Six New Phenolic Glycosides from the Seeds of Moringa oleifera Lam. and Their α-Glucosidase Inhibitory Activity
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structural Elucidation of the Isolated Compounds
2.2. α-Glucosidase Inhibitory Activity Evaluation
3. Material and Methods
3.1. General Experimental Procedure
3.2. Plant Material
3.3. Extraction and Isolation
- Moringaside B (1): colorless viscous oil; -90.8 (c 0.10, MeOH); UV (MeOH) λmax (log ε) 206 (3.07), 224 (2.17) nm; IR (KBr) νmax: 3392, 2915, 1613, 1511, and 1231 cm−1; 1H and 13C NMR data, see Table 1; HR-ESI-MS: m/z 321.1302 [M + Na]+ (calculated for C15H22O6Na, 321.1309).
- Moringaside C (2): yellow oil; -111.3 (c 0.1, MeOH); UV (MeOH) λmax (log ε) 206 (3.06), 224 (2.20) nm; IR (KBr) νmax: 3413, 2918, 1613, 1514, and 1233 cm−1; ECD (c 0.10, MeOH) Δε 214 (+0.63), 237 (-18.53) nm; 1H and 13C NMR data, see Table 1; HR-ESI-MS: m/z 443.1904 [M + H]+ (calculated for C21H31O10, 443.1912).
- Moringaside D (3): yellow oil; -109.5 (c 0.1, MeOH); UV (MeOH) λmax (log ε) 206 (3.10), 224 (2.25) nm; IR (KBr) νmax: 3396, 2913, 1612, 1512, and 1232 cm−1; ECD (c 0.08, MeOH) Δε 204 (-3.65), 228 (-10.90) nm; 1H and 13C NMR data, see Table 1; HR-ESI-MS m/z 451.1567 [M + Na]+ (calculated for C20H28O10Na, 451.1575).
- Moringaside E (4): yellow oil; -103.5 (c 0.1, MeOH); UV (MeOH) λmax (log ε) 208 (3.28), 224 (2.21), and 280 nm (2.03) nm; IR (KBr) νmax: 3383, 2933, 2256, 1610, 1508, 1114, 1062, and 1026 cm−1; 1H and 13C NMR data, see Table 2; HR-ESI-MS m/z 408.1413 [M + Na]+ (calculated for C21H23NO6Na, 408.1423).
- Moringaside F (5): yellow oil; -146.2 (c 0.1, MeOH); UV (MeOH) λmax (log ε) 222 (2.64), 272 (2.26) nm; IR (KBr) νmax: 3394, 2933, 2253, 1612, 1510, 1236, 1064, and 1022 cm−1; 1H and 13C NMR data, see Table 2; HR-ESI-MS m/z 424.1600 [M - H]− (calculated for C20H26O9N, 424.1602).
- Moringaside G (6): yellow oil; -51.1 (c 0.1, MeOH); UV (MeOH) λmax (log ε) 208 (3.18), 222 (2.44), and 272 (2.16) nm; IR (KBr) νmax: 3385, 2933, 1732, 1512, 1230, 1064, and 1022 cm−1;1H and 13C NMR data, see Table 2; HR-ESI-MS m/z 481.1680 [M + Na]+ (calculated for C21H30O11Na 481.1685).
3.4. Acid Hydrosis and Sugar Identification
3.5. Electronic Circular Dichroism Calculation of Compounds 2–3
3.6. Inhibitory Activities against α-Glucosidase
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Chiranjeev, S.; Youllee, K.; Dohee, A.; Sang, J.C. Protein tyrosine phosphatases (PTPs) in diabetes: Causes and therapeutic opportunities. Arch. Pharm. Res. 2021, 44, 310–321. [Google Scholar]
- Chen, G.L.; Xu, Y.B.; Wu, J.L.; Li, N.A.; Guo, M.Q. Hypoglycemic and hypolipidemic effects of Moringa oleifera leaves and their functional chemical constituents. Food Chem. 2020, 333, 127478. [Google Scholar] [CrossRef] [PubMed]
- Dehghan, H.; Salehi, P.; Amiri, M.S. Bioassay-guided purification of α-amylase, α-glucosidase inhibitors and DPPH radical scavengers from roots of Rheum turkestanicum. Ind. Crops Prod. 2018, 117, 303–309. [Google Scholar] [CrossRef]
- Watanabe, S.; Okoshi, H.; Yamabe, S.; Shimada, M. Moringa oleifera Lam. in Diabetes Mellitus: A Systematic Review and Meta-Analysis. Molecules 2021, 26, 3513. [Google Scholar] [CrossRef]
- Khoo, C.M. Diabetes Mellitus Treatment. Int. Encycl. Public Health 2017, 2, 288–293. [Google Scholar]
- Tuo, L.; Kenneth, T.; Dan, S.K. Identification of α-glucosidase Inhibitors in Machilus litseifolia by combined use of High-Resolution α-glucosidase inhibition profilingand HPLCPDA- HRMS-SPE-NMR. J. Nat. Prod. 2019, 82, 249–258. [Google Scholar]
- Şöhretoğlu, D.; Sari, S.; Barut, B.; Özel, A. Discovery of potent α-glucosidase inhibitor flavonols: Insights into mechanism of action through inhibition kinetics and docking simulations. Bioorg. Chem. 2018, 79, 257–264. [Google Scholar] [CrossRef]
- Chen, H.; Xiong, L.; Wang, W.J. Reviews on α-glucosidase inhibitor from plant secondary metabolites. China J. Chin. Mater. Med. 2017, 42, 2915–2924. [Google Scholar]
- Dhakad, A.K.; Ikram, M.; Sharma, S.; Pandey, V.V.; Singh, A. Biological, nutritional, and therapeutic significance of Moringa oleifera Lam. Phytother. Res. 2019, 33, 2870–2903. [Google Scholar] [CrossRef]
- Tshabalala, T.; Ncube, B.; Madala, N.E.; Nyakudya, T.T.; Ndhlala, A.R. Scribbling the Cat: A Case of the “Miracle” Plant, Moringa oleifera. Plants 2019, 8, 510. [Google Scholar] [CrossRef]
- Verma, K.S.; Nigam, R. Nutritional assessment of different parts of moringa oleifera lammcollected from central india. J. Nat. Prod. Plant Resour. 2014, 4, 81–86. [Google Scholar]
- Zhao, B.; Hua, L.; Tao, L.; Di, W.; Chen, Z. Characterization of the Chemical Composition of Chinese Moringa oleifera Seed Oil. J. Am. Oil Chem. Soc. 2019, 96, 523–533. [Google Scholar] [CrossRef]
- Renata, A.C.; De, S.; Ernesto, H.; Jair, M.; Geraldo, B.F.; Fernandes, V. Thiocarbamates from moringa oleifera seeds bioactive against virulent and multidrug-resistant vibrio species. BioMed. Res. Int. 2017, 2017, 7963747. [Google Scholar] [CrossRef]
- Singh, R.; Negi, P.S.; Radha, C. Phenolic composition, antioxidant and antimicrobial activities of free and bound phenolic extracts of Moringa oleifera seed flour. J. Funct. Foods 2013, 5, 1883–1891. [Google Scholar] [CrossRef]
- Mahajan, S.G.; Mali, R.G.; Mehta, A.A. Effect of Moringa oleifera lam. seed extract on toluene diisocyanate-induced immune-mediated inflammatory responses in rats. J. Immunotoxicol. 2007, 4, 85–96. [Google Scholar] [CrossRef] [PubMed]
- Al Malki, A.L.; El Rabey, H.A. The antidiabetic effect of low doses of Moringa oleifera lam. seeds on streptozotocin induced diabetes and diabetic nephropathy in male rats. Biomed. Res. Int. 2015, 2015, 381040. [Google Scholar] [CrossRef]
- Minaiyan, M.; Asghari, G.; Taheri, D.; Saeidi, M.; Nasr-Esfahani, S. Anti-inflammatory effect of Moringa oleifera Lam. seeds on acetic acid-induced acute colitis in rats. Avicenna J. Phytomedicine 2014, 4, 127–136. [Google Scholar]
- Lalas, S.; Tsaknis, J. Extraction and identification of natural antioxidant from the seeds of the Moringa oleifera tree variety of malawi. J. Am. Oil Chem. Soc. 2002, 79, 677–683. [Google Scholar] [CrossRef]
- Tang, M.M.; Chen, G.Y.; Jiang, K.C.; Luo, M.Y.; Wu, H.; Hu, B.; Zhou, X.M. A New Phenolic Glycoside from the Seeds of Moringa oleifera. Chem. Nat. Compd. 2020, 56, 642–644. [Google Scholar] [CrossRef]
- Grond, S.; Papastavrou, I.; Zeeck, A. Novel α-L-Rhamnopyranosides from a Single Strain of Streptomyces by Supplement-Induced Biosynthetic Steps. Eur. J. Org. Chem. 2002, 2002, 3237–3242. [Google Scholar] [CrossRef]
- Ma, N.; Tang, Q.; Wu, W.T.; Huang, X.A.; Xu, Q.; Rong, G.L.; Song, J.P. Three Constituents of Moringa oleifera Seeds Regulate Expression of Th17-Relevant Cytokines and Ameliorate TPA-Induced Psoriasis-Like Skin Lesions in Mice. Molecules 2018, 23, 3256. [Google Scholar] [CrossRef] [PubMed]
- Faizi, S.; Siddiqui, B.S.; Saleem, R.; Siddiqui, S.; Aftab, K.; Gilani, A.H. Isolation and structure elucidation of novel hypotensive agents, niazinin a, niazinin b, niazimicin and niaziminin a+b from Moringa oleifera: The first naturally occurring thiocarbamates. Chem. Inform. 1993, 24, 1256–1261. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Q.S.; Tian, G.Y. Study on synthesis of multivalent neoglycoproteins and their binding properties to hepatic stellate cells. Chin. J. Chem. 2003, 21, 843–846. [Google Scholar] [CrossRef]
- Xiong, Y.; Riaz Rajoka, M.S.; Zhang, M.; He, Z. Isolation and identification of two new compounds from the seeds of Moringa oleifera and their antiviral and anti-inflammatory activities. Nat. Prod. Res. 2020, 36, 974–983. [Google Scholar] [CrossRef] [PubMed]
- Saleem, R.; Meinwald, J. Synthesis of novel hypotensive aromatic thiocarbamate glycosides. J. Chem. Soc. Perkin Trans. 1 2000, 31, 391–394. [Google Scholar] [CrossRef]
- Yun, Y.S.; Satake, M.; Katsuki, S.; Kunugi, A. Phenylpropanoid derivatives from edible canna, Canna edulis. Phytochemistry 2004, 65, 2167–2171. [Google Scholar] [PubMed]
- Gueyrard, D.; Iori, R.; Tatibou, T.A.; Rollin, P. Glucosinolate chemistry: Synthesis of O-Glycosylated derivatives of glucosinalbin. Eur. J. Org. Chem. 2010, 2010, 3657–3664. [Google Scholar] [CrossRef]
- Faizi, S.; Siddiqui, B.S.; Saleem, R.; Siddiqui, S.; Aftab, K.; Gilani, A. Isolation and structure elucidation of new nitrile and mustard oil glycosides from moringa oleifera and their effect on blood pressure. J. Nat. Prod. 1994, 57, 1256–1261. [Google Scholar] [CrossRef]
- Francis, J.; Jayaprakasam, B.; Olson, L.; Nair, M. Insulin secretagogues from moringa oleifera with cyclooxygenase enzyme and lipid peroxidation inhibitory activities. Helv. Chim. Acta 2004, 87, 317–326. [Google Scholar] [CrossRef]
- Liotta, L.J.; Chalmers, J.F.; Falco Marshall, J.N.; Ferreira, T.E.; Mullen, H.E.; Pace, N.J. Selective 4,6-O-benzylidene formation of methyl α-D-mannopyranoside using 2,6-dimethylbenzaldehyde. Carbohydr. Res. 2014, 391, 31–36. [Google Scholar] [CrossRef]
- Zeng, L.; Ding, H.F.; Hu, X.; Zhang, G.W.; Gong, D.M. Galangin inhibits α-glucosidase activity and formation of non-enzymatic glycation products. Food Chem. 2019, 271, 70–79. [Google Scholar] [CrossRef]
- Li, L.Z.; Zhang, Y.; Chen, L.; Cen, Y.Z.; Tu, Y.L.; Yang, X.S.; Li, Y.J. Two New Abietane Diterpenes From the Stems of Clerodendrum trichotomum Thunb. Nat. Prod. Com. 2022, 17, 1–8. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, J.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R. Gaussian 09, Revision C.01; ScienceOpen, Inc.: Burlington, MA, USA, 2010. [Google Scholar]
- Bruhn, T.; Schaumlöffel, A.; Hemberger, Y.; Bringmann, G. SpecDis: Quantifying the Comparison of Calculated and Experimental Electronic Circular Dichroism Spectra. Chirality 2013, 25, 243–249. [Google Scholar] [CrossRef] [PubMed]
- Tian, J.L.; Si, X.; Wang, Y.H.; Gong, E.S.; Xie, X.; Zhang, Y.; Li, B.; Shu, C. Bioactive flavonoids from rubus corchorifolius inhibit α-glucosidase and α-amylase to improve postprandial hyperglycemia. Food Chem. 2020, 341, 128149–128179. [Google Scholar] [CrossRef] [PubMed]
NO. | 1 a | NO. | 2 b | 3 b | |||
---|---|---|---|---|---|---|---|
δH (J in Hz) | δC | δH (J in Hz) | δC | δH (J in Hz) | δC | ||
1 | - | 157.4 | 1 | 5.11 d (1.5) | 107.5 | 5.00 d (1.5) | 108.6 |
2, 6 | 7.27 d (8.5) | 117.4 | 2 | 4.68 d (5.5) | 86.0 | 4.68 d (5.4) | 85.8 |
3, 5 | 7.04 d (8.5) | 130.4 | 3 | 4.89 ov | 80.9 | 4.89 ov | 80.8 |
4 | - | 133.4 | 4 | 3.69 m | 85.6 | 3.65 dd (9.0, 5.4) | 85.6 |
7 | 4.43 s | 73.2 | 5 | 4.07 dq (8.7, 6.3) | 66.0 | 4.08 m | 65.9 |
8 | 3.53 q (14.0, 7.0) | 66.6 | 6 | 1.32 d (6.3) | 21.1 | 1.33 d (6.0) | 21.1 |
9 | 1.21–1.19 ov | 15.4 | 7 | 5.83 s | 106.5 | 5.83 s | 106.5 |
1′ | 5.42 d (1.6) | 99.8 | 8 | 3.70 m 3.50 dq (9.8, 7.1) | 63.7 | 3.33 s | 54.6 |
2′ | 4.00 dd (3.3, 1.9) | 72.0 | 9 | 1.19–1.22 ov | 15.4 | - | - |
3′ | 3.85 dd (9.5, 3.4) | 72.2 | 1′ | - | 158.7 | - | 158.7 |
4′ | 3.46 t (9.5) | 73.8 | 2′, 6′ | 7.06 d (8.7) | 117.1 | 7.06 d (9.0) | 117.1 |
5′ | 3.64 m | 70.6 | 3′, 5′ | 7.39 d (8.7) | 129.4 | 7.39 d (9.0) | 129.4 |
6′ | 1.23–1.21 ov | 18.0 | 4′ | - | 132.0 | - | 132.0 |
1″ | 5.45 d (1.8) | 99.7 | 5.45 d (1.8) | 99.7 | |||
2″ | 3.99 dd (3.5, 1.8) | 72.0 | 3.99 dd (3.6, 1.8) | 72.0 | |||
3″ | 3.84 dd (9.5, 3.5) | 72.2 | 3.84 dd (9.0, 3.0) | 72.2 | |||
4″ | 3.45 t (9.5) | 73.8 | 3.45 t (9.6) | 73.8 | |||
5″ | 3.60 m | 70.7 | 3.60 m | 70.7 | |||
6″ | 1.19–1.22 ov | 18.0 | 1.21 d (6.0) | 18.0 |
NO. | 4 | 5 | 6 | |||
---|---|---|---|---|---|---|
δH (J in Hz) | δC | δH (J in Hz) | δC | δH (J in Hz) | δC | |
1 | - | 156.1 | - | 157.2 | - | 156.8 |
2, 6 | 6.95 d (8.4) | 117.5 | 7.09 d (8.4) | 118.1 | 7.04 d (8.4) | 117.6 |
3, 5 | 7.14 d (8.4) | 130.9 | 7.30 d (8.4) | 130.4 | 7.22 d (8.4) | 131.5 |
4 | - | 136.2 | - | 126.0 | - | 129.5 |
7 | 3.87 s | 35.7 | 3.83 s | 22.7 | 3.61 s | 40.9 |
8 | - | - | - | 119.8 | - | 174.2 |
9 | - | - | - | - | 3.68 s | 52.5 |
1′ | - | 156.0 | 5.49 d (1.8) | 99.6 | 5.46 d (1.8) | 99.7 |
2′ | - | 130.2 | 4.19 dd (1.8) | 69.2 | 4.18 dd (3.2, 2.0) | 63.8 |
3′ | 6.97 d (1.8) | 131.2 | 4.04 dd (3.0) | 79.7 | 4.05 dd (9.2, 3.6) | 79.7 |
4′ | - | 122.6 | 3.60 t (9.0) | 71.9 | 3.60 t (7.2) | 72.0 |
5′ | 7.00 dd (8.4, 2.4) | 127.9 | 3.67 m | 70.3 | 3.70 m | 70.2 |
6′ | 6.78 d (7.8) | 116.5 | 1.24 d (6.0) | 18.1 | 1.25 d (6.0) | 18.1 |
7′ | 3.69 s | 22.7 | - | - | - | - |
8′ | - | 120.2 | - | - | - | - |
1″ | 5.36 d (1.8) | 100.0 | 4.75 d (1.2) | 99.0 | 4.76 d (1.2) | 99.0 |
2″ | 3.98 dd (3.6, 2.4) | 72.1 | 4.00 dd (3.0) | 72.7 | 4.00 d (3.6) | 72.8 |
3″ | 3.83 dd (9.6, 3.6) | 72.2 | 3.48 dd (3.0) | 74.8 | 3.48 dd (6.0, 3.0) | 74.8 |
4″ | 3.45 m | 73.9 | 3.39 t (9.0) | 73.6 | 3.40 t (9.0) | 73.7 |
5″ | 3.66 t (9.6) | 70.5 | 3.35 m | 73.8 | 3.35 m | 73.9 |
6″ | 1.22 d (6.6) | 18.0 | 1.35 d (6.0) | 18.0 | 1.36 d (6.0) | 18.0 |
Compound a | IC50 (μM) |
---|---|
4 | 382.8 ± 1.42 |
16 | 301.4 ± 6.22 |
Acarbose b | 324.1 ± 4.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.-Z.; Chen, L.; Tu, Y.-L.; Dai, X.-J.; Xiao, S.-J.; Shi, J.-S.; Li, Y.-J.; Yang, X.-S. Six New Phenolic Glycosides from the Seeds of Moringa oleifera Lam. and Their α-Glucosidase Inhibitory Activity. Molecules 2023, 28, 6426. https://doi.org/10.3390/molecules28176426
Li L-Z, Chen L, Tu Y-L, Dai X-J, Xiao S-J, Shi J-S, Li Y-J, Yang X-S. Six New Phenolic Glycosides from the Seeds of Moringa oleifera Lam. and Their α-Glucosidase Inhibitory Activity. Molecules. 2023; 28(17):6426. https://doi.org/10.3390/molecules28176426
Chicago/Turabian StyleLi, Lin-Zhen, Liang Chen, Yang-Li Tu, Xiang-Jie Dai, Sheng-Jia Xiao, Jing-Shan Shi, Yong-Jun Li, and Xiao-Sheng Yang. 2023. "Six New Phenolic Glycosides from the Seeds of Moringa oleifera Lam. and Their α-Glucosidase Inhibitory Activity" Molecules 28, no. 17: 6426. https://doi.org/10.3390/molecules28176426
APA StyleLi, L. -Z., Chen, L., Tu, Y. -L., Dai, X. -J., Xiao, S. -J., Shi, J. -S., Li, Y. -J., & Yang, X. -S. (2023). Six New Phenolic Glycosides from the Seeds of Moringa oleifera Lam. and Their α-Glucosidase Inhibitory Activity. Molecules, 28(17), 6426. https://doi.org/10.3390/molecules28176426