Untargeted Phytochemical Profiling, Antioxidant, and Antimicrobial Activities of a Tunisian Capsicum annuum Cultivar
Abstract
:1. Introduction
2. Results and Discussion
2.1. Metabolite Characterization of C. annuum Seed Extract by RP-HPLC-DAD-QTOF-MS/MS
2.1.1. Organic Acids
2.1.2. Phenolic Compounds
2.1.3. Capsaicinoids
2.1.4. Capsianosides
2.1.5. Fatty Acids
2.1.6. Amino Acids and Amino Alcohols (Sphingolipids)
2.1.7. Steroids
2.2. Total Phenolic Content, Flavonoid Content, and Antioxidant Activities of C. annuum Seed Extract
2.3. Antimicrobial Activity of C. annuum Extract
3. Materials and Methods
3.1. Plant Material and Extraction Procedure
3.2. RP-HPLC–DAD-QTOF-MS/MS Analysis
3.3. Total Polyphenol Compounds Analysis
3.4. Total Flavonoid Content Analysis
3.5. Antioxidant Activity
3.5.1. DPPH Radical Scavenging Ability Assay
3.5.2. Reducing Power
3.5.3. Chelating Effect on Ferrous Ions
3.6. Antimicrobial Activities
3.6.1. Microorganisms
3.6.2. Disc-Diffusion Assay
3.6.3. Micro-Well Determination of MIC, MBC and MFC
3.7. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Bosland, P.W.; Votava, E.J. Peppers: Vegetable and Spice Capsicums; CABI Publishing: Wallingford, UK, 2000. [Google Scholar]
- da Veiga, V.F., Jr.; Wiedemann, L.S.M.; de Araujo, C.P., Jr.; da Silva Antonio, A. Chapter 1: Origin and Evolution of Capsicum. In Chemistry and Nutritional Effects of Capsicum; Royal Society of Chemistry: London, UK, 2022; pp. 1–14. [Google Scholar]
- Dimitrios, B. Sources of natural phenolic antioxidants. Trends Food Sci. 2006, 17, 505–512. [Google Scholar] [CrossRef]
- Olatunji, T.L.; Afolayan, A.J. Comparative quantitative study on phytochemicalcontents and antioxidant activities of Capsicum annuum L. and Capsicum frutescens L. Sci. World J. 2019, 2019, 4705140. [Google Scholar] [CrossRef]
- Lahbib, K.; Bnejdi, F.; ElGazzah, M. Selection of pepper parent from a collection of Capsicum annuum landraces on genetic diversity. J. Plant Breed. Crop Sci. 2013, 5, 68–72. [Google Scholar] [CrossRef]
- Zhani, K.; Hamdi, W.; Sedraoui, S.; Fendri, R.; Lajim, O.; Hannachi, C. Agronomic evaluation of Tunisian accessions of chili pepper (Capsicum frutescens L.). Int. Res. J. Eng. Technol. 2015, 2, 28–34. [Google Scholar]
- Zhani, K.; Hamdi, W.; Sedraoui, S.; Fendri, R.; Lajim, O.; Hannachi, C. A comparative study of morphological characterization of Tunisian accessions of Chili pepper (Capsicum frutescens L.). Int. Res. J. Eng. Technol. 2015, 2, 87–94. [Google Scholar]
- Loizzo, M.R.; Pugliese, A.; Bones, M.; Menichini, F.; Tundis, R. Evaluation of chemical profile and antioxidant activity of twenty cultivars from Capsicum annuum, Capsicum baccaum, Capsicum chacoense and Capsicum chinense: A comparison between fresh and processed peppers. Food Sci. Technol. 2015, 64, 623–631. [Google Scholar]
- Materska, M. Bioactive phenolics of fresh and freeze-dried sweet and semi-spicy pepper fruits (Capsicum annuum L.). J. Funct. Foods 2014, 7, 269–277. [Google Scholar] [CrossRef]
- Pugliese, A.; Loizzo, M.R.; Tundis, R.; O’Callaghan, Y.; Menichini, F.; O’Brie, N.; Galvin, K. The effect of domestic processing on the content and bioaccessibility of carotenoids from chili peppers (Capsicum species). Food Chem. 2013, 141, 2606–2613. [Google Scholar] [CrossRef]
- Halikowski Smith, S. In the shadow of a pepper-centric historiography: Understanding the global diffusion of capsicums in the sixteenth and seventeenth centuries. J. Ethnopharmacol. 2015, 167, 64–77. [Google Scholar] [CrossRef]
- Materska, M.; Konopacka, M.; Rogolinsk, J.; Slosarek, K. Antioxidant activity and protective effects against oxidative damage of human cells induced by X-radiation of phenolic glycosides isolated from pepper fruits Capsicum annuum L. Food Chem. 2015, 168, 546–553. [Google Scholar] [CrossRef]
- Howard, L.R.; Wildman, R.E.C. Antioxidant vitamin and phytochemical content of fresh and processed pepper fruit (Capsicum annuum). In Handbook of Nutraceuticals and Functional Foods, 2nd ed.; Wildman, R.E.C., Ed.; CRC Press: Boca Raton, FL, USA, 2007; pp. 165–191. [Google Scholar]
- Naczk, M.; Shahidi, F. Extraction and Analysis of Phenolics in Food. J. Chromatogr. 2004, 1054, 95–111. [Google Scholar] [CrossRef]
- Crozier, A.; Jaganath, I.B.; Clifford, M.N. Plant Secondary Metabolites: Occurrence, Structure and Role in the Human Diet; Crozier, A., Clifford, M.N., Ashihara, H., Eds.; Blackwell Publishing: Oxford, UK, 2006; p. 1. [Google Scholar]
- Pietta, P.; Minoggio, M.; Bramati, L. Studies in Natural Products Chemistry; Rahman, A., Ed.; Elsevier: Amsterdam, The Netherlands, 2003; p. 257. [Google Scholar]
- Tundis, R.; Loizzo, M.R.; Menichini, F.; Bonesi, M.; Conforti, F.; Statti, G.; De Luca, D.; de Cindio, B.; Menichini, F. Comparative study on the chemical composition, antioxidant properties and hypoglycaemic activities of two Capsicum annuum L. cultivars (Acuminatum small and Cerasiferum). Plant Foods Hum. Nutr. 2011, 66, 261–269. [Google Scholar] [CrossRef]
- Park, J.-H.; Jeon, G.-I.; Kim, J.-M.; Park, E. Antioxidant activity and antiproliferative action of methanol extracts of 4 different colored bell peppers (Capsicum annuum L.). Food Sci.Biotechnol. 2012, 21, 543–550. [Google Scholar] [CrossRef]
- Koffi-Nevry, R.; Kouassi, K.; Nanga, Z.; Koussémon, M.; Loukou, G. Antibacterial activity of two bell pepper extracts: Capsicum annuum L. and Capsicum frutescens. Int. J. Food Prop. 2012, 15, 961–971. [Google Scholar] [CrossRef]
- Sree Sandhya, M.V.; Vijayakumar, N. Comparative Study on Antimicrobial Activity of Eight Capsicum Species—A novel Therapeutic compound. Indian J. Res. 2016, 5, 103–107. [Google Scholar]
- Koffi, A.C.; Koffi, A.R.; Kossonou, Y.K.; et Koffi-Nevry, R. Activitéantimicrobienne et composition phytochimiqued’extraits de piment “Capsicum sp.”. ” Pharm. Méd. Tradit. Afr. 2021, 20, 29–38. [Google Scholar]
- Leng, Z.; Zhong, B.; Wu, H.; Liu, Z.; Rauf, A.; Bawazeer, S.; Suleria, H.A.R. Identification of Phenolic Compounds in Australian-Grown Bell Peppers by Liquid Chromatography Coupled with Electrospray Ionization-Quadrupole-Time-of-Flight-Mass Spectrometry and Estimation of Their Antioxidant Potential. ACS Omega 2022, 7, 4563–4576. [Google Scholar] [CrossRef] [PubMed]
- Pereira, C.; Barros, L.; Carvalho, A.M.; Ferreira, I.C.F.R. Use of UFLC-PDA for the analysis of organic acids in thirty-five species of food and medicinal plants. Food Anal. Methods 2013, 6, 1337–1344. [Google Scholar] [CrossRef]
- Abidi, J.; Ammar, S.; Ben Brahim, S.; Skalicka-Woźniak, K.; GhrabiGammar, Z.; Bouaziz, M. Use of ultra-high-performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry system as valuable tool for an untargeted metabolomic profiling of Rumextunetanus flowers and stems and contribution to the antioxidant activity. J. Pharm Biomed. Anal. 2019, 162, 66–81. [Google Scholar] [CrossRef]
- Denev, P.; Todorova, V.; Ognyanov, M.; Georgiev, Y.; Yanakieva, I.; Tringovska, I.; Grozeva, S.; Kostova, D. Phytochemical composition and antioxidant activity of 63 Balkan pepper (Capsicum annuum L.) accessions. J. Food Meas. Charact. 2019, 13, 2510–2520. [Google Scholar] [CrossRef]
- Moreno-Ramírez, Y.R.; Martínez-Ávila, G.C.G.; González-Hernández, V.A.; Castro-López, C.; Torres-Castillo, J.A. Free Radical-Scavenging Capacities, Phenolics and Capsaicinoids in Wild Piquin Chili (Capsicum annuum var. Glabriusculum). Molecules 2018, 23, 2655. [Google Scholar] [CrossRef]
- del Aguiar, A.C.; da Fonseca Machado, A.P.; FigueiredoAngolini, C.; de Morais, D.R.; Baseggio, A.M.; NogueiraEberlin, M.; Maróstica Junior, M.R.; Julian, M. Sequential high-pressure extraction to obtain capsinoids and phenolic compounds from biquinho pepper (Capsicum chinense). J. Supercrit. Fluids 2019, 150, 112–121. [Google Scholar] [CrossRef]
- Morales-Soto, A.; Gómez-Caravaca, A.M.; García-Salas, P.; Segura-Carretero, A.; Fernández-Gutiérrez, A. High-performance liquid chromatography coupled to diode array and electrospray time-of-flight mass spectrometry detectors for a comprehensive characterization of phenolic and other polar compounds in three pepper (Capsicum annuum L.) samples. Food Res. Int. 2013, 51, 977–984. [Google Scholar] [CrossRef]
- Kelebek, H.; Sevindik, O.; Uzlasir, T.; Selli, S. LC-DAD/ESI MS/MS characterization of fresh and cooked Capia and Aleppo red peppers (Capsicum annuum L.) phenolic profiles. Eur. Food Res. Technol. 2020, 246, 1971–1980. [Google Scholar] [CrossRef]
- Santos, L.S.; Fernandes, C.C.; Santos, L.S.; de Deus, I.P.B.; de Sousa, T.L.; Miranda, M.L.D. Ethanolic extract from Capsicum chinense Jacq. ripe fruits: Phenolic compounds, antioxidant activity and development of biodegradable films. Food Sci. Technol.Camp. 2021, 41, 497–504. [Google Scholar] [CrossRef]
- Stöggl, W.M.; Huck, C.W.; Bonn, G.K. Structural elucidation of catechin and epicatechin in sorrel leaf extracts using liquid-chromatography coupled to diode array-, fluorescence-, and mass spectrometric detection. J. Sep. Sci. 2004, 27, 524–528. [Google Scholar] [CrossRef]
- Chang, C.; Wu, R. Quantification of (+)-catechin and (−)-epicatechin in coconut water by LC–MS. Food Chem. 2011, 126, 710–717. [Google Scholar] [CrossRef]
- Jeong, W.Y.; Jin, J.S.; Cho, Y.A.; Lee, J.H.; Park, S.; Jeong, S.W.; Kim, Y.H.; Lim, C.S.; Abd El-Aty, A.M.; Kim, G.S.; et al. Determination of polyphenols in three Capsicum annuum L. (bell pepper) varieties using high-performance liquid chromatographytandem mass spectrometry: Their contribution to overall antioxidant and anticancer activity. J. Sep. Sci. 2011, 34, 2967–2974. [Google Scholar] [CrossRef] [PubMed]
- Schelz, Z.; Molnár, J.; Fogliano, V.; Ferracane, R.; Pernice, R.; Shirataki, Y.; Motohashi, N. Qualitative Analysis of MDR-reversing Anastasia Black (Russian Black Sweet Pepper, Capsicum annuum, Solanaceae) Extracts and Fractions by HPLC and LC-MS-MS Methods. In Vivo 2006, 20, 651–656. [Google Scholar]
- Chilczuk, B.; Marciniak, B.; Stochmal, A.; Pecio, Ł.; Kontek, R.; Jackowska, I.; Materska, M. Anticancer Potential and Capsianosides identification in Lipophilic Fraction of Sweet Pepper (Capsicum annuum L.). Molecules 2020, 25, 3097. [Google Scholar] [CrossRef]
- Menezes, R.d.P.; Bessa, M.A.d.S.; Siqueira, C.d.P.; Teixeira, S.C.; Ferro, E.A.V.; Martins, M.M.; Cunha, L.C.S.; Martins, C.H.G. Antimicrobial, Antivirulence, and Antiparasitic Potential of Capsicum chinense Jacq. Extracts and Their Isolated Compound Capsaicin. Antibiotics 2022, 11, 1154. [Google Scholar] [CrossRef]
- Guevara, L.; Domínguez-Anaya, M.Á.; Ortigosa, A.; González-Gordo, S.; Díaz, C.; Vicente, F.; Corpas, F.J.; Pérez del Palacio, J.; Palma, J.M. Identification of Compounds with Potential Therapeutic Uses from Sweet Pepper (Capsicum annuum L.) Fruits and Their Modulation by Nitric Oxide (NO). Int. J. Mol. Sci. 2021, 22, 4476. [Google Scholar] [CrossRef]
- Cervantes-Hernández, F.; Ochoa-Alejo, N.; Martínez, O.; Ordaz-Ortiz, J.J. Metabolomic Analysis Identifies Differences between Wild and Domesticated Chili Pepper Fruits During Development (Capsicum annuum L.). Front. Plant Sci. 2022, 13, 893055. [Google Scholar] [CrossRef] [PubMed]
- Yahara, S.; Ura, T.; Sakamoto, C.; Nohara, T. Steroidal glycosides from Capsicum annuum. Phytochemistry 1994, 37, 831–835. [Google Scholar] [CrossRef]
- Chouaib, H.; Ayadi, I.; Zouari, S.; Fakhfakh, N.; Zaidi, S.; Zouari, N. Effect of phenological stage and geographical location on antioxydant activities of Tunisian horehound: Marrubiumvulgare L. (Lamiaceae). J. Biol. Act. Prod. Nat. 2012, 2, 232–238. [Google Scholar]
- Schaechter, M.; Medoff, G.; Barry, I.; Eisenstein, B.I. Microbiologie et PathologieInfectieuse; De Boeck University: Paris, France, 1999. [Google Scholar]
- Soro, D.; Kone, M.W.; Kamanz, I.K. Evaluation des activitésantimicrobiennes et anti-radicauxlibres de quelquestaxonsbioactifs de Cote d’Ivoire. Eur. J. Sci. Res. 2010, 40, 307–317. [Google Scholar]
- Elif, A.; Erdoğan, E. Antimicrobial activity of citric acid. Eur. J. For. Sci. 2020, 8, 295–301. [Google Scholar]
- Munirah, F.A. The synergistic effect of capsicum aqueous extract (Capsicum annuum) and chitosan against multidrug-resistant bacteria. J. King Saud Univ. Sci. 2023, 35, 102438. [Google Scholar]
- Sidra, K.; Zaheer, H.S.; Saira, R.; Naveed, A.; Shumaila Islam, M.; Akram, R.; Shahzad, N. Antimicrobial activity of citric acid functionalized iron oxide nanoparticles–Superparamagnetic effect. Ceram Int. 2020, 6, 10942–10951. [Google Scholar]
- Pascal, N.M.; Serena, M.; Julienne, N.; Davide, T.; Emilio, S. Phenolic compounds profile of water and ethanol extracts of Euphorbia hirta L.leaves showing antioxidant and antifungal properties. S. Afr. J. Bot. 2019, 127, 319–332. [Google Scholar]
- Egle, V.; Ilona, J.; Michail, S.; Ernesta, A.; Paulius, M.; Andrius, S.; Naglis, M. Advances and Prospects of Phenolic Acids Production, Biorefinery and Analysis. Biomolecules 2020, 10, 874. [Google Scholar]
- Marini, E.; Magi, G.; Mingoia, M.; Pugnaloni, A.; Facinelli, B. Antimicrobial and Anti-Virulence Activity of Capsaicin against Erythromycin-Resistant, Cell-Invasive Group a Streptococci. Front. Microbiol. 2015, 6, 1281. [Google Scholar] [CrossRef]
- Ammar, S.; Abidi, J.; Vlad Luca, S.; Boumendjel, M.; Skalicka-Woźniak, K.; Bouaziz, M. Untargeted metabolite profiling and phytochemical analysis based on RP-HPLC-DAD-QTOF-MS and MS/MS for discovering new bioactive compounds in Rumexalgeriensis flowers and stems. Phytochem. Anal. 2020, 31, 616–635. [Google Scholar] [CrossRef]
- Gargouri, B.; Ammar, S.; Zribi, A.; Mansour, A.B.; Bouaziz, M. Effect of growing region on quality characteristics and phenolic compounds of Chemlali extra-virgin olive oils. Acta Physiol. Plant. 2013, 35, 2801–2812. [Google Scholar] [CrossRef]
- Mouhamadi, N.; Meraghni, M.; Necib, A.; Jelaiel, L.; El Arbi, M.; Bouaziz, M. Comparative Study on Chemical Composition of Green and Black Table Olives Brines of the Endemic “Sigoise” Cultivar: Recovery of high—Added Values Compounds. Chem. Biodivers. 2023, 20, e202200596. [Google Scholar] [CrossRef]
- Bouaziz, M.; Jemai, H.; Khabou, W.; Sayadi, S. Oil content, phenolic profiling and antioxidant potential of Tunisian olive drupes. J. Sci. Food Agric. 2010, 90, 1750–1758. [Google Scholar] [CrossRef]
- Yildirim, A.; Mavi, A.; Oktay, M.; Kara, A.A.; Algur, Ö.F.; Bilaloglu, V. Comparison of antioxidant and antimicrobial activities of tilia (Tiliaargentea Desf Ex DC), sage (Salvia triloba L.) and black tea (Camellia sinensis) extracts. J. Agric. Food Chem. 2000, 48, 5030–5034. [Google Scholar] [CrossRef]
- Dhouibi, I.; Flamini, G.; Bouaziz, M. Comparative Study on the Essential Oils Extracted from Tunisian Rosemary and Myrtle: Chemical Profiles, Quality, and Antimicrobial Activities. ACS Omega 2023, 8, 6431–6438. [Google Scholar] [CrossRef]
- Ben Bnina, E.; Hajlaoui, H.; Chaieb, I.; Daami-Remadi, M.; Ben Said, M.; Ben Jannet, H. Chemical composition, antimicrobial and insecticidal activities of the tunisian Citrus aurantium essential oils. Czech J. Food Sci. 2019, 37, 81–92. [Google Scholar] [CrossRef]
- Cavallo, J.D.; Chardon, H.; Chidiac, C.; Choutet, P.; Courvalin, P.; Dabernat, H.; Drugeon, H.; Dubreuil, L.; Goldstein, F.; Jarlier, V.; et al. Comité de l’antibiogramme de la sociétéFrançaise de Microbiologie. Communiqué. 2006. Available online: https://www.sfm-microbiologie.org/wp-content/uploads/2020/07/Casfm_2005.pdf (accessed on 5 August 2023).
- Znatia, M.; Jabrane, A.; Hajlaoui, H.; Harzallah-Skhiri, F.; Bouajila, J.; Casanova, J.; Ben Jannet, H. Chemical Composition and in vitro Evaluation of Antimicrobial and Anti-acetylcholinesterase Properties of the Flower Oil of Ferula lutea. Nat. Prod. Commun. 2012, 7, 947–950. [Google Scholar]
No | Proposed Identity | Class | TR (min) | Ion Type | HRMS (m/z) | MF | HRMS/MS (m/z) |
---|---|---|---|---|---|---|---|
1 | Galactonic/gluconic acid | Organic acid | 1.2 | [M−H]− | 195.0563 | C6H12O7 | 177.0444, 159.0358, 129.0233 |
2 | N-Fructosyl(iso)leucine | Amino acid | 1.8 | [M+H]+ | 294.1539 | C12H23NO7 | 258.1321, 230.1388, 211.0604, 144.0990, 114.0984 |
3 | Citric acid | Organic acid | 2.0 | [M−H]− | 191.0241 | C6H8O7 | 173.0106, 154.9924, 129.0135, 111.089 |
4 | Hydroxybenzoic acid-O-hexoside | Phenolic acid | 10.2 | [M−H]− | 299.0845 | C13H16O8 | 239.0589, 179.0409, 137.0301 |
5 | Vanillic acid-O-hexoside | Phenolic acid | 11.6 | [M−H]− | 329.0943 | C14H18O9 | 209.0571, 167.0382, 125.0279 |
6 | Sinapic acid-O-hexoside | Phenolic acid | 15.8 | [M−H]− | 385.1938 | C17H22O10 | 223.1360, 168.0088, 153.0899 |
7 | Ferulic acid-O-hexoside | Phenolic acid | 16.5 | [M−H]− | 355.1106 | C16H20O9 | 235.0688, 217.0575, 193.0542, 175.0440 |
8 | 2-Aminododecane-1,3-diol | Sphingolipid | 17.7 | [M+H]+ | 218.2116 | C12H27NO2 | 200.2046, 156.1870 |
9 | Tetradecaphytosphingosine | Sphingolipid | 19.3 | [M+H]+ | 262.2377 | C14H31NO3 | 200.1996, 109.0575 |
10 | Luteolin-O-pentoside-C-hexoside | Flavonoid | 23.2 | [M−H]− | 579.1437 | C26H28O16 | 447.0987, 327.0554, 297.0437, 285.0445, 151.0065 |
11 | Quercetin-O-deoxyhexoside | Flavonoid | 25.4 | [M−H]− | 447.1011 | C21H20O11 | 300.0480, 271.0443, 255.0404, 179.0086, 163.0230, 151.0156 |
12 | Capsicoside A | Saponin | 26.2 | [M−H]− | 1421.6593 | C63H106O35 | 1259.5962, 1097.4411, 935.4233, 773.4179, 663.2902 |
13 | Tetradecasphinganine | Sphingolipid | 26.5 | [M+H]+ | 246.2417 | C14H31NO2 | 228.2353, 163.0689, 106.0814 |
14 | (Epi)catechin | Flavonoid | 27.0 | [M−H]− | 289.1038 | C15H14O6 | 245.0865, 205.0511, 179.0332 |
15 | Hexadecaphytosphingosine I | Sphingolipid | 27.4 | [M+H]+ | 290.2678 | C16H35NO3 | 228.2282, 102.0922 |
16 | Capsianoside III | Diterpene | 28.1 | [M−H]− | 1099.5317 | C50H84O26 | 937.4708, 793.4166, 775.4363, 629.3666, 479.3652 |
17 | Protodegalactotigonin | Saponin | 29.9 | [M−H]− | 1213.6011 | C56H94O28 | 1081.5401, 919.5061, 757.4474 |
18 | Capsianoside IX | Capsianoside | 30.1 | [M−H]− | 937.4775 | C44H74O21 | 791.4181, 629.3639, 483.2961, 467.2926 |
19 | Capsianoside XV | Capsianoside | 31.5 | [M−H]− | 1099.5310 | C50H84O26 | 937.4766, 775.4302, 629.3895, 467.2933 |
20 | Quercetin | Flavonoid | 31.9 | [M−H]− | 301.0388 | C15H10O7 | 273.0376, 178.9983, 107.0112 |
21 | Hexadecasphinganine | Sphingolipid | 32.8 | [M+H]+ | 274.2736 | C16H35NO2 | 212.2237, 106.0752, 102.0930 |
22 | Capsianoside II | Capsianoside | 33.1 | [M−H]− | 1083.5379 | C50H84O25 | 937.4759, 921.4850, 775.4192, 757.4132, 611.3466 |
23 | Phytosphingosine I | Sphingolipid | 33.3 | [M+H]+ | 318.3009 | C18H39NO3 | 256.2627, 102.0818 |
24 | Hexadecaphytosphingosine II | Sphingolipid | 34.0 | [M+H]+ | 290.2701 | C16H35NO3 | 242.2430, 171.0999, 122.0756 |
25 | Capsianoside VIII | Capsianoside | 34.5 | [M−H]− | 1083.5348 | C50H84O25 | 937.4877, 921.4761, 775.4152, 757.4161, 629.3696, 467.3276 |
26 | Luteolin | Flavonoid | 35.8 | [M−H]− | 285.0407 | C15H14O6 | 267.0298, 258.0453, 151.0030 |
27 | Trihydroxyoctadecenoic acid I | Fatty acid | 36.8 | [M−H]− | 329.2410 | C18H34O5 | 312.2237, 293.2175, 201.1169, 171.1047 |
28 | Sphinganine | Sphingolipid | 37.9 | [M+H]+ | 302.3064 | C18H39NO2 | 106.0868 |
29 | Trihydroxyoctadecenoic acid II | Fatty acid | 38.7 | [M−H]− | 329.2411 | C18H34O5 | 227.1443, 211.15406, 171.1143 |
30 | Phytosphingosine II | Sphingolipid | 39.0 | [M+H]+ | 318.3018 | C18H39NO3 | 300.2913, 122.0825 |
31 | Hydroxyoctadecatrienoic acid I | Fatty acid | 40.3 | [M−H]− | 293.1838 | C18H30O3 | 236.1074, 221.1527 |
32 | Nordihydrocapsaicin | Capsaicinoid | 42.4 | [M+H]+ | 294.2072 | C17H27NO3 | 170.1505, 137.0589, 123.1110 |
33 | Hydroperoxyoctadecadienoic acid I | Fatty acid | 42.4 | [M−H]− | 311.2306 | C18H32O4 | 293.1986, 275.2096, 256.1854, 223.1707, 207.1317 |
34 | Capsaicin | Capsaicinoid | 43.2 | [M+H]+ | 306.2069 | C18H27NO3 | 182.1524, 170.1515, 153.1255, 137.0579 |
35 | Dihydroxyoctadecenoic acid I | Fatty acid | 45.1 | [M−H]− | 313.2456 | C18H34O4 | 250.5000, 183.1416, 129.0978 |
36 | Dihydroxyoctadecenoic acid II | Fatty acid | 45.9 | [M−H]− | 313.2466 | C18H34O4 | 297.2344, 278.2035, 241.1174, 201.1164 |
37 | Dihydrocapsaicin | Capsaicinoid | 46.5 | [M+H]+ | 308.2229 | C18H29NO3 | 184.1668, 137.0587, 122.0350 |
38 | N-Hydroxy arachidonoyl amine | Sphingolipid | 48.3 | [M+H]+ | 320.2581 | C20H33NO2 | 262.1713, 123.0397 |
39 | Hydroxyoctadecadienoic acid I | Fatty acid | 52.6 | [M−H]− | 295.2360 | C18H32O3 | 277.2189, 195.1437 |
40 | Hydroxyoctadecatrienoic acid I | Fatty acid | 53.4 | [M−H]− | 293.2200 | C18H30O3 | 275.1981, 235.1642 |
41 | Hydroxyoctadecatrienoic acid II | Fatty acid | 54.2 | [M−H]− | 293.2192 | C18H30O3 | 195.1651, 171.1170 |
42 | Hydroxyoctadecatrienoic acid III | Fatty acid | 54.9 | [M−H]− | 293.2203 | C18H30O3 | 236.1141, 185.1146 |
43 | Trihydroxyoctadecanoic acid | Fatty acid | 56.1 | [M−H]− | 331.2124 | C18H36O5 | 295.2367, 226.5369 |
44 | Hydroxyoctadecadienoic acid II | Fatty acid | 57.5 | [M−H]− | 295.2357 | C18H32O3 | 277.2233, 195.1459, 171.1072, 123.1208 |
45 | Hydroxyoctadecadienoic acid III | Fatty acid | 59.3 | [M−H]− | 295.2354 | C18H32O3 | 249.2159, 141.1321 |
DPPH | FRAP | CP | Polyphenol Content | Flavonoid Content | |
---|---|---|---|---|---|
Extract | 45.0 ± 2.0 a | 61.3±0.6 a | 79.0 ± 1.0 a | 193.7 ± 3.1 | 25.1 ± 1.1 |
BHT | 11.5 ± 0.6 b | 23.0 ±1.0 c | - | - | - |
Vitamin C | - | 37.0 ±2.0 b | - | - | - |
EDTA | - | - | 32.5 ± 1.3 b | - | - |
Microorganisms | Extract | Antibiotic/Antifungal | ||||||
---|---|---|---|---|---|---|---|---|
Gentamycin | ||||||||
Bacteria Strains | IZ a | MIC | MBC | MBC/MIC | IZ b | MIC | MBC | MBC/MIC |
S. epidermidis CIP 106510 | 10.83 ± 0.76 b | 1.875 | 3.750 | 2 (Bactericidal) | 21.33 ± 0.58 efg | 0.009 | 0.039 | 4 (Bactericidal) |
M. luteus NCIMB 8166 | 10.33 ± 0.57 bc | 0.938 | 1.875 | 2 (Bactericidal) | 27.67 ± 1.53 a | 0.004 | 0.019 | 4 (Bactericidal) |
E. feacalis ATCC 29212 | 9.33 ± 0.57 c | 0.938 | 3.750 | 4 (Bactericidal) | 26.00 ± 1.00 b | 0.004 | 0.019 | 4 (Bactericidal) |
B. cereus ATCC 11778 | 9.00 ± 1.00 c | 1.875 | 3.750 | 2 (Bactericidal) | 26.00 ± 1.00 b | 0.004 | 0.039 | 8 (Bacteriostatic) |
E.coli ATCC 35218 | 11.66 ± 0.57 a | 1.875 | 7.500 | 2 (Bactericidal) | 22.00 ±1.00 def | 0.009 | 0.039 | 4 (Bactericidal) |
L. monocytogenes ATCC19115 | 11.00 ± 0.0 b | 1.875 | 3.750 | 4 (Bactericidal) | 23.00 ± 0.0 cd | 0.019 | 0.078 | 4 (Bactericidal) |
S. typhimurium LT2 DT104 | 12.00 ± 0.0 a | 1.875 | 3.750 | 2 (Bactericidal) | 20.33 ± 0.57 g | 0.019 | 0.039 | 2 (Bactericidal) |
Yeast strains | Amphotericin B | |||||||
C. albicans ATCC 90028 | 13.66 ± 0.57 a | 0.234 | 0.938 | 4 (Fungicidal) | 18 ± 0.0 a | 0.078 | 0.310 | 4 (Fungicidal) |
C. glabrata ATCC 90030 | 13.00 ± 1.00 a | 0.234 | 0.938 | 4 (Fungicidal) | 16.33 ± 0.57 b | 0.009 | 0.078 | 8 (Fungistatic) |
C. parapsilosis ATCC 22019 | 13.00 ± 0.0 a | 0.938 | 1.875 | 2 (Fungicidal) | 17.33 ± 0.57 a | 0.039 | 0.078 | 2 (Fungicidal) |
C. krusei ATCC 6258 | 12.66 ± 0.57 ab | 0.234 | 0.938 | 4 (Fungicidal) | 16 ± 0.0 b | 0.009 | 0.019 | 4 (Fungicidal) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grojja, Y.; Hajlaoui, H.; Luca, S.V.; Abidi, J.; Skalicka-Woźniak, K.; Zouari, S.; Bouaziz, M. Untargeted Phytochemical Profiling, Antioxidant, and Antimicrobial Activities of a Tunisian Capsicum annuum Cultivar. Molecules 2023, 28, 6346. https://doi.org/10.3390/molecules28176346
Grojja Y, Hajlaoui H, Luca SV, Abidi J, Skalicka-Woźniak K, Zouari S, Bouaziz M. Untargeted Phytochemical Profiling, Antioxidant, and Antimicrobial Activities of a Tunisian Capsicum annuum Cultivar. Molecules. 2023; 28(17):6346. https://doi.org/10.3390/molecules28176346
Chicago/Turabian StyleGrojja, Yossri, Hafedh Hajlaoui, Simon Vlad Luca, Jouda Abidi, Krystyna Skalicka-Woźniak, Sami Zouari, and Mohamed Bouaziz. 2023. "Untargeted Phytochemical Profiling, Antioxidant, and Antimicrobial Activities of a Tunisian Capsicum annuum Cultivar" Molecules 28, no. 17: 6346. https://doi.org/10.3390/molecules28176346
APA StyleGrojja, Y., Hajlaoui, H., Luca, S. V., Abidi, J., Skalicka-Woźniak, K., Zouari, S., & Bouaziz, M. (2023). Untargeted Phytochemical Profiling, Antioxidant, and Antimicrobial Activities of a Tunisian Capsicum annuum Cultivar. Molecules, 28(17), 6346. https://doi.org/10.3390/molecules28176346