Synthesis and In Vitro Anticancer Activity of Novel 4-Aryl-3-(4-methoxyphenyl)-1-phenyl-1H-pyrazolo[3,4-b]pyridines Arrest Cell Cycle and Induce Cell Apoptosis by Inhibiting CDK2 and/or CDK9
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Biological Evaluation
2.2.1. Anti-Cancer Activity of 9a–h and 14a–h against Hela, HCT-116, and MCF7 Cancer Cell Lines
2.2.2. SAR Studies
2.2.3. Cell Cycle and Apoptosis
Cell Cycle
Apoptosis Assay
2.2.4. Cytotoxicity of 9a and 14g on Normal Cell Line
2.2.5. CDK2 and CDK9 Enzyme Assay Inhibition of 9a and 14g
2.3. Molecular Modeling
2.3.1. Docking of 9a and 14g in CDK2 Binding Site
2.3.2. Docking of 9a and 14g in CDK9 Binding Site
3. In Silico ADME Study
4. Conclusions
5. Experimental Section
5.1. Chemistry
5.1.1. Synthesis of Pyrazolo[3,4-b]pyridine Derivatives 9a–h
3-(4-Methoxyphenyl)-1,4-diphenyl-1H-pyrazolo[3,4-b]pyridine (9a)
- White powder, 72% yield; mp 161–163 °C; IR νmax/cm−1 1593 (C=N), 1501 (C=C), 1250 (C–O); 1H-NMR δ 3.87 (s, 3H, OMe), 7.16 (d, J = 8.8 Hz, 2H, ArHs), 7.39 (t, J = 7.4 Hz, 1H, ArH), 7.51–7.67 (m, 5H, ArHs), 8.01 (d, J = 8.5 Hz, 1H, H3 of pyridine), 8.09 (d, J = 8.7 Hz, 2H, ArHs), 8.27 (d, J = 7.3 Hz, 2H, ArHs), 8.46 (d, J = 7.2 Hz, 2H, ArHs), 8.70 (d, J = 8.5 Hz, 1H, H2 of pyridine); 13C-NMR δ 55.77 (C of OMe), 113.95, 115.03 (2C), 115.99, 121.05 (2C), 125.01, 126.23, 127.80 (2C), 128.85 (2C), 129.48 (2C), 129.70 (2C), 130.33, 132.65, 138.62, 139.68, 143.92, 151.39, 156.42, 160.38; MS m/z (%) 377.08 (M+,21.80). For C25H19N3O (377.45): Calc.: C, 79.55; H, 5.07; N, 11.13. Found: C, 79.31; H, 5.20; N, 11.40.
3-(4-Methoxyphenyl)-1-phenyl-4-(p-tolyl)-1H-pyrazolo[3,4-b]pyridine (9b)
- White powder, 75% yield; mp 186–188 °C; IR νmax/cm−1 1593 (C=N), 1501 (C=C), 1250 (C–O); 1H-NMR δ 2.41 (s, 3H, Me), 3.87 (s, 3H, OMe), 7.16 (d, J = 8.8 Hz, 2H, ArHs), 7.39 (d, J = 8.0 Hz, 3H, ArHs), 7.64 (t, J = 7.8 Hz, 2H, ArHs), 7.99 (d, J = 8.6 Hz, 1H, H3 of pyridine), 8.09 (d, J = 8.9 Hz, 2H, ArHs), 8.17 (d, J = 8.4 Hz, 2H, ArHs), 8.46 (d, J = 8.6 Hz, 2H, ArHs), 8.69 (d, J = 8.5 Hz, 1H, H2 of pyridine); 13C-NMR δ 21.38 (C of Me), 55.75 (C of OMe), 113.73, 115.01 (2C), 115.70, 120.99 (2C), 125.05, 126.17, 127.68 (2C), 128.82 (2C), 129.68 (2C), 130.07 (2C), 132.50, 135.84, 139.72, 140.07, 143.88, 151.40, 156.42, 160.35; MS m/z (%) 391.47 (M+, 52.80). For C26H21N3O (391.47): Calc.: C, 79.77; H, 5.41; N, 10.73. Found: C, 79.54; H, 5.68; N, 10.98.
3,4-Bis(4-methoxyphenyl)-1-phenyl-1H-pyrazolo[3,4-b]pyridine (9c)
- White powder, 66% yield; mp 198–200 °C; IR νmax/cm−1 1600 (C=N), 1501(C=C), 1254 (C–O); 1H-NMR δ 3.855 (s, 3H, OMe), 3.865 (s, 3H, OMe), 7.09–7.18 (m, 4H, ArHs), 7.37 (t, J = 7.4 Hz, 1H, ArH), 7.63 (t, J = 7.8 Hz, 2H, ArHs), 7.94 (d, J = 8.6 Hz, 1H, H3 of pyridine), 8.07 (d, J = 8.6 Hz, 2H, ArHs), 8.23 (d, J = 8.7 Hz, 2H, ArHs), 8.45 (d, J = 8.0 Hz, 2H, ArHs), 8.63 (d, J = 8.5 Hz, 1H, H2 of pyridine); 13C-NMR δ 55.75 (C of OMe), 55.79 (C of OMe), 113.38, 114.86 (2C), 115.01 (2C), 115.34, 120.96 (2C), 125.09, 126.13, 128.81 (2C), 129.24 (2C), 129.67 (2C), 130.98, 132.42, 139.75, 143.88, 151.44, 156.20, 160.33, 161.29; MS m/z (%) 407.33 (M+, 14.18). For C26H21N3O2 (407.47): Calc.: C, 76.64; H, 5.19; N, 10.31. Found: C, 76.86; H, 5.32; N, 10.47.
4-(4-Fluorophenyl)-3-(4-methoxyphenyl)-1-phenyl-1H-pyrazolo[3,4-b]pyridine (9d)
- White powder, 74% yield; mp 171–173 °C; IR νmax/cm−1 1597 (C=N), 1505 (C=C), 1250 (C–O), 1227 (C-F); 1H-NMR δ 3.87 (s, 3H, OMe), 7.15 (d, J = 8.7 Hz, 2H, ArHs), 7.40 (q, J = 8.6 Hz, 3H, ArHs), 7.63 (t, J = 7.9 Hz, 2H, ArHs), 8.00 (d, J = 8.5 Hz, 1H, H3 of pyridine), 8.08 (d, J = 8.7 Hz, 2H, ArHs), 8.33 (dd, J = 8.7, 5.7 Hz, 2H, ArHs), 8.43 (d, J = 8.6 Hz, 2H, ArHs), 8.70 (d, J = 8.5 Hz, 1H, H2 of pyridine); 13C-NMR δ 55.77 (C of OMe), 113.86, 115.03 (2C), 115.82, 116.27, 116.49, 121.11 (2C), 124.96, 126.28, 128.86 (2C), 129.71 (2C), 130.02, 130.11, 132.77, 134.76, 139.62, 143.93, 151.28, 155.36, 160.39, 165.03; MS m/z (%) 395.64 (M+, 26.35). For C25H18FN3O (395.44): Calc.: C, 75.93; H, 4.59; N, 10.63. Found: C, 76.09; H, 4.72; N, 10.91.
4-(4-Chlorophenyl)-3-(4-methoxyphenyl)-1-phenyl-1H-pyrazolo[3,4-b]pyridine (9e)
- White powder, 72% yield; mp 210–212 °C; IR νmax/cm−1 1599 (C=N), 1501 (C=C), 1254 (C–O); 1H-NMR δ 3.87 (s, 3H, OMe), 7.15 (d, J = 8.4 Hz, 2H, ArHs), 7.39 (t, J = 7.4 Hz, 1H, ArH), 7.63 (dd, J = 8.3, 6.3 Hz,, 4H, ArHs), 8.03 (d, J = 8.5 Hz, 1H, H3 of pyridine), 8.09 (d, J = 8.6 Hz, 2H, ArHs), 8.29 (d, J = 8.3 Hz, 2H, ArHs), 8.42 (d, J = 8.0 Hz, 2H, ArHs), 8.72 (d, J = 8.6 Hz, 1H, H2 of pyridine); 13C-NMR δ 55.78 (C of OMe), 110.10, 115.08, 115.96, 121.18 (2C), 122.66, 124.92, 126.63, 128.89, 129.56 (2C), 129.75 (2C), 135.61, 137.43, 139.56, 144.00, 149.39, 151.27, 152.74, 153.76, 155.17, 160.42, 161.98; MS m/z (%) 412.40 (M++1, 36.04), 411.71 (M+, 53.37). For C25H18ClN3O (411.89): Calc.: C, 72.90; H, 4.41; N, 10.20. Found: C, 73.14; H, 4.60; N, 10.43.
4-(4-Bromophenyl)-3-(4-methoxyphenyl)-1-phenyl-1H-pyrazolo[3,4-b]pyridine (9f)
- Pale yellow powder, 65% yield; mp 217–219 °C; IR νmax/cm−1 1596 (C=N), 1501 (C=C), 1254 (C–O), 1227 (C–F); 1H-NMR δ 3.86 (s, 3H, OMe), 7.14 (d, J = 8.2 Hz, 2H, ArHs), 7.38 (t, J = 7.4 Hz, 1H, ArHs), 7.62 (t, J = 7.8 Hz, 2H, ArHs), 7.76 (d, J = 8.1 Hz, 2H, ArHs), 7.99 (d, J = 8.5 Hz, 1H, H3 of pyridine), 8.07 (d, J = 8.2 Hz, 2H, ArHs), 8.19 (d, J = 8.1 Hz, 2H, ArHs), 8.41 (d, J = 8.0 Hz, 2H, ArHs), 8.69 (d, J = 8.5 Hz, 1H, H2 of pyridine); 13C-NMR δ 55.76 (C of OMe), 107.26, 114.15, 115.23 (2C), 115.92, 121.15 (2C), 126.47, 128.85, 129.65, 129.76 (2C), 131.76 (2C), 132.13, 143.93, 139.75, 145.47, 151.24, 154.43, 154.97, 157.59, 162.42, 166.54; MS m/z (%) 456.20 (M+, 23.09). For C25H18BrN3O (456.34): Calc.: C, 65.80; H, 3.98; N, 9.21. Found: C, 65.97; H, 4.06; N, 9.42.
3-(4-Methoxyphenyl)-4-(4-nitrophenyl)-1-phenyl-1H-pyrazolo[3,4-b]pyridine (9g)
- Orange powder, 68% yield; mp > 300 °C; IR νmax/cm−1 1597 (C=N), 1520 (C-NO2), 1497 (C=C), 1343 (C–NO2), 1250 (C–O); 1H-NMR δ 3.88 (s, 3H, OMe), 7.18 (d, J = 8.3 Hz, 2H, ArHs), 7.42 (s, 1H, ArH), 7.67 (d, J = 8.2 Hz, 3H, ArHs), 8.16–8.43 (m, 7H, 6 ArHs + H3 of pyridine), (d, J = 8.1 Hz, 4H, ArHs), 8.56 (d, J = 8.4 Hz, 2H, H2 of pyridine); MS m/z (%) 422.27 (M+, 43.75). For C25H18NO3 (422.44): Calc.: C, 71.08; H, 4.30; N, 13.26. Found: C, 70.89; H, 4.57; N, 13.47.
4-(3,4-Dimethoxyphenyl)-3-(4-methoxyphenyl)-1-phenyl-1H-pyrazolo[3,4-b]pyridine (9h)
- White powder, 76% yield; mp 165–167 °C; IR νmax/cm−1 1593 (C=N), 1520, 1505 (C=C), 1250 (C–O–C); 1H-NMR δ 3.86 (s, 3H, OMe), 3.87 (s, 3H, OMe), 3.93 (s, 3H, OMe), 7.14 (dd, J = 8.5, 6.0 Hz, 3H, ArHs), 7.37 (t, J = 7.4 Hz, 1H, ArHs), 7.59–7.67 (m, 2H, ArHs), 7.82–7.91 (m, 2H, ArHs), 8.00 (d, J = 8.6 Hz, 1H, H3 of pyridine), 8.08 (d, J = 8.8 Hz, 2H, ArHs), 8.48 (d, J = 7.4 Hz, 2H, ArHs), 8.63 (d, J = 8.6 Hz, 1H, H2 of pyridine); 13C-NMR δ 55.74 (C of OMe), 55.90 (C of OMe), 56.07 (C of OMe), 110.77, 112.28, 115.01, 115.44 (2C), 120.72, 120.90 (2C), 125.07, 126.14, 128.80 (2C), 129.63 (2C), 131.06, 132.30, 139.69, 143.89, 149.43, 151.02, 151.32, 156.12, 160.32; MS m/z (%) 437.66 (M+, 21.67). For C27H23N3O3 (437.50): Calc.: C, 74.13; H, 5.30; N, 9.60. Found: C, 74.40; H, 5.42; N, 9.78.
5.1.2. Synthesis of Pyrazolo[3,4-b]pyridine Derivatives 14a–g
3-(4-Methoxyphenyl)-1,4,6-triphenyl-1H-pyrazolo[3,4-b]pyridine-5-carbonitrile (14a)
- White powder, 74% yield; mp 229–231 °C; IR νmax/cm−1 2218 (C≡N), 1610 (C=N), 1559, 1497 (C=C), 1250 (C–O); 1H-NMR δ 3.72 (s, 3H, OMe), 6.65 (d, J = 8.7 Hz, 2H, ArHs), 7.03 (d, J = 8.6 Hz, 2H), 7.32 (t, J = 7.5 Hz, 2H, ArHs), 7.39–7.47 (m, 4H, ArHs), 7.60–7.66 (m, 5H, ArHs), 8.00–8.02 (m, 2H, ArHs), 8.29 (d, J = 7.4 Hz, 2H); 13C-NMR δ 55.61 (C of OMe), 102.37, 112.26, 113.54 (2C), 118.02, 122.04 (2C), 123.87, 127.35, 128.50 (2C), 128.99 (2C), 129.78 (2C), 129.85 (2C), 129.94 (2C), 130.07, 130.54 (2C), 130.70, 133.93, 138.10, 138.66, 147.06, 150.28, 153.02, 159.66, 160.76; MS m/z (%) 478.58 (M+, 15.55). For C32H22N4O (478.56): Calc.: C, 80.32; H, 4.63; N, 11.71. Found: C, 80.09; H, 4.74; N, 11.94.
3-(4-Methoxyphenyl)-1,6-diphenyl-4-(p-tolyl)-1H-pyrazolo[3,4-b]pyridine-5-carbonitrile (14b)
- White powder, 68% yield; mp 203–205 °C; IR νmax/cm−1 2218 (C≡N), 1609, (C=N), 1559, 1509 (C=C), 1250 (C–O); 1H-NMR δ 2.34 (s, 3H, Me), 3.72 (s, 3H, OMe), 6.64 (d, J = 8.7 Hz, 2H, ArHs), 7.00 (d, J = 8.7 Hz, 2H, ArHs), 7.10 (d, J = 7.9 Hz, 2H, ArHs), 7.25 (d, J = 8.1 Hz, 2H, ArHs), 7.42 (t, J = 7.5 Hz, 1H, ArHs), 7.57–7.65 (m, 5H, ArHs), 7.99–8.01 (m, 2H, ArHs), 8.28 (d, J = 8.5 Hz, 2H, ArHs); 13C-NMR δ 21.32 (C of Me), 55.64 (C of OMe), 102.28, 112.39, 113.46 (2C), 118.11, 122.05 (2C), 123.91, 127.34, 128.97 (2C), 129.79 (2C), 129.92 (2C), 130.58 (2C), 130.67, 131.04, 138.13, 138.67, 139.85, 147.10, 150.27, 153.19, 159.70, 160.79; MS m/z (%) 492.77 (M+, 58.66). For C33H24N4O (492.58): Calc.: C, 80.47; H, 4.91; N, 11.37. Found: C, 80.68; H, 4.85; N, 11.53.
3,4-Bis(4-methoxyphenyl)-1,6-diphenyl-1H-pyrazolo[3,4-b]pyridine-5-carbonitrile (14c)
- White powder, 65% yield; mp 207–209 °C; IR νmax/cm−1 2218 (C≡N), 1609 (C=N), 1551, 1509 (C=C), 1250 (C–O); 1H-NMR δ 3.74 (s, 3H, OMe), 3.78 (s, 3H, OMe), 6.69 (d, J = 8.7 Hz, 2H, ArHs), 6.84 (d, J = 8.7 Hz, 2H, ArHs), 7.04 (d, J = 8.7 Hz, 2H, ArHs), 7.31 (d, J = 8.6 Hz, 2H, ArHs), 7.43 (t, J = 7.4 Hz, 1H, ArHs), 7.58–7.68 (m, 5H, ArHs), 7.99 - 8.02 (m, 2H, ArHs), 8.29 (d, J = 8.5 Hz, 2H, ArHs); 13C-NMR δ 55.66 (C of OMe), 55.83 (C of OMe), 102.36, 112.51, 113.58 (2C), 113.97 (2C), 118.26, 122.09 (2C), 124.06, 125.96, 127.35, 128.98 (2C), 129.82 (2C), 129.95 (2C), 130.66 (3C), 131.56 (2C), 138.23, 138.73, 147.22, 150.33, 152.99, 159.70, 160.87, 160.94; MS m/z (%) 508.37 (M+, 24.90). For C33H24N4O2 (508.58): Calc.: C, 77.94; H, 4.76; N, 11.02. Found: C, 78.12; H, 4.92; N, 11.24.
4-(4-Chlorophenyl)-3-(4-methoxyphenyl)-1,6-diphenyl-1H-pyrazolo[3,4-b]pyridine-5-carbonitrile (14d)
- White powder, 70% yield; mp 258–260 °C; IR νmax/cm−1 2226 (C≡N), 1610 (C=N), 1493 (C=C), 1250 (C–O); 1H-NMR δ 3.74 (s, 3H, OMe), 6.69 (d, J = 6.5 Hz, 2H, ArHs), 7.02 (d, J = 6.4 Hz, 2H, ArHs), 7.45–7.32 (m, 5H, ArHs) 7.59–7.63 (m, 5H, ArHs), 8.01 (d, J = 6.7, Hz, 2H, ArHs), 8.28 (d, J = 8.2 Hz, 2H, ArHs); 13C-NMR δ 55.71 (C of OMe), 112.77, 113.61 (2C), 115.61, 117.88, 122.07 (2C), 123.73, 127.44, 128.48 (2C), 129.04 (3C), 129.85 (3C), 129.93 (2C), 130.72 (2C), 130.77 (2C), 131.75 (2C), 132.69, 135.16, 138.04, 138.65, 150.23, 159.87; MS m/z (%) 514.87, (M++1, 19.95), 513.02 (M+, 46.40). For C32H21ClN4O (513.00): Calc.: C, 74.92; H, 4.13; N, 10.92. Found: C, 74.81; H, 4.29; N, 11.15.
4-(4-Bromophenyl)-3-(4-methoxyphenyl)-1,6-diphenyl-1H-pyrazolo[3,4-b]pyridine-5-carbonitrile (14e)
- White powder, 82% yield; mp 221–223 °C; IR νmax/cm−1 2226 (C≡N), 1609 (C=N), 1524, 1489 (C=C), 1250 (C-O); 1H-NMR δ 3.76 (s, 3H, OMe), 6.70 (d, J = 8.7 Hz, 2H, ArHs), 7.02 (d, J = 8.7 Hz, 2H, ArHs), 7.32 (d, J = 8.4 Hz, 2H, ArHs), 7.42 (t, J = 7.4 Hz, 1H, ArHs), 7.50 (d, J = 8.5 Hz, 2H, ArHs), 7.58–7.69 (m, 5H, ArHs), 8.00–8.02 (m, 2H, ArHs), 8.29 (d, J = 7.3 Hz, 2H, ArHs); 13C-NMR δ 55.68 (C of OMe), 102.07, 112.40, 113.55 (2C), 117.87, 121.93 (2C), 123.63, 123.85, 127.37, 129.03 (2C), 129.80 (2C), 129.90 (2C), 130.67 (2C), 130.78, 131.38 (2C), 131.90 (2C), 132.97, 137.96, 138.60, 146.98, 150.18, 151.70, 159.81, 160.70; MS m/z (%) 559.62 (M++2, 7.68), 557.96 (M+, 25.99). For C32H21BrN4O (557.45): Calc.: C, 68.95; H, 3.80; N, 10.05. Found: C, 69.07; H, 3.94; N, 10.21.
4-(4-(Dimethylamino)phenyl)-3-(4-methoxyphenyl)-1,6-diphenyl-1H-pyrazolo[3,4-b]pyridine-5-carbonitrile (14f)
- Pale yellow powder, 63% yield; mp 230–232 °C; IR νmax/cm−1 2218 (C≡N), 1613 (C=N), 1524, 1489 (C=C), 1250 (C–O); 1H-NMR δ 2.93 (s, 6H, 2NMe), 3.74 (s, 3H, OMe), 6.55 (d, J = 8.9 Hz, 2H, ArHs), 6.68 (d, J = 8.8 Hz, 2H, ArHs), 7.05 (d, J = 8.7 Hz, 2H, ArHs), 7.17 (d, J = 8.8 Hz, 2H, ArHs), 7.42 (t, J = 7.5 Hz, 1H, ArHs), 7.57–7.66 (m, 5H, ArHs), 7.98–8.01 (m, 2H, ArHs), 8.29 (d, J = 7.3 Hz, 2H); 13C-NMR δ 40.31 (2C of 2Me), 55.60 (C of OMe), 101.81, 111.59 (2C), 112.28, 113.57 (2C), 118.69, 120.52, 122.08, 124.36, 127.26, 128.92 (2C), 129.78 (2C), 129.95 (2C), 130.54, 130.67 (2C), 131.22 (2C), 138.42, 138.81, 147.39, 150.45, 151.75, 153.68, 159.56, 161.08; MS m/z (%) 521.28 (M+, 19.10). For C34H27N5O (521.62): Calc.: C, 78.29; H, 5.22; N, 13.43. Found: C, 78.43; H, 5.46; N, 13.67.
4-(4-Hydroxyphenyl)-3-(4-methoxyphenyl)-1,6-diphenyl-1H-pyrazolo[3,4-b]pyridine-5-carbonitrile (14g)
- White powder, 77% yield; mp 295–297 °C; IR νmax/cm−1 2222 (C≡N), 1613 (C=N), 1555, 1512 (C=C), 1250 (C–O); 1H-NMR δ 3.74 (s, 3H, OMe), 6.68 (dd, J = 13.4, 8.7 Hz, 4H, ArHs), 7.06 (d, J = 8.7 Hz, 2H, ArHs), 7.18 (d, J = 8.6 Hz, 2H, ArHs), 7.41 (t, J = 7.4 Hz, 1H, ArH), 7.63–7.57 (m, 5H, ArHs), 8.02–7.97 (m, 2H, ArHs), 8.28 (dd, J = 8.7, 1.2 Hz, 2H, ArHs), 9.90 (s, D2O exchangeable, 1H, OH); 13C-NMR δ 55.68 (C of OMe), 102.30, 112.32, 113.57 (2C), 115.25 (2C), 118.38, 122.05, 124.19, 124.34, 127.28, 128.94 (2C), 129.77 (2C), 129.94 (2C), 130.60, 130.71 (2C), 131.65 (2C), 138.28, 138.75, 147.23, 150.39, 153.39, 159.44, 159.70, 160.92; MS m/z (%) 494.63 (M+, 13.48). For C32H22N4O2 (494.55): Calc.: C, 77.72; H, 4.48; N, 11.33. Found: C, 77.50; H, 4.52; N, 11.50.
4-(3,4-Dimethoxyphenyl)-3-(4-methoxyphenyl)-1,6-diphenyl-1H-pyrazolo[3,4-b]pyridine-5-carbonitrile (14h)
- White powder, 69% yield; mp 212–214 °C; IR νmax/cm−1 2222 (C≡N), 1609 (C=N), 1555, 1505 (C=C), 1258 (C–O); 1H-NMR δ 3.37 (s, 3H, OMe), 3.73 (s, 3H, OMe), 3.82 (s, 3H, OMe), 6.70 (d, J = 8.4 Hz, 2H, ArHs), 6.77 (d, J = 2.1 Hz, 1H, ArHs), 7.03 (dd, J = 14.1, 8.3 Hz, 3H, ArHs), 7.15 (dd, J = 8.2, 2.0 Hz, 1H, ArHs), 7.42 (t, J = 7.4 Hz, 1H, ArHs), 7.58–7.66 (m, 5H, ArHs), 7.99–8.02 (m, 2H, ArHs), 8.28 (d, J = 8.0 Hz, 2H, ArHs); 13C-NMR δ 55.60 (C of OMe), 55.73 (C of OMe), 56.22 (C of OMe), 102.24, 111.90, 112.33, 113.52 (2C), 114.48, 118.36, 122.13 (2C), 122.83, 124.36, 126.01, 127.36, 128.97 (2C), 129.81 (2C), 129.95 (2C), 130.64, 130.68 (2C), 138.25, 138.72, 147.18, 148.68, 150.35, 150.68, 152.93, 159.78, 160.94; MS m/z (%) 538.16 (M+, 27.45). For C34H26N4O3 (538.61): Calc.: C, 75.82; H, 4.87; N, 10.40. Found: C, 75.96; H, 4.98; N, 10.68.
5.2. Biological Screening
5.2.1. MTT Assay for Cytotoxicity
5.2.2. Cell Cycle Analysis and Apoptotic Assay
5.2.3. In Vitro CDK Enzyme Assay
5.3. Molecular Docking
5.4. In-Silico SwissADME Predictions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Hanahan, D.; Weinberg, R.A. Hallmarks of Cancer: The Next Generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef]
- Balter, M.; Vogel, G. Cycling toward Stockholm. Science 2001, 294, 502–503. [Google Scholar] [CrossRef]
- Roskoski, R., Jr. Cyclin-dependent protein kinase inhibitors including palbociclib as anticancer drugs. Pharmacol. Res. 2016, 107, 249–275. [Google Scholar] [CrossRef]
- Malumbres, M.; Barbacid, M. Mammalian cyclin-dependent kinases. Trends Biochem. Sci. 2005, 30, 630–641. [Google Scholar] [CrossRef]
- Yin, T.; Lallena, M.J.; Kreklau, E.L.; Fales, K.R.; Carballares, S.; Torrres, R.; Wishart, G.N.; Ajamie, R.T.; Cronier, D.M.; Iversen, P.W. A novel CDK9 inhibitor shows potent antitumor efficacy in preclinical hematologic tumor models. Mol. Cancer Ther. 2014, 13, 1442–1456. [Google Scholar] [CrossRef]
- Jessen, B.A.; Lee, L.; Koudriakova, T.; Haines, M.; Lundgren, K.; Price, S.; Nonomiya, J.; Lewis, C.; Stevens, G.J. Peripheral white blood cell toxicity induced by broad spectrum cyclin-dependent kinase inhibitors. J. Appl. Toxicol. Int. J. 2007, 27, 133–142. [Google Scholar] [CrossRef]
- Abate, A.A.; Pentimalli, F.; Esposito, L.; Giordano, A. ATP-noncompetitive CDK inhibitors for cancer therapy: An overview. Exp. Opin. Investig. Drugs 2013, 22, 895–906. [Google Scholar] [CrossRef]
- Sanchez-Martinez, C.; Gelbert, L.M.; Lallena, M.J.; de Dios, A. Cyclin dependent kinase (CDK) inhibitors as anticancer drugs. Bioorg. Med. Chem. Lett. 2015, 25, 3420–3435. [Google Scholar] [CrossRef]
- Awan, F.T.; Jones, J.A.; Maddocks, K.; Poi, M.; Grever, M.R.; Johnson, A.; Byrd, J.C.; Andritsos, L.A. A phase 1 clinical trial of flavopiridol consolidation in chronic lymphocytic leukemia patients following chemoimmunotherapy. Ann. Hematol. 2016, 95, 1137–1143. [Google Scholar] [CrossRef]
- Zeidner, J.F.; Foster, M.C.; Blackford, A.L.; Litzow, M.R.; Morris, L.E.; Strickland, S.A.; Lancet, J.E.; Bose, P.; Levy, M.Y.; Tibes, R. Randomized multicenter phase II study of flavopiridol (alvocidib), cytarabine, and mitoxantrone (FLAM) versus cytarabine/daunorubicin (7+3) in newly diagnosed acute myeloid leukemia. Haematologica 2015, 100, 1172. [Google Scholar] [CrossRef]
- Cicenas, J.; Kalyan, K.; Sorokinas, A.; Stankunas, E.; Levy, J.; Meskinyte, I.; Stankevicius, V.; Kaupinis, A.; Valius, M. Roscovitine in cancer and other diseases. Ann. Trans. Med. 2015, 3, 135. [Google Scholar]
- Meijer, L.; Borgne, A.; Mulner, O.; Chong, J.P.; Blow, J.J.; Inagaki, N.; Inagaki, M.; Delcros, J.G.; Moulinoux, J.P. Biochemical and cellular effects of roscovitine, a potent and selective inhibitor of the cyclin-dependent kinases cdc2, cdk2 and cdk5. Eur. J. Biochem. 1997, 243, 527–536. [Google Scholar] [CrossRef]
- Saqub, H.; Proetsch-Gugerbauer, H.; Bezrookove, V.; Nosrati, M.; Vaquero, E.M.; de Semir, D.; Ice, R.J.; McAllister, S.; Soroceanu, L.; Kashani-Sabet, M.; et al. Dinaciclib, a cyclin-dependent kinase inhibitor, suppresses cholangiocarcinoma growth by targeting CDK2/5/9. Sci. Rep. 2020, 10, 18489. [Google Scholar] [CrossRef]
- Paruch, K.; Dwyer, M.P.; Alvarez, C.; Brown, C.; Chan, T.Y.; Doll, R.J.; Keertikar, K.; Knutson, C.; McKittrick, B.; Rivera, J.; et al. Discovery of Dinaciclib (SCH 727965): A Potent and Selective Inhibitor of Cyclin-Dependent Kinases. ACS Med. Chem. Lett. 2010, 1, 204–208. [Google Scholar] [CrossRef]
- Bennani, F.E.; Doudach, L.; Cherrah, Y.; Ramli, Y.; Karrouchi, K.; Ansar, M.; Faouzi, M.E.A. Overview of recent developments of pyrazole derivatives as an anticancer agent in different cell line. Bioorg. Chem. 2020, 97, 103470. [Google Scholar] [CrossRef]
- Palomer, A.; Cabré, F.; Pascual, J.; Campos, J.; Trujillo, M.A.; Entrena, A.; Gallo, M.A.; García, L.; Mauleón, D.; Espinosa, A. Identification of novel cyclooxygenase-2 selective inhibitors using pharmacophore models. J. Med. Chem. 2002, 45, 1402–1411. [Google Scholar] [CrossRef]
- Kulp, S.K.; Yang, Y.-T.; Hung, C.-C.; Chen, K.-F.; Lai, J.-P.; Tseng, P.-H.; Fowble, J.W.; Ward, P.J.; Chen, C.-S. 3-phosphoinositide-dependent protein kinase-1/Akt signaling represents a major cyclooxygenase-2-independent target for celecoxib in prostate cancer cells. Cancer Res. 2004, 64, 1444–1451. [Google Scholar] [CrossRef]
- Staben, S.T.; Heffron, T.P.; Sutherlin, D.P.; Bhat, S.R.; Castanedo, G.M.; Chuckowree, I.S.; Dotson, J.; Folkes, A.J.; Friedman, L.S.; Lee, L. Structure-based optimization of pyrazolo-pyrimidine and-pyridine inhibitors of PI3-kinase. Bioorg. Med. Chem. Lett. 2010, 20, 6048–6051. [Google Scholar] [CrossRef]
- Chiacchio, M.A.; Iannazzo, D.; Romeo, R.; Giofrè, S.V.; Legnani, L. Pyridine and pyrimidine derivatives as privileged scaffolds in biologically active agents. Curr. Med. Chem. 2019, 26, 7166–7195. [Google Scholar] [CrossRef]
- Tadesse, S.; Caldon, E.C.; Tilley, W.; Wang, S. Cyclin-Dependent Kinase 2 Inhibitors in Cancer Therapy: An Update. J. Med. Chem. 2019, 62, 4233–4251. [Google Scholar] [CrossRef]
- Donaire-Arias, A.; Montagut, A.M.; de la Bellacasa, R.P.; Estrada-Tejedor, R.; Teixidó, J.; Borrell, J.I. 1H-Pyrazolo[3,4-b]pyridines: Synthesis and Biomedical Applications. Molecules 2022, 27, 2237. [Google Scholar] [CrossRef] [PubMed]
- Farahat, A.A.; Samir, E.M.; Zaki, M.Y.; Serya, R.A.; Abdel-Aziz, H.A. Synthesis and in vitro antiproliferative activity of certain novel pyrazolo[3,4-b]pyridines with poten- tial p38α MAPK-inhibitory activity. Archiv der Pharmazie 2022, 355, 2100302. [Google Scholar] [CrossRef] [PubMed]
- Hassan, G.S.; Georgey, H.H.; Mohammed, E.Z.; George, R.F.; Mahmoud, W.R.; Omar, F.A. Mechanistic selectivity investigation and 2D-QSAR study of some new antipro- liferative pyrazoles and pyrazolopyridines as potential CDK2 inhibitors. Eur. J. Med. Chem. 2021, 218, 113389. [Google Scholar] [CrossRef] [PubMed]
- Elewa, M.A.F.; Eldehna, W.M.; Hamdan, A.M.E.; Abd El-kawi, S.H.; El-Kalaawy, A.M.; Majrashi, T.A.; Barghash, R.F.; Abdel-Aziz, H.A.; Hashem, K.S.; Al-Gayyar, M.M.H. WRH-2412 alleviates the progression of hepatocellular carcinoma through regulation of TGF-β/β-catenin/α-SMA pathway. J. Enz. Inhib. Med. Chem. 2023, 38, 2185761. [Google Scholar] [CrossRef]
- Barghash, R.F.; Eldehna, W.M.; Kovalová, M.; Vojáčková, V.; Kryštof, V.; Abdel- Aziz, H.A. One-pot three-component synthesis of novel pyrazolo[3,4-b]pyridines as po- tent antileukemic agents. Eur. J. Med. Chem. 2022, 227, 113952. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, J.; Gao, W.; Zhang, L.; Pan, Y.; Zhang, S.; Wang, Y. Insights on structural characteristics and ligand binding mechanisms of CDK2. Int. J. Mol. Sci. 2015, 16, 9314–9340. [Google Scholar] [CrossRef]
- Łukasik, P.; Baranowska-Bosiacka, I.; Kulczycka, K.; Gutowska, I. Inhibitors of cyclin-dependent kinases: Types and their mechanism of action. Int. J. Mol. Sci. 2021, 22, 2806. [Google Scholar] [CrossRef]
- Ramalho, T.C.; Rocha, M.V.; da Cunha, E.F.; Oliveira, L.C.; Carvalho, K.T. Understanding the molecular behavior of organotin compounds to design their effective use as agrochemicals: Exploration via quantum chemistry and experiments. J. Biomol. Struct. Dyn. 2010, 28, 227–238. [Google Scholar] [CrossRef]
- Hammoud, M.M.; Khattab, M.; Abdel-Motaal, M.; Van der Eycken, J.; Alnajjar, R.; Abulkhair, H.S.; Al-Karmalawy, A.A. Synthesis, structural characterization, DFT calculations, molecular docking, and molecular dynamics simulations of a novel ferrocene derivative to unravel its potential antitumor activity. J. Biomol. Struct. Dyn. 2023, 41, 5199–5216. [Google Scholar] [CrossRef]
- de Lima, W.E.A.; Pereira, A.F.; de Castro, A.A.; da Cunha, E.F.F.; Ramalho, T.C. Flexibility in the molecular design of acetylcholinesterase reactivators: Probing representative conformations by chemometric techniques and docking/QM calculations. Lett. Drug Des. Discov. 2016, 13, 360–371. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef] [PubMed]
- Daina, A.; Zoete, V. A boiled-egg to predict gastrointestinal absorption and brain penetration of smallmolecules. Chem. MedChem. 2016, 11, 1117–1121. [Google Scholar]
- Kuriakose, D.; Thumpakara, R.K.; Jesna, A.; Jacob, J.P. Substituent effects in the formation of a few acenaphthenone-2-ylidene ketones and their molecular docking studies and in silico ADME profile. J. Mol. Struct. 2021, 1224, 129209. [Google Scholar] [CrossRef]
- Yoon, S.H.; Kim, S.J.; Kim, I. One-Pot Four-Component Coupling Approach to Polyheterocycles: 6H-Furo[3,2-f]pyrrolo[1,2-d][1,4]diazepine. J. Org. Chem. 2020, 85, 15082–15091. [Google Scholar] [CrossRef] [PubMed]
- Zeng, L.Y.; Liu, T.; Yang, J.; Yang, Y.; Cai, C.; Liu, S. “On-Water” Facile Synthesis of Novel Pyrazolo[3,4-b]pyridinones Possessing Anti-influenza Virus Activity. ACS Comb. Sci. 2017, 19, 437–446. [Google Scholar] [CrossRef]
- Kantevari, S.; Chary, M.V.; Vuppalapati, S.V.N. A highly efficient regioselective one-pot synthesis of 2,3,6-trisubstituted pyridines and 2,7,7-trisubstituted tetrahydroquinolin-5-ones using K5CoW12O40·3H2O as a heterogeneous recyclable catalyst. Tetrahedron 2007, 63, 13024–13031. [Google Scholar] [CrossRef]
- Edmondson, J.M.; Armstrong, L.S.; Martinez, A.O. A rapid and simple MTT-based spectrophotometric assay for determining drug sensitivity in monolayer cultures. J. Tissue Cult. Methods 1988, 11, 15–17. [Google Scholar] [CrossRef]
- Pozarowski, P.; Darzynkiewicz, Z. Analysis of cell cycle by flow cytometry. Methods Mol. Biol. 2004, 281, 301. [Google Scholar]
- Crowley, L.C.; Scott, A.P.; Marfell, B.J.; Boughaba, J.A.; Chojnowski, G.; Waterhouse, N.J. Measuring Cell Death by Propidium Iodide Uptake and Flow Cytometry. Cold Spring Harb. Protoc. 2016, 2016, 647. [Google Scholar] [CrossRef]
- Zhang, J.; Gan, Y.; Li, H.; Yin, J.; He, X.; Lin, L.; Xu, S.; Fang, Z.; Kim, B.W.; Gao, L.; et al. Inhibition of the CDK2 and Cyclin A complex leads to autophagic degradation of CDK2 in cancer cells. Nat. Commun. 2022, 13, 2835. [Google Scholar] [CrossRef]
- Vilar, S.; Cozza, G.; Moro, S. Medicinal chemistry and the molecular operating environment (MOE): Application of QSAR and molecular docking to drug discovery. Curr. Top. Med. Chem. 2008, 8, 1555–1572. [Google Scholar] [CrossRef] [PubMed]
- Scholz, C.; Knorr, S.; Hamacher, K.; Schmidt, B. DOCKTITE, A Highly Versatile Step-by-Step Workflow for Covalent Docking and Virtual Screening in the Molecular Operating Environment. J. Chem. Inf. Model. 2015, 55, 398–406. [Google Scholar] [CrossRef] [PubMed]
- Abdelsalam, E.A.; Abd El-Hafeez, A.A.; Eldehna, W.M.; El Hassab, M.A.; Marzouk, H.M.M.; Elaasser, M.M.; Abou Taleb, N.A.; Amin, K.M.; Abdel-Aziz, H.A.; Ghosh, P.; et al. Discovery of novel thiazolyl-pyrazolines as dual EGFR and VEGFR-2 inhibitors endowed with in vitro antitumor activity towards non-small lung cancer. J. Enzym. Inhib. Med. Chem. 2022, 37, 2265–2282. [Google Scholar] [CrossRef] [PubMed]
- SwissADME. Available online: http://www.swissadme.ch/index.php# (accessed on 10 March 2023).
Compound | IC50% µM | ||
---|---|---|---|
Hela | MCF7 | HCT116 | |
9a | 2.59 ± 0.16 | 6.39 ± 0.46 | 15.26 ± 1.46 |
9b | 13.96 ± 1.25 | 22.35 ± 3.18 | 18.01 ± 1.16 |
9c | 26.63 ± 3.37 | 59.04 ± 5.52 | 43.17 ± 3.26 |
9d | 19.59 ± 1.68 | 13.01 ± 1.33 | 17.46 ± 0.98 |
9e | 48.45 ± 4.20 | 20.31 ± 3.21 | 16.58 ± 1.34 |
9f | 20.44 ± 1.74 | 35.56 ± 4.64 | 16.78 ± 0.76 |
9g | 28.26 ± 4.23 | 26.28 ± 2.85 | 40.02 ± 3.19 |
9h | 7.92 ± 1.11 | 9.70 ± 1.00 | 9.69 ± 0.56 |
14a | 23.05 ± 1.63 | 20.72 ± 1.73 | 25.82 ± 2.58 |
14b | 20.98 ± 2.18 | 21.39 ± 2.05 | 36.29 ± 1.83 |
14c | 41.27 ± 2.79 | 39.34 ± 3.74 | 36.73 ± 2.02 |
14d | 21.07 ± 2.03 | 37.21 ± 2.48 | 31.14 ± 3.54 |
14e | 37.33 ± 3.32 | 34.36 ± 2.59 | 37.77 ± 2.63 |
14f | 46.14 ± 3.70 | 19.56 ± 1.26 | 39.96 ± 4.32 |
14g | 12.65 ± 1.53 | 4.66 ± 0.38 | 1.98 ± 0.17 |
14h | 31.69 ± 2.48 | 38.12 ± 2.76 | 3.69 ± 0.11 |
Doxorubicin | 2.35 ± 0.08 | 4.57 ± 0.28 | 2.11 ± 0.20 |
Compound/Cell Line | DNA Content | Comment | ||
---|---|---|---|---|
%G0-G1 | %S | %G2/M | ||
9a/Hela | 59.1 | 29.54 | 11.36 | cell growth arrest@ S |
Hela control | 61.39 | 24.11 | 14.5 | --- |
14g/MCF7 | 41.25 | 33.81 | 24.94 | cell growth arrest@ G2/M |
MCF7 control | 46.12 | 39.02 | 14.86 | --- |
14g/HCT-116 | 51.94 | 34.82 | 13.24 | cell growth arrest@ S |
HCT-116 control | 55.87 | 26.49 | 17.64 | --- |
Compound | Apoptosis | Necrosis | ||
---|---|---|---|---|
Total | Early | Late | ||
9a/Hela | 42.19 | 23.21 | 12.82 | 6.16 |
Hela control | 2.33 | 0.49 | 0.12 | 1.72 |
14g/MCF7 | 22.89 | 13.07 | 7.55 | 2.27 |
MCF7 control | 1.49 | 0.44 | 0.27 | 0.78 |
14g/HCT-116 | 26.71 | 16.01 | 6.95 | 3.75 |
HCT-116 control | 2.51 | 0.63 | 0.19 | 1.69 |
Compound | In Vitro Cytotoxicity on WI-38 (IC50, µM) a |
---|---|
9a | 26.44 ± 3.23 |
14g | 21.81 ± 2.96 |
Doxorubicin | 15.60 ± 0.37 |
Compound | IC50 (µM) | |
---|---|---|
CDK2 | CDK9 | |
9a | 1.630 ± 0.009 | 0.262 ± 0.013 |
14g | 0.460 ± 0.024 | 0.801 ± 0.041 |
Ribociclib | 0.068 ± 0.004 | 0.050 ± 0.003 |
Compound | Fraction Csp3 | Rotatable Bonds | H-bond Acceptors | H-bond Donors | MR | TPSA | Consensus Log P | ESOL Class | GI Absorption | BBB Permeant | Pgp Substrate | Lipinski Violations | Veber Violations | Bioavailability Score | PAINS Alerts | Brenk Alerts |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
9a | 0.04 | 4 | 3 | 0 | 116.23 | 39.94 | 4.97 | Poorly soluble | High | Yes | Yes | 1 | 0 | 0.55 | 0 | 0 |
9b | 0.08 | 4 | 3 | 0 | 121.19 | 39.94 | 5.29 | Poorly soluble | High | No | Yes | 1 | 0 | 0.55 | 0 | 0 |
9c | 0.08 | 5 | 4 | 0 | 122.72 | 49.17 | 4.91 | Poorly soluble | High | Yes | Yes | 1 | 0 | 0.55 | 0 | 0 |
9d | 0.04 | 4 | 4 | 0 | 116.19 | 39.94 | 5.27 | Poorly soluble | High | No | Yes | 1 | 0 | 0.55 | 0 | 0 |
9e | 0.04 | 4 | 3 | 0 | 121.24 | 39.94 | 5.49 | Poorly soluble | High | No | Yes | 1 | 0 | 0.55 | 0 | 0 |
9f | 0.04 | 4 | 3 | 0 | 123.93 | 39.94 | 5.57 | Poorly soluble | High | No | Yes | 1 | 0 | 0.55 | 0 | 0 |
9g | 0.04 | 5 | 5 | 0 | 125.05 | 85.76 | 4.16 | Poorly soluble | High | No | No | 0 | 0 | 0.55 | 0 | 2 |
9h | 0.11 | 6 | 5 | 0 | 129.21 | 58.4 | 4.92 | Poorly soluble | High | No | Yes | 0 | 0 | 0.55 | 0 | 0 |
14a | 0.03 | 5 | 4 | 0 | 146.38 | 63.73 | 6.03 | Poorly soluble | Low | No | No | 1 | 0 | 0.55 | 0 | 0 |
14b | 0.06 | 5 | 4 | 0 | 151.35 | 63.73 | 6.38 | Poorly soluble | Low | No | No | 1 | 0 | 0.55 | 0 | 0 |
14c | 0.06 | 6 | 5 | 0 | 152.87 | 72.96 | 6 | Poorly soluble | Low | No | No | 2 | 0 | 0.17 | 0 | 0 |
14d | 0.03 | 5 | 4 | 0 | 151.39 | 63.73 | 6.55 | Poorly soluble | Low | No | No | 2 | 0 | 0.17 | 0 | 0 |
14e | 0.03 | 5 | 4 | 0 | 154.08 | 63.73 | 6.63 | Poorly soluble | Low | No | No | 2 | 0 | 0.17 | 0 | 0 |
14f | 0.09 | 6 | 4 | 0 | 160.59 | 66.97 | 5.99 | Poorly soluble | Low | No | No | 2 | 0 | 0.17 | 0 | 0 |
14g | 0.03 | 5 | 5 | 1 | 148.4 | 83.96 | 5.64 | Poorly soluble | Low | No | No | 1 | 0 | 0.55 | 0 | 0 |
14h | 0.09 | 7 | 6 | 0 | 159.36 | 82.19 | 5.94 | Poorly soluble | Low | No | No | 1 | 0 | 0.55 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almansour, B.S.; Binjubair, F.A.; Abdel-Aziz, A.A.-M.; Al-Rashood, S.T. Synthesis and In Vitro Anticancer Activity of Novel 4-Aryl-3-(4-methoxyphenyl)-1-phenyl-1H-pyrazolo[3,4-b]pyridines Arrest Cell Cycle and Induce Cell Apoptosis by Inhibiting CDK2 and/or CDK9. Molecules 2023, 28, 6428. https://doi.org/10.3390/molecules28176428
Almansour BS, Binjubair FA, Abdel-Aziz AA-M, Al-Rashood ST. Synthesis and In Vitro Anticancer Activity of Novel 4-Aryl-3-(4-methoxyphenyl)-1-phenyl-1H-pyrazolo[3,4-b]pyridines Arrest Cell Cycle and Induce Cell Apoptosis by Inhibiting CDK2 and/or CDK9. Molecules. 2023; 28(17):6428. https://doi.org/10.3390/molecules28176428
Chicago/Turabian StyleAlmansour, Basma S., Faizah A. Binjubair, Alaa A.-M. Abdel-Aziz, and Sara T. Al-Rashood. 2023. "Synthesis and In Vitro Anticancer Activity of Novel 4-Aryl-3-(4-methoxyphenyl)-1-phenyl-1H-pyrazolo[3,4-b]pyridines Arrest Cell Cycle and Induce Cell Apoptosis by Inhibiting CDK2 and/or CDK9" Molecules 28, no. 17: 6428. https://doi.org/10.3390/molecules28176428
APA StyleAlmansour, B. S., Binjubair, F. A., Abdel-Aziz, A. A. -M., & Al-Rashood, S. T. (2023). Synthesis and In Vitro Anticancer Activity of Novel 4-Aryl-3-(4-methoxyphenyl)-1-phenyl-1H-pyrazolo[3,4-b]pyridines Arrest Cell Cycle and Induce Cell Apoptosis by Inhibiting CDK2 and/or CDK9. Molecules, 28(17), 6428. https://doi.org/10.3390/molecules28176428