozo-Bayón, M.Á; Andújar-Ortiz, I.; Moreno-Arribas, M.V. Volatile profile and potential of inactive dry yeast-based winemaking additives to modify the volatile composition of wines. J. Sci. Food Agric. 2009, 89, 1665–1673. [Google Scholar] [CrossRef]
- Vidal, S.; Williams, P.; O’Neill, M.A.; Pellerin, P. Polysaccharides from grape berry cell walls. Part I: Tissue distribution and structural characterization of the pectic polysaccharides. Carbohydr. Polym. 2001, 45, 315–323. [Google Scholar] [CrossRef]
- Quijada-Morín, N.; Williams, P.; Rivas-Gonzalo, J.C.; Doco, T.; Escribano-Bailón, M.T. Polyphenolic, polysaccharide and oligosaccharide composition of Tempranillo red wines and their relationship with the perceived astringency. Food Chem. 2014, 154, 44–51. [Google Scholar] [CrossRef]
- Nakamura, A.; Yoshida, R.; Maeda, H.; Corredig, M. The stabilizing behaviour of soybean soluble polysaccharide and pectin in acidified milk beverages. Int. Dairy J. 2006, 16, 361–369. [Google Scholar] [CrossRef]
- Maran, J.P.; Swathi, K.; Jeevitha, P.; Jayalakshmi, J.; Ashvini, G. Microwave-assisted extraction of pectic polysaccharide from waste mango peel. Carbohydr. Polym. 2015, 123, 67–71. [Google Scholar] [CrossRef]
- Freitas de Oliveira, C.; Giordani, D.; Lutckemier, R.; Gurak, P.D.; Cladera-Olivera, F.; Ferreira Marczak, L.D. Extraction of pectin from passion fruit peel assisted by ultrasound. LWT-Food Sci. Technol. 2016, 71, 110–115. [Google Scholar] [CrossRef]
- Hu, W.; Chen, S.; Wu, D.; Zhu, K.; Ye, X. Manosonication assisted extraction and characterization of pectin from different citrus peel wastes. Food Hydrocoll. 2021, 121, 106952. [Google Scholar] [CrossRef]
- Gharibzahedi, S.M.T.; Smith, B.; Guo, Y. Ultrasound-microwave assisted extraction of pectin from fig (Ficus carica L.) skin: Optimization, characterization and bioactivity. Carbohydr. Polym. 2019, 222, 114992. [Google Scholar] [CrossRef] [PubMed]
- Lecas, M.; Brillouet, J.M. Cell-wall composition of grape berry skins. Phytochem. 1994, 35, 1241–1243. [Google Scholar] [CrossRef]
- Rondeau, P.; Gambier, F.; Jolibert, F.; Brosse, N. Compositions and chemical variability of grape pomaces from French vineyard. Ind. Crops Prod. 2013, 43, 251–254. [Google Scholar] [CrossRef]
- Apolinar-Valiente, R.; Gómez-Plaza, E.; Terrier, N.; Doco, T.; Ros-García, J.M. The composition of cell walls from grape skin in Vitis vinifera intraspecific hybrids. J. Sci. Food Agric. 2017, 97, 4029–4035. [Google Scholar] [CrossRef]
- Canalejo, D.; Guadalupe, Z.; Martínez-Lapuente, L.; Ayestarán, B.; Pérez-Magariño, S.; Doco, T. Characterization of polysaccharide extracts recovered from different grape and winemaking products. Food Res. Int. 2022, 157, 111480. [Google Scholar] [CrossRef]
- González-Centeno, M.R.; Rosselló, C.; Simal, S.; Garau, M.C.; López, F.; Femenia, A. Physico-chemical properties of cell wall materials obtained from ten grape varieties and their by-products: Grape pomace and stems. LWT-Food Sci. Technol. 2010, 43, 1580–1586. [Google Scholar] [CrossRef]
- Doco, T.; Williams, P.; Pauly, M.; O’Neill, M.A.; Pellerin, P. Polysaccharides from grape berry cell walls. Part II. Structural characterization of the xyloglucan polysaccharides. Carbohyd. Polym. 2003, 53, 253–261. [Google Scholar] [CrossRef]
- Pinelo, M.; Arnous, A.; Meyer, A.S. Upgrading of grape skins: Significance of plant cell-wall structural components and extraction techniques for phenol release. Trends Food Sci. Technol. 2006, 17, 579–590. [Google Scholar] [CrossRef]
- Arnous, A.; Meyer, A.S. Quantitative prediction of cell wall polysaccharide composition in grape (Vitis vinifera L.) and apple (Malus domestica) skins from acid hydrolysis monosaccharide profiles. J. Agric. Food Chem. 2009, 57, 3611–3619. [Google Scholar] [CrossRef] [PubMed]
- Minjares-Fuentes, R.; Femenia, A.; Garau, M.C.; Candelas-Cadillo, M.G.; Simal, S.; Rossello, C. Ultrasound-assisted extraction of hemicelluloses from grape pomace using response surface methodology. Carbohydr. Polym. 2016, 138, 180–191. [Google Scholar] [CrossRef]
- Canalejo, D.; Guadalupe, Z.; Martínez-Lapuente, L.; Ayestarán, B.; Pérez-Magariño, S. Optimization of a method to extract polysaccharides from white grape pomace by-products. Food Chem. 2021, 365, 130445. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Magariño, S.; Cano-Mozo, E.; Bueno-Herrera, M.; Canalejo, D.; Doco, T.; Ayestarán, B.; Guadalupe, Z. The effects of grape polysaccharides extracted from grape by-products on the chemical composition and sensory characteristics of white wines. Molecules 2022, 27, 4815. [Google Scholar] [CrossRef]
- Gao, Y.; Fangel, J.U.; Willats, W.G.T.; Vivier, M.A.; Moore, J.P. Differences in berry skin and pulp cell wall polysaccharides from ripe and overripe Shiraz grapes evaluated using glycan profiling reveals extensin-rich flesh. Food Chem. 2021, 363, 130180. [Google Scholar] [CrossRef]
- Garrido-Bañuelos, G.; Buica, A.; Schückel, J.; Zietsman, A.J.J.; Willats, W.G.T.; Moore, J.P.; Du Toit, W.J. Investigating the relationship between grape cell wall polysaccharide composition and the extractability of phenolic compounds into Shiraz wines. Part I: Vintage and ripeness effects. Food Chem. 2018, 278, 36–46. [Google Scholar] [CrossRef]
- Ortega-Regules, A.; Ros-García, J.M.; Bautista-Ortín, A.B.; López-Roca, J.M.; Gómez-Plaza, E. Differences in morphology and composition of skin and pulp cell walls from grapes (Vitis vinifera L.): Technological implications. Eur. Food Res. Technol. 2008, 227, 223–231. [Google Scholar] [CrossRef]
- Vidal, S.; Williams, P.; Doco, T.; Moutounet, M.; Pellerin, P. The polysaccharides of red wine: Total fractionation and characterization. Carbohydr. Polym. 2003, 54, 439–447. [Google Scholar] [CrossRef]
- Apolinar-Valiente, R.; Romero-Cascales, I.; Gómez-Plaza, E.; López-Roca, J.M.; Ros-García, J.M. Cell wall compounds of red grapes skins and their grape marcs from three different winemaking techniques. Food Chem. 2015, 187, 89–97. [Google Scholar] [CrossRef]
- Huang, X.M.; Huang, H.B.; Wong, H.C. Cell walls of loosening skin in post-veraison grape berries lose structural polysaccharides and calcium while accumulate structural proteins. Sci. Hort. 2005, 104, 249–263. [Google Scholar] [CrossRef]
- Nunan, K.J.; Sims, I.M.; Bacic, A.; Robinson, S.P.; Fincher, G.B. Changes in cell wall composition during ripening of grape berries. Plant Physiol. 1998, 118, 783–792. [Google Scholar] [CrossRef] [PubMed]
- Ortega-Regules, A.; Romero-Cascales, I.; Ros-García, J.M.; López-Roca, J.M.; Gómez-Plaza, E. A first approach towards the relationship between grape skin cell-wall composition and anthocyanin extractability. Anal Chim. Acta. 2006, 563, 26–32. [Google Scholar] [CrossRef]
- OIV. International Organisation of Vine and Wine. Compendium of International Methods of Wine and Must Analysis; International Organisation of Vine and Wine: Paris, France, 2016. [Google Scholar]
- Guadalupe, Z.; Martínez-Pinilla, O.; Garrido, Á.; Carrillo, J.; Ayestarán, B. Quantitative determination of wine polysaccharides by gas chromatography–mass spectrometry (GC–MS) and size exclusion chromatography (SEC). Food Chem. 2012, 131, 367–374. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolibdicphos-photungstic acid reagent. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Pérez-Magariño, S.; Ortega-Heras, M.; Cano-Mozo, E. Optimization of a solid-phase extraction method using copolymer sorbents for isolation of phenolic compounds in red wines and quantification by HPLC. J. Agric. Food Chem. 2008, 56, 11560–11570. [Google Scholar] [CrossRef]
Grape Variety 1 | Brix Degree | pH | Titratable Acidity (g of Tartaric Acid/L) | Potential Alcohol Content (% v/v) |
---|---|---|---|---|
LIG | 24.2 | 3.3 ± 0.1 | 5.5 ± 0.2 | 14.26 |
VER1 | 23.4 | 3.2 ± 0.1 | 5.8 ± 0.2 | 13.68 |
MALV | 22.7 | 3.7 ± 0.1 | 7.2 ± 0.3 | 13.28 |
SB | 21.7 | 3.1 ± 0.1 | 10.2 ±0.4 | 12.58 |
RSB | 21.4 | 3.1 ± 0.1 | 6.4 ± 0.3 | 12.36 |
VER2 | 21.2 | 3.5 ± 0.1 | 5.0 ± 0.2 | 12.22 |
AM | 20.5 | 3.2 ± 0.1 | 5.9 ± 0.2 | 11.82 |
PC | 19.3 | 3.2 ± 0.1 | 5.7 ± 0.2 | 10.99 |
VIU | 18.2 | 3.0 ± 0.1 | 6.3 ± 0.3 | 10.29 |
Compounds 2 | LIG 3 | VER1 | MALV | SB | RSB | VER2 | AM | PC | VIU | p-Value 4 |
---|---|---|---|---|---|---|---|---|---|---|
GalA | 28.94 ± 9.31 a | 28.49 ± 7.46 a | 45.47 ± 6.92 b | 44.70 ± 5.68 b | 38.91 ± 17.51 ab | 53.08 ± 9.77 b | 27.15 ± 0.50 a | 96.05 ± 4.34 c | 41.18 ± 8.83 ab | 0.0000 |
Rha | 3.26 ± 1.13 a | 4.79 ± 2.44 ab | 3.71 ± 0.43 a | 5.26 ± 0.59 ab | 3.74 ± 1.28 a | 7.21 ± 0.72 b | 6.43 ± 0.04 ab | 11.66 ± 4.80 c | 4.94 ± 1.13 ab | 0.0016 |
2-OMeXyl | 0.15 ± 0.03 a | 0.23 ± 0.02 a | 0.20 ± 0.01 a | 0.20 ± 0.01 a | 0.21 ± 0.03 a | 0.24 ± 0.02 a | 0.24 ± 0.00 a | 0.48 ± 0.19 b | 0.22 ± 0.06 a | 0.0012 |
GluA | 0.66 ± 0.14 a | 1.26 ± 0.66 ab | 0.78 ± 0.06 a | 1.14 ± 0.12 ab | 0.92 ± 0.18 ab | 2.06 ± 0.18 b | 1.28 ± 0.00 ab | 3.46 ± 2.19 c | 0.92 ± 0.23 ab | 0.0029 |
Ara | 2.37 ± 0.97 a | 3.44 ± 1.07 ab | 3.22 ± 0.28 ab | 5.14 ± 0.23 b | 2.48 ± 1.04 a | 5.07 ± 0.54 b | 14.07 ± 0.16 d | 9.58 ± 3.55 c | 3.51 ± 0.71 ab | 0.0000 |
Fuc | 0.10 ± 0.09 a | 0.18 ± 0.03 abc | 0.17 ± 0.02 abc | 0.22 ± 0.01 bc | 0.14 ± 0.03 ab | 0.22 ± 0.02 bc | 0.25 ± 0.00 c | 0.42 ± 0.14 d | 0.20 ± 0.03 bc | 0.0003 |
Gal | 16.56 ± 4.31 ab | 15.87 ± 1.80 ab | 24.90 ± 2.89 d | 26.29 ± 0.20 d | 11.02 ± 5.04 a | 22.84 ± 0.15 cd | 37.24 ± 0.50 e | 45.03 ± 6.88 f | 17.56 ± 2.81 bc | 0.0000 |
2-OMeFuc | 0.25 ± 0.04 a | 0.33 ± 0.04 ab | 0.33 ± 0.04 ab | 0.39 ± 0.00 ab | 0.25 ± 0.08 a | 0.41 ± 0.02 b | 0.33 ± 0.01 ab | 0.74 ± 0.24 c | 0.32 ± 0.03 ab | 0.0001 |
Api | 0.98 ± 0.41 ab | 1.41 ± 0.30 c | 1.25 ± 0.39 bc | 0.69 ± 0.06 a | 1.29 ± 0.02 bc | 1.38 ± 0.12 bc | 0.84 ± 0.03 a | 1.03 ± 0.21 abc | 1.04 ± 0.19 abc | 0.0178 |
KDO | 0.08 ± 0.00 a | 0.18 ± 0.06 bc | 1.17 ± 0.12 e | 0.17 ± 0.01 abc | 0.18 ± 0.05 bc | 0.13 ± 0.02 ab | 0.57 ± 0.06 d | 0.26 ± 0.03 c | 0.13 ± 0.03 ab | 0.0000 |
Gluc | 87.60 ± 15.22 b | 270.58 ± 7.51 e | 56.90 ± 10.45 a | 99.09 ± 13.38 b | 172.42 ± 25.23 d | 126.54 ± 0.52 c | 163.62 ± 1.40 d | 147.52 ± 15.31 cd | 172.42 ± 22.77 d | 0.0000 |
Man | 1.35 ± 0.75 a | 1.28 ± 0.65 a | 1.32 ± 0.66 a | 1.90 ± 0.02 ab | 0.94 ± 0.35 a | 2.52 ± 0.48 b | 9.12 ± 0.12 d | 5.20 ± 1.24 c | 1.46 ± 0.21 a | 0.0000 |
Xyl | 1.38 ± 0.54 a | 1.62 ± 0.92 a | 1.23 ± 0.30 a | 2.33 ± 0.78 ab | 1.32 ± 0.57 a | 2.22 ± 0.27 a | 4.42 ± 0.07 c | 3.56 ± 1.61 bc | 2.16 ± 0.42 a | 0.0005 |
TMS | 143.68 ± 30.68 a | 329.67 ± 18.84 e | 140.66 ± 16.40 a | 187.52 ± 6.10 b | 233.82 ± 25.69 cd | 223.91 ± 11.71 bc | 265.57 ± 2.78 d | 324.99 ± 40.49 e | 246.07 ± 25.19 cd | 0.0000 |
RG-II | 5.84 ± 1.63 a | 8.63 ± 1.10 bc | 11.81 ± 1.75 d | 5.81 ± 0.16 a | 7.70 ± 0.30 ab | 8.63 ± 0.44 bc | 7.98 ± 0.08 abc | 10.08 ± 2.68 cd | 6.89 ± 0.88 ab | 0.0004 |
MN | 1.35 ± 0.75 a | 1.28 ± 0.65 a | 1.32 ± 0.66 a | 1.90 ± 0.02 ab | 0.94 ± 0.35 a | 2.52 ± 0.48 b | 9.12 ± 0.12 d | 5.20 ± 1.24 c | 1.46 ± 0.21 a | 0.0000 |
PRAG | 20.72 ± 5.82 ab | 22.55 ± 4.62 ab | 29.81 ± 3.52 bc | 34.52 ± 0.88 c | 16.06 ± 6.67 a | 33.81 ± 1.48 c | 56.36 ± 0.65 d | 63.44 ± 15.16 d | 24.17 ± 4.77 abc | 0.0000 |
HG | 26.69 ± 9.15 ab | 25.52 ± 7.19 a | 42.51 ± 7.31 c | 41.20 ± 5.65 bc | 36.69 ± 16.83 abc | 49.37 ± 9.55 c | 24.16 ± 0.45 a | 89.40 ± 2.19 d | 38.26 ± 8.77 abc | 0.0000 |
NPP | 87.60 ± 15.22 b | 270.58 ± 7.51 e | 56.90 ± 10.45 a | 99.09 ± 13.38 b | 172.42 ± 25.23 d | 126.54 ± 0.52 c | 163.62 ± 1.40 d | 147.52 ± 15.31 cd | 172.42 ± 22.77 d | 0.0000 |
TPP | 53.25 ± 14.23 a | 56.70 ± 12.88 a | 84.14 ± 8.59 c | 81.53 ± 6.36 bc | 60.45 ± 23.21 ab | 91.82 ± 11.47 c | 88.50 ± 1.03 c | 162.92 ± 20.02 d | 69.33 ± 3.28 abc | 0.0000 |
TFP | 142.20 ± 29.54 a | 328.56 ± 18.14 e | 142.36 ± 16.31 a | 182.52 ± 7.04 b | 233.81 ± 24.47 cd | 220.88 ± 11.42 c | 261.24 ± 2.55 d | 315.63 ± 36.57 e | 243.21 ± 25.28 cd | 0.0000 |
Ara/Gal | 0.14 ± 0.05 ab | 0.22 ± 0.06 c | 0.13 ± 0.01 a | 0.20 ± 0.01 bc | 0.23 ± 0.02 c | 0.22 ± 0.02 c | 0.38 ± 0.00 d | 0.21 ± 0.05 c | 0.20 ± 0.02 bc | 0.0000 |
Rha/GalA | 0.11 ± 0.01 abc | 0.16 ± 0.05 c | 0.08 ± 0.00 a | 0.12 ± 0.00 abc | 0.10 ± 0.02 ab | 0.14 ± 0.01 bc | 0.24 ± 0.00 d | 0.12 ± 0.04 abc | 0.13 ± 0.06 abc | 0.0005 |
(Ara + Gal)/Rha | 6.02 ± 1.53 bc | 5.07 ± 3.19 ab | 7.62 ± 0.85 c | 6.02 ± 0.60 bc | 3.49 ± 0.53 a | 3.89 ± 0.29 ab | 7.98 ± 0.05 c | 5.02 ± 1.28 ab | 4.32 ± 0.54 ab | 0.0057 |
Compounds 2 | LIG 3 | VER1 | MALV | SB | RSB | VER2 | AM | PC | VIU | p-Value 4 |
---|---|---|---|---|---|---|---|---|---|---|
% HMW P | 41.6 ± 3.1 ab | 37.7 ± 6.1 a | 62.5 ± 6.3 c | 47.9 ± 2.6 b | 43.6 ± 7.8 ab | 47.6 ± 1.5 b | 58.3 ± 0.3 c | 61.9 ± 0.8 c | 45.6 ± 2.4 b | 0.0000 |
% MMW P | nd 5 | nd | nd | nd | nd | nd | 1.4 ± 0.18 | nd | nd | |
% LMW P | 58.4 ± 3.1 bc | 62.3 ± 6.1 c | 37.5 ± 6.7 a | 52.1 ± 2.6 b | 56.4 ± 7.8 bc | 52.4 ± 1.5 b | 40.3 ± 0.1 a | 38.1 ± 0.8 a | 54.4 ± 2.4 b | 0.0000 |
Total proteins (mg BSA/g of extract) | 24.5 ± 4.4 d | 18.7 ± 3.7 abc | 20.0 ± 4.5 bcd | 18.7 ± 0.6 abc | 14.5 ± 2.8 a | 18.5 ± 2.6 abc | 14.0 ± 0.9 a | 22.9 ± 2.4 cd | 16.4 ± 0.9 ab | 0.0043 |
Total polyphenols (mg GA/g of extract) | 35.1 ± 7.6 ef | 27.9 ± 6.7 cd | 19.6 ± 3.9 ab | 25.9 ± 0.4 bc | 36.9 ± 1.4 f | 33.1 ± 2.9 def | 17.2 ± 0.5 a | 29.0 ± 2.9 cde | 22.3 ± 1.4 abc | 0.0001 |
Yield (%) | 7.8 ± 0.5 ab | 13.4 ± 0.9 c | 6.42 ± 3.2 a | 7.66 ± 0.6 ab | 8.97 ± 1.7 b | 9.13 ± 0.4 b | 15.9. ± 0.9 d | 5.54 ± 0.7 a | 9.42 ± 0.4 b | 0.0000 |
Polysaccharide purity (%) | 14.2 ± 3.0 a | 32.9 ± 1.8 e | 14.2 ± 1.6 a | 18.3 ± 0.7 b | 23.4 ± 2.4 cd | 22.1 ± 1.1 c | 26.1 ± 0.3 d | 31.6 ± 3.7 e | 24.3 ± 2.5 cd | 0.0000 |
Compounds 2 | LIG 3 | VER1 | MALV | SB | RSB | VER2 | AM | PC | VIU | p-Value 4 |
---|---|---|---|---|---|---|---|---|---|---|
Gallic acid | 5.3 ± 1.9 c | 1.7 ± 0.3 ab | n.d. 5 | n.d. | 1.4 ± 0.1 a | n.d. | 2.9 ± 0.1 ab | 3.2 ± 0.3 b | n.d. | 0.0024 |
Protocatechuic acid | 9.4 ± 1.7 a | 30.1 ± 1.8 d | n.d. | 10.7 ± 1.3 a | 25.14 ± 0.5 c | 17.3 ± 1.2 b | 11.0 ± 0.6 a | 19.0 ± 3.3 b | 9.9 ± 0.2 a | 0.0000 |
HBA | 14.7 ± 3.0 cd | 31.8 ± 1.7 g | n.d. | 10.7 ± 1.3 ab | 26.6 ± 0.6 f | 17.3 ± 1.2 d | 13.8 ± 0.7 bc | 22.2 ± 3.6 e | 9.9 ± 0.2 a | 0.0000 |
t-caftaric acid | n.d. | 148.3 ± 18.7 b | n.d. | n.d. | n.d. | 56.8 ± 0.9 a | 57.7 ± 0.2 a | n.d. | 67.6 ± 0.5 a | 0.0000 |
c-cutaric acid | n.d. | 46.8 ± 4.9 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 42.9 ± 1.3 | 0.2583 |
t-cutaric acid | n.d. | 51.0 ± 6.3 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 45.7 ± 2.7 | 0.2583 |
t-fertaric acid | n.d. | 64.0 ± 7.5 b | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 50.7 ± 1.2 a | 0.0383 |
TE-HCA | n.d. | 310.0 ± 35.6 c | n.d. | n.d. | n.d. | 56.8 ± 0.9 a | 57.7 ± 0.2 a | n.d. | 207.0 ± 5.7 b | 0.0000 |
Catechin | 342.9 ± 86.5 bc | 1172.5 ± 159.0 d | 137.9 ± 24.7 a | 79.2 ± 3.1 a | 304.0 ± 12.9 bc | 396.6 ± 65.7 c | 251.9 ± 7.3 b | 325.1 ± 24.8 bc | 112.4 ± 4.2 a | 0.0000 |
Epicatechin | 99.4 ± 24.5 c | 206.7 ± 22.2 e | 11.7 ± 0.3 a | 29.8 ± 4.1 a | 97.0 ± 3.6 c | 71.3 ± 9.0 b | 113.5 ± 2.3 cd | 129.6 ± 20.7 d | 22.7 ± 2.6 a | 0.0000 |
Procyanidin dimer I | 62.4 ± 13.1 b | 387.1 ± 36.1 d | 33.6 ± 1.9 a | n.d. | 78.5 ± 0.8 bc | 31.2 ± 0.9 a | 104.6 ± 0.2 c | 66.4 ± 18.6 b | 97.0 ± 12.2 c | 0.0000 |
Procyanidin dimer II | 35.9 ± 7.6 ab | 85.1 ± 14.7 d | 21.3 ± 3.2 a | n.d. | 56.5 ± 12.5 c | n.d. | 19.5 ± 0.3 a | 49.4 ± 13.8 bc | n.d. | 0.0000 |
Flavanols | 540.6 ± 124.2 b | 1851.4 ± 232.2 c | 204.6 ± 27.5 a | 109.0 ± 7.2a | 535.9 ± 15.1 b | 499.2 ± 71.0 b | 489.4 ± 9.0 b | 570.6 ± 63.5 b | 232.1 ± 10.6 a | 0.0000 |
Syringetin-3-glu | 13.6 ± 0.2 ab | 58.1 ± 11.5 f | 22.7 ± 5.7 cd | 9.37 ± 1.0 a | 9.6 ± 0.7 a | 18.2 ± 1.1 bc | 17.9 ± 0.3 bc | 29.0 ± 3.4 de | 32.5 ± 3.7 e | 0.0000 |
Quercetin gls | 13.8 ± 1.0 a | 183.1 ± 28.0 e | 27.5 ± 3.6 ab | 21.9 ± 3.8 a | 40.3 ± 1.6 bc | 19.8 ± 2.3 a | 22.3 ± 1.3 a | 56.1 ± 9.9 cd | 58.6 ± 7.7 d | 0.0000 |
Flavonols | 27.3 ± 1.2 a | 241.2 ± 39.6 c | 50.2 ± 9.3 a | 31.2 ± 3.7 a | 49.9 ± 1.4 a | 38.0 ± 1.7 a | 40.2 ± 1.6 a | 85.1 ± 13.3 b | 91.1 ± 11.4 b | 0.0000 |
Total Phenols | 582.6 ± 127.6 b | 2434.5 ± 292.0 c | 254.8 ± 34.7 a | 150.9 ± 9.8 a | 612.4 ± 15.0 b | 611.3 ± 73.1 b | 601.1 ± 6.6 b | 677.9 ± 78.7 b | 540.1 ± 26.7 b | 0.0000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Curiel-Fernández, M.; Bueno-Herrera, M.; Guadalupe, Z.; Ayestarán, B.; Pérez-Magariño, S. Chemical Characterization of Polysaccharide Extracts Obtained from Pomace By-Products of Different White Grape Varieties. Molecules 2023, 28, 6770. https://doi.org/10.3390/molecules28196770
Curiel-Fernández M, Bueno-Herrera M, Guadalupe Z, Ayestarán B, Pérez-Magariño S. Chemical Characterization of Polysaccharide Extracts Obtained from Pomace By-Products of Different White Grape Varieties. Molecules. 2023; 28(19):6770. https://doi.org/10.3390/molecules28196770
Chicago/Turabian StyleCuriel-Fernández, María, Marta Bueno-Herrera, Zenaida Guadalupe, Belén Ayestarán, and Silvia Pérez-Magariño. 2023. "Chemical Characterization of Polysaccharide Extracts Obtained from Pomace By-Products of Different White Grape Varieties" Molecules 28, no. 19: 6770. https://doi.org/10.3390/molecules28196770
APA StyleCuriel-Fernández, M., Bueno-Herrera, M., Guadalupe, Z., Ayestarán, B., & Pérez-Magariño, S. (2023). Chemical Characterization of Polysaccharide Extracts Obtained from Pomace By-Products of Different White Grape Varieties. Molecules, 28(19), 6770. https://doi.org/10.3390/molecules28196770