Research Advances in Clinical Applications, Anticancer Mechanism, Total Chemical Synthesis, Semi-Synthesis and Biosynthesis of Paclitaxel
Abstract
1. Introduction
2. Anticancer Mechanism and Clinical Applications
3. Sources and Production Methods of Paclitaxel
3.1. Extraction from Taxus Plants
3.2. Total Synthesis
3.3. Semi-Synthesis
3.4. Tissue and Cell Culture
3.5. Paclitaxel-Producing Endophytic Fungi
4. Synthetic Biology Studies of Paclitaxel
4.1. Biosynthetic Pathways
4.2. Ab Initio Biosynthesis of Paclitaxel by Heterologous Systems
4.3. Semi-Synthesis by Microbial Systems
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Perez-Matas, E.; Hanano, A.; Moyano, E.; Bonfill, M.; Cusido, R.M.; Palazon, J. Insights into the control of taxane metabolism: Molecular, cellular, and metabolic changes induced by elicitation in Taxus baccata cell suspensions. Front. Plant Sci. 2022, 13, 942433. [Google Scholar] [CrossRef] [PubMed]
- Wani, M.C.; Taylor, H.L.; Wall, M.E.; Coggon, P.; McPhail, A.T. Plant antitumor agents. VI. Isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J. Am. Chem. Soc. 1971, 93, 2325–2327. [Google Scholar] [CrossRef] [PubMed]
- Zefirova, O.N.; Nurieva, E.V.; Ryzhov, A.N.; Zyk, N.V.; Zefirov, N.S. Taxol: Synthesis, Bioactive Conformations, and Structure-Activity Relationships in Its Analogs. Russ. J. Org. Chem. 2005, 41, 315–351. [Google Scholar] [CrossRef]
- Expósito, O.; Bonfill, M.; Moyano, E.; Onrubia, M.; Mirjalili, M.H.; Cusidó, R.M.; Palazón, J. Biotechnological production of taxol and related taxoids: Current state and prospects. Anticancer Agents Med. Chem. 2009, 9, 109–121. [Google Scholar] [CrossRef] [PubMed]
- Schiff, P.B.; Fant, J.; Horwitz, S.B. Promotion of microtubule assembly in vitro by taxol. Nature 1979, 277, 665–667. [Google Scholar] [CrossRef] [PubMed]
- Khanna, C.; Rosenberg, M.; Vail, D.M. A Review of Paclitaxel and Novel Formulations Including Those Suitable for Use in Dogs. J. Vet. Intern. Med. 2015, 29, 1006–1012. [Google Scholar] [CrossRef]
- Jeong, I.S.D.; Mo, H.; Nguyen, A.; Chong, E.G.; Tsai, H.H.C.; Moyers, J.; Kim, M.; Lacy, C.; Shah, V.; Lau, E.; et al. Primary chemoradiation with cisplatin versus cetuximab for locally advanced head and neck cancer: A retrospective cohort study. Exp. Hematol. Oncol. 2020, 9, 19. [Google Scholar] [CrossRef] [PubMed]
- Oi, H.; Matsuda, T.; Kimura, T.; Morise, M.; Yamano, Y.; Yokoyama, T.; Kataoka, K.; Kondoh, Y. Weekly nanoparticle albumin-bound paclitaxel and paclitaxel for relapsed small cell lung cancer: A retrospective observational study. Medicine 2022, 101, e28863. [Google Scholar] [CrossRef]
- Yang, Y.-H.; Mao, J.-W.; Tan, X.-L. Research progress on the source, production, and anti-cancer mechanisms of paclitaxel. Chin. J. Nat. Med. 2020, 18, 890–897. [Google Scholar] [CrossRef]
- Wheeler, N.C.; Jech, K.; Masters, S.; Brobst, S.W.; Alvarado, A.B.; Hoover, A.J.; Snader, K.M. Effects of Genetic, Epigenetic, and Environmental Factors on Taxol Content in Taxus brevifolia and Related Species. J. Nat. Prod. 1992, 55, 432–440. [Google Scholar] [CrossRef]
- Croteau, R.; Ketchum, R.E.B.; Long, R.M.; Kaspera, R.; Wildung, M.R. Taxol Biosynthesis and Molecular Genetics. Phytochem. Rev. 2006, 5, 75–97. [Google Scholar] [CrossRef] [PubMed]
- Mutanda, I.; Li, J.; Xu, F.; Wang, Y. Recent Advances in Metabolic Engineering, Protein Engineering, and Transcriptome-Guided Insights toward Synthetic Production of Taxol. Front. Bioeng. Biotechnol. 2021, 9, 632269. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Joo, H.-G. Protective effects of fucoidan on the cell death of spleen cells induced by taxol. J. Prev. Vet. Med. 2015, 39, 185–188. (In Chinese) [Google Scholar] [CrossRef]
- Veerabhadrappa, B.; Subramanian, S.; Sudharshan, S.J.; Dyavaiah, M. Evaluating the genetic basiss of anti-cancer property of Taxol in Saccharomyces cerevisiae model. FEMS Microbiol. Lett. 2021, 368, fnab077. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.-P.H.; Horwitz, S.B. Taxol®: The First Microtubule Stabilizing Agent. Int. J. Mol. Sci. 2017, 18, 1733. [Google Scholar] [CrossRef]
- Feng, R.; Morine, Y.; Ikemoto, T.; Imura, S.; Iwahashi, S.; Saito, Y.; Shimada, M. Nab-paclitaxel interrupts cancer-stromal interaction through C-X-C motif chemokine 10-mediated interleukin-6 downregulation in vitro. Cancer Sci. 2018, 109, 2509–2519. [Google Scholar] [CrossRef]
- Muraro, E.; Comaro, E.; Talamini, R.; Turchet, E.; Miolo, G.; Scalone, S.; Militello, L.; Lombardi, D.; Spazzapan, S.; Perin, T.; et al. Improved Natural Killer cell activity and retained anti-tumor CD8+ T cell responses contribute to the induction of a pathological complete response in HER2-positive breast cancer patients undergoing neoadjuvant chemotherapy. J. Transl. Med. 2015, 13, 204. [Google Scholar] [CrossRef]
- Wang, S.Q.; Wang, C.; Chang, L.M.; Zhou, K.R.; Wang, J.W.; Ke, Y.; Yang, D.X.; Shi, H.G.; Wang, R.; Shi, X.L.; et al. Geridonin and paclitaxel act synergistically to inhibit the proliferation of gastric cancer cells through ROS-mediated regulation of the PTEN/PI3K/Akt pathway. Oncotarget 2016, 7, 72990–73002. [Google Scholar] [CrossRef]
- Papadopoulos, E.I.; Scorilas, A. Cisplatin and Paclitaxel Alter the Expression Pattern of miR-143/145 and miR-183/96/182 Clusters in T24 Bladder Cancer Cells. Clin. Transl. Sci. 2015, 8, 668–675. [Google Scholar] [CrossRef]
- Xin, Z.; Tong, Z.; Tan, J.; Liu, C. MicroRNA-145-5p aggravates cell apoptosis and oxidative stress in tongue squamous cell carcinoma. Exp. Ther. Med. 2021, 21, 373. [Google Scholar] [CrossRef]
- Lee, Y.; Na, J.; Lee, M.S.; Cha, E.Y.; Sul, J.Y.; Park, J.B.; Lee, J.S. Combination of pristimerin and paclitaxel additively induces autophagy in human breast cancer cells via ERK1/2 regulation. Mol. Med. Rep. 2018, 18, 4281–4288. [Google Scholar] [CrossRef]
- Prencipe, M.; Fitzpatrick, P.; Gorman, S.; Mosetto, M.; Klinger, R.; Furlong, F.; Harrison, M.; O’Connor, D.; Roninson, I.B.; O’Sullivan, J.; et al. Cellular senescence induced by aberrant MAD2 levels impacts on paclitaxel responsiveness in vitro. Br. J. Cancer 2009, 101, 1900–1908. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Ren, J.J.; Liang, C.; Wang, F.; Li, W.; Li, X.F. GSDME influences sensitivity of breast cancer MCF-7 cells to paclitaxel by regulating cell pyroptosis. Chin. J. Cancer Biother 2019, 26, 146–151. (In Chinese) [Google Scholar]
- Weiner-Gorzel, K.; Dempsey, E.; Milewska, M.; McGoldrick, A.; Toh, V.; Walsh, A.; Lindsay, S.; Gubbins, L.; Cannon, A.; Sharpe, D.; et al. Overexpression of the microRNA miR-433 promotes resistance to paclitaxel through the induction of cellular senescence in ovarian cancer cells. Cancer Med. 2015, 4, 745–758. [Google Scholar] [CrossRef]
- You, J.H.; Lee, J.; Roh, J.-L. PGRMC1-dependent lipophagy promotes ferroptosis in paclitaxel-tolerant persister cancer cells. J. Exp. Clin. Cancer Res. 2021, 40, 350. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.C.; Li, C.G.; Wang, Y.F.; Xu, L.H.; He, X.H.; Zeng, Q.Z.; Zeng, C.Y.; Mai, F.Y.; Hu, B.; Ouyang, D.Y. Chemotherapeutic paclitaxel and cisplatin differentially induce pyroptosis in A549 lung cancer cells via caspase-3/GSDME activation. Apoptosis 2019, 24, 312–325. [Google Scholar] [CrossRef]
- Zhang, H.; Deng, T.; Liu, R.; Ning, T.; Yang, H.; Liu, D.; Zhang, Q.; Lin, D.; Ge, S.; Bai, M.; et al. CAF secreted miR-522 suppresses ferroptosis and promotes acquired chemo-resistance in gastric cancer. Mol. Cancer 2020, 19, 43. [Google Scholar] [CrossRef]
- Liu, W.C.; Gong, T.; Zhu, P. Advances in exploring alternative Taxol sources. RSC Adv. 2016, 6, 48800–48809. [Google Scholar] [CrossRef]
- Ojima, I.; Lichtenthal, B.; Lee, S.; Wang, C.; Wang, X. Taxane anticancer agents: A patent perspective. Expert Opin. Ther. Pat. 2016, 26, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Fang, L.X.; Yu, L.J.; Bo, S.J. Paclitaxel: A Landmark Natural Anticancer Drug. World Sci. Technol. Mod. Tradit. Chin. Med. Mater. Medica 2017, 19, 941–949. (In Chinese) [Google Scholar]
- Ni, Z.Y.; Li, Y.; Wang, Y.F.; Wang, S.M.; Dong, M.; Shi, Q.W. Cancer-Fighting Molecules-Taxol and its Analogs. Curr. Org. Chem. 2012, 16, 2038–2052. [Google Scholar] [CrossRef]
- Ren, S.; Wang, Y.; Wang, J.; Gao, D.; Zhang, M.; Ding, N.; Li, Y. Synthesis and biological evaluation of novel larotaxel analogues. Eur. J. Med. Chem. 2018, 156, 692–710. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Wang, S.; Wang, C.; Li, Z.; Ma, Y.; Liu, G. Antagonizing NOD2 Signaling with Conjugates of Paclitaxel and Muramyl Dipeptide Derivatives Sensitizes Paclitaxel Therapy and Significantly Prevents Tumor Metastasis. J. Med. Chem. 2017, 60, 1219–1224. [Google Scholar] [CrossRef]
- Ferrandina, G.; Corrado, G.; Vitrano, G.; Gallotta, V.; Palluzzi, E.; Distefano, M.; Scambia, G. Dose-dense paclitaxel/carboplatin as neo-adjuvant chemotherapy followed by radical surgery in locally advanced cervical cancer: A prospective phase II study. Cancer Chemother. Pharmacol. 2019, 83, 431–438. [Google Scholar] [CrossRef]
- Park, S.-A.; Kim, L.K.; Park, H.M.; Kim, H.J.; Heo, T.-H. Inhibition of GP130/STAT3 and EMT by combined bazedoxifene and paclitaxel treatment in ovarian cancer. Oncol. Rep. 2022, 47, 52. [Google Scholar] [CrossRef]
- Yan, X.; Sheng, X.; Chi, Z.; Si, L.; Cui, C.; Kong, Y.; Tang, B.; Mao, L.; Wang, X.; Lian, B.; et al. Randomized Phase II Study of Bevacizumab in Combination with Carboplatin Plus Paclitaxel in Patients with Previously Untreated Advanced Mucosal Melanoma. J. Clin. Oncol. 2021, 39, 881–889. [Google Scholar] [CrossRef]
- Jiang, X.; Zhang, B.; Zhou, Z.; Meng, L.; Sun, Z.; Xu, Y.; Xu, Q.; Yuan, A.; Yu, L.; Qian, H.; et al. Enhancement of radiotherapy efficacy by pleiotropic liposomes encapsulated paclitaxel and perfluorotributylamine. Drug Deliv. 2017, 24, 1419–1428. [Google Scholar] [CrossRef] [PubMed]
- Kassem, M.A.R.; Hassan, A.A.; Ibrahim, N.Y.; Toeama, A.A.M. 217P—Concurrent paclitaxel and radiotherapy for node positive breast cancer. Ann. Oncol. 2016, 27, vi65. [Google Scholar] [CrossRef]
- Hussain, T.; Paranthaman, S.; Rizvi, S.M.; Moin, A.; Gowda, D.V.; Subaiea, G.M.; Ansari, M.; Alanazi, A.S. Fabrication and Characterization of Paclitaxel and Resveratrol Loaded Soluplus Polymeric Nanoparticles for Improved BBB Penetration for Glioma Management. Polymers 2021, 13, 3210. [Google Scholar] [CrossRef]
- Jiang, Q.; Yang, M.; Qu, Z.; Zhou, J.; Zhang, Q. Resveratrol enhances anticancer effects of paclitaxel in HepG2 human liver cancer cells. BMC Complement. Altern. Med. 2017, 17, 477–488. [Google Scholar] [CrossRef]
- Calaf, G.M.; Ponce-Cusi, R.; Carrión, F. Curcumin and paclitaxel induce cell death in breast cancer cell lines. Oncol. Rep. 2018, 40, 2381–2388. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Pu, X.; Zhao, L. Preclinical studies for the combination of paclitaxel and curcumin in cancer therapy (Review). Oncol. Rep. 2017, 37, 3159–3166. [Google Scholar] [CrossRef] [PubMed]
- Fratantonio, D.; Molonia, M.S.; Bashllari, R.; Muscarà, C.; Ferlazzo, G.; Costa, G.; Saija, A.; Cimino, F.; Speciale, A. Curcumin potentiates the antitumor activity of Paclitaxel in rat glioma C6 cells. Phytomedicine 2019, 55, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Shen, Z.; Zhu, T.; Lu, W.; Fu, Y. Curcumin enhances the anti-cancer efficacy of paclitaxel in ovarian cancer by regulating the miR-9-5p/BRCA1 axis. Front. Pharmacol. 2022, 13, 1014933. [Google Scholar] [CrossRef]
- Boztas, A.O.; Karakuzu, O.; Galante, G.; Ugur, Z.; Kocabas, F.; Altuntas, C.Z.; Yazaydin, A.O. Synergistic interaction of paclitaxel and curcumin with cyclodextrin polymer complexation in human cancer cells. Mol. Pharm. 2013, 10, 2676–2683. [Google Scholar] [CrossRef] [PubMed]
- Kawamura, F.; Kikuchi, Y.; Ohira, T.; Yatagai, M. Accelerated Solvent Extraction of Paclitaxel and Related Compounds from the Bark of Taxus cuspidata. J. Nat. Prod. 1999, 62, 244–247. [Google Scholar] [CrossRef]
- McPartland, T.J.; Patil, R.A.; Malone, M.F.; Roberts, S.C. Liquid–liquid extraction for recovery of paclitaxel from plant cell culture: Solvent evaluation and use of extractants for partitioning and selectivity. Biotechnol. Prog. 2012, 28, 990–997. [Google Scholar] [CrossRef]
- Tan, Z.; Li, Q.; Wang, C.; Zhou, W.; Yang, Y.; Wang, H.; Yi, Y.; Li, F. Ultrasonic Assisted Extraction of Paclitaxel from Taxus × media Using Ionic Liquids as Adjuvants: Optimization of the Process by Response Surface Methodology. Molecules 2017, 22, 1483. [Google Scholar] [CrossRef]
- Min, H.-S.; Kim, J.-H. Process synthesis and optimization for the isolation and purification of paclitaxel from Taxus chinensis. Korean J. Chem. Eng. 2022, 39, 3389–3398. [Google Scholar] [CrossRef]
- Shin, E.-J.; Kim, J.-H. Ultrasound- and Negative Pressure-assisted Fractional Precipitation of Paclitaxel from Taxus chinensis. Biotechnol. Bioproc. Eng. 2023, 28, 336–344. [Google Scholar] [CrossRef]
- Jeon, H.-J.; Kim, J.-H. Effect of Gas Bubbles on the Recovery Efficiency of Paclitaxel from Biomass of Taxus chinensis in Ultrasonic Extraction. Biotechnol. Bioproc. Eng. 2023, 28, 545–553. [Google Scholar] [CrossRef]
- Min, H.-S.; Kim, H.-G.; Kim, J.-H. Ultrasound-negative pressure cavitation extraction of paclitaxel from Taxus chinensis. Korean J. Chem. Eng. 2022, 39, 398–407. [Google Scholar] [CrossRef]
- Nicolaou, K.C.; Nantermet, P.G.; Ueno, H.; Guy, R.K.; Couladouros, E.A.; Sorensen, E.J. Total Synthesis of Taxol. 1. Retrosynthesis, Degradation, and Reconstitution. J. Am. Chem. Soc. 1995, 117, 624–633. [Google Scholar] [CrossRef]
- Holton, R.A.; Somoza, C.; Kim, H.B.; Liang, F.; Biediger, R.J.; Boatman, P.D.; Shindo, M.; Smith, C.C.; Kim, S. First total synthesis of taxol. 1. Functionalization of the B ring. J. Am. Chem. Soc. 1994, 116, 1597–1598. [Google Scholar] [CrossRef]
- Holton, R.A.; Kim, H.B.; Somoza, C.; Liang, F.; Biediger, R.J.; Boatman, P.D.; Shindo, M.; Smith, C.C.; Kim, S. First total synthesis of taxol. 2. Completion of the C and D rings. J. Am. Chem. Soc. 1994, 116, 1599–1600. [Google Scholar] [CrossRef]
- Li, Z.; Zheng, J.; Li, W.-D.Z. Diverse strategic approaches en route to Taxol total synthesis. Chin. Chem. Lett. 2022, 33, 4957–4968. [Google Scholar] [CrossRef]
- Min, L.; Han, J.-C.; Zhang, W.; Gu, C.-C.; Zou, Y.-P.; Li, C.-C. Strategies and Lessons Learned from Total Synthesis of Taxol. Chem. Rev. 2023, 123, 4934–4971. [Google Scholar] [CrossRef] [PubMed]
- Danishefsky, S.J.; Masters, J.J.; Young, W.B.; Link, J.T.; Snyder, L.B.; Magee, T.V.; Jung, D.K.; Isaacs, R.C.A.; Bornmann, W.G.; Alaimo, C.A.; et al. Total Synthesis of Baccatin III and Taxol. J. Am. Chem. Soc. 1996, 118, 2843–2859. [Google Scholar] [CrossRef]
- Wender, P.A.; Badham, N.F.; Conway, S.P.; Floreancig, P.E.; Glass, T.E.; Gränicher, C.; Houze, J.B.; Jänichen, J.; Lee, D.; Marquess, D.G.; et al. The Pinene Path to Taxanes. 5. Stereocontrolled Synthesis of a Versatile Taxane Precursor. J. Am. Chem. Soc. 1997, 119, 2755–2756. [Google Scholar] [CrossRef]
- Wender, P.A.; Badham, N.F.; Conway, S.P.; Floreancig, P.E.; Glass, T.E.; Houze, J.B.; Krauss, N.E.; Lee, D.; Marquess, D.G.; McGrane, P.L.; et al. The Pinene Path to Taxanes. 6. A Concise Stereocontrolled Synthesis of Taxol. J. Am. Chem. Soc. 1997, 119, 2757–2758. [Google Scholar] [CrossRef]
- Kusama, H.; Hara, R.; Kawahara, S.; Nishimori, T.; Kashima, H.; Nakamura, N.; Morihira, K.; Kuwajima, I. Enantioselective Total Synthesis of (−)-Taxol. J. Am. Chem. Soc. 2000, 122, 3811–3820. [Google Scholar] [CrossRef]
- Mukaiyama, T.; Shiina, I.; Iwadare, H.; Saitoh, M.; Nishimura, T.; Ohkawa, N.; Sakoh, H.; Nishimura, K.; Tani, Y.-i.; Hasegawa, M.; et al. Asymmetric Total Synthesis of Taxol\R. Chem. Eur. J. 1999, 5, 121–161. [Google Scholar] [CrossRef]
- Doi, T.; Fuse, S.; Miyamoto, S.; Nakai, K.; Sasuga, D.; Takahashi, T. A Formal Total Synthesis of Taxol Aided by an Automated Synthesizer. Chem. Asian J. 2006, 1, 370–383. [Google Scholar] [CrossRef]
- Hirai, S.; Utsugi, M.; Iwamoto, M.; Nakada, M. Formal Total Synthesis of (−)-Taxol through Pd-Catalyzed Eight-Membered Carbocyclic Ring Formation. Chem. Eur. J. 2015, 21, 355–359. [Google Scholar] [CrossRef] [PubMed]
- Fukaya, K.; Tanaka, Y.; Sato, A.C.; Kodama, K.; Yamazaki, H.; Ishimoto, T.; Nozaki, Y.; Iwaki, Y.M.; Yuki, Y.; Umei, K.; et al. Synthesis of Paclitaxel. 1. Synthesis of the ABC Ring of Paclitaxel by SmI2-Mediated Cyclization. Org. Lett. 2015, 17, 2570–2573. [Google Scholar] [CrossRef]
- Fukaya, K.; Kodama, K.; Tanaka, Y.; Yamazaki, H.; Sugai, T.; Yamaguchi, Y.; Watanabe, A.; Oishi, T.; Sato, T.; Chida, N. Synthesis of Paclitaxel. 2. Construction of the ABCD Ring and Formal Synthesis. Org. Lett. 2015, 17, 2574–2577. [Google Scholar] [CrossRef]
- Kanda, Y.; Nakamura, H.; Umemiya, S.; Puthukanoori, R.K.; Murthy Appala, V.R.; Gaddamanugu, G.K.; Paraselli, B.R.; Baran, P.S. Two-Phase Synthesis of Taxol. J. Am. Chem. Soc. 2020, 142, 10526–10533. [Google Scholar] [CrossRef]
- Hu, Y.J.; Gu, C.C.; Wang, X.F.; Min, L.; Li, C.C. Asymmetric Total Synthesis of Taxol. J. Am. Chem. Soc. 2021, 143, 17862–17870. [Google Scholar] [CrossRef]
- Iiyama, S.; Fukaya, K.; Yamaguchi, Y.; Watanabe, A.; Yamamoto, H.; Mochizuki, S.; Saio, R.; Noguchi, T.; Oishi, T.; Sato, T.; et al. Total Synthesis of Paclitaxel. Org. Lett. 2022, 24, 202–206. [Google Scholar] [CrossRef]
- Imamura, Y.; Takaoka, K.; Komori, Y.; Nagatomo, M.; Inoue, M. Total Synthesis of Taxol Enabled by Inter- and Intramolecular Radical Coupling Reactions. Angew. Chem. Int. Ed. 2023, 62, e202219114. [Google Scholar] [CrossRef]
- Denis, J.N.; Greene, A.E.; Guenard, D.; Gueritte-Voegelein, F.; Mangatal, L.; Potier, P. Highly efficient, practical approach to natural taxol. J. Am. Chem. Soc. 1988, 110, 5917–5919. [Google Scholar] [CrossRef]
- Deng, X.M.; Cao, H.; Shen, H.W.; Zhong, G.X.; Xia, C.N. Overview of the semisynthesis of paclitaxel and its derivatives. Zhejiang Chem. 2018, 49, 1–8. (In Chinese) [Google Scholar]
- Yan, J.-Q. Chiral synthesis of the Taxol side chain and semi synthesis of Taxol. Fine Spec. Chem. 2005, 13, 1–6+11. (In Chinese) [Google Scholar]
- Borah, C.J.; Boruwa, J.; Barua, C.N. Synthesis of the C-13 Side-Chain of Taxol. Curr. Org. Synth. 2007, 4, 175–199. [Google Scholar] [CrossRef]
- Shi, T.; Li, X.; Li, Y.; Fu, X.; Wu, L.; Wu, D.; Hu, W. An asymmetric catalytic multi-component reaction enabled the green synthesis of isoserine derivatives and semi-synthesis of paclitaxel. Green Synth. Catal. 2023, 4, 58–63. [Google Scholar] [CrossRef]
- Zhang, H.; Gan, H.; Wu, Z.; Meng, Z.; Dou, G. Study on biotransformation of 7-xylosyl-10deacetyltaxol. Chin. J. New Drugs 2013, 22, 1029–1033. (In Chinese) [Google Scholar]
- Xue, B.; Zhao, J.; Fan, Y.; Chen, S.; Li, W.; Chen, J.; Li, Z.; Wang, H.; Kong, H. Synthesis of Taxol and Docetaxel by Using 10-Deacetyl-7-xylosyltaxanes. Chem. Biodivers. 2020, 17, e1900631. [Google Scholar] [CrossRef] [PubMed]
- Rao, K.V. Semi-synthesis of paclitaxel from naturally occurring glycosidic precursors. J. Heterocycl. Chem. 1997, 34, 675–680. [Google Scholar] [CrossRef]
- Christen, A.A.; Gibson, D.M.; Bland, J. Production of Taxol or Taxol-Like Compounds in Cell Culture. U.S. Patent 5,019,504, 28 May 1991. [Google Scholar]
- Bamneshin, M.; Mirjalili, M.H.; Naghavi, M.R.; Cusido, R.M.; Palazón, J. Gene expression pattern and taxane biosynthesis in a cell suspension culture of Taxus baccata L. subjected to light and a phenylalanine ammonia lyase (PAL) inhibitor. J. Photochem. Photobiol. B Biol. 2022, 234, 112532. [Google Scholar] [CrossRef] [PubMed]
- Golinejad, S.; Mirjalili, M.H.; Rezadoost, H.; Ghorbanpour, M. Molecular, biochemical, and metabolic changes induced by gold nanoparticles in Taxus baccata L. cell culture. Ind. Crops Prod. 2023, 192, 115988. [Google Scholar] [CrossRef]
- Hazrati, R.; Zare, N.; Asghari, R.; Sheikhzadeh, P.; Johari-Ahar, M. Biologically synthesized CuO nanoparticles induce physiological, metabolic, and molecular changes in the hazel cell cultures. Appl. Microbiol. Biotechnol. 2022, 106, 6017–6031. [Google Scholar] [CrossRef] [PubMed]
- Yukimune, Y.; Tabata, H.; Higashi, Y.; Hara, Y. Methyl jasmonate-induced overproduction of paclitaxel and baccatin III in Taxus cell suspension cultures. Nat. Biotechnol. 1996, 14, 1129–1132. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Wang, H.; Li, T.; Li, C.; Zhou, Y.; Zhong, X. The selection and stability analysis of stable and high Taxol-producing cell lines from Taxus cuspidata. J. For. Res. 2018, 29, 65–71. [Google Scholar] [CrossRef]
- Hoffman, A.; Khan, W.; Worapong, J.; Strobel, G.; Griffin, D.; Arbogast, B.; Barofsky, B.; Boone, D.; Ning, R.B.; Zheng, P.; et al. Bioprospecting for taxol in angiosperm plant extracts: Using high performance liquid chromatography–thermospray mass spectrometry to detect the anticancer agent and its related metabolites in filbert trees. Spectroscopy 1998, 13, 22–32. [Google Scholar]
- Gallego, A.; Imseng, N.; Bonfill, M.; Cusido, R.M.; Palazon, J.; Eibl, R.; Moyano, E. Development of a hazel cell culture-based paclitaxel and baccatin III production process on a benchtop scale. J. Biotechnol. 2015, 195, 93–102. [Google Scholar] [CrossRef] [PubMed]
- Farhadi, S.; Moieni, A.; Safaie, N.; Sabet, M.S.; Salehi, M. Fungal Cell Wall and Methyl-β–Cyclodextrin Synergistically Enhance Paclitaxel Biosynthesis and Secretion in Corylus avellana Cell Suspension Culture. Sci. Rep. 2020, 10, 5427. [Google Scholar] [CrossRef]
- Stierle, A.; Strobel, G.; Stierle, D. Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science 1993, 260, 214–216. [Google Scholar] [CrossRef]
- El-Sayed, A.S.A.; El-Sayed, M.T.; Rady, A.; Zein, N.; Enan, G.; Shindia, A.; El-Hefnawy, S.; Sitohy, M.; Sitohy, B. Exploiting the Biosynthetic Potency of Taxol from Fungal Endophytes of Conifers Plants; Genome Mining and Metabolic Manipulation. Molecules 2020, 25, 3000. [Google Scholar] [CrossRef]
- Subban, K.; Kempken, F. Insights into Taxol® biosynthesis by endophytic fungi. Appl. Microbiol. Biotechnol. 2023, 107, 6151–6162. [Google Scholar] [CrossRef]
- Shankar Naik, B. Developments in taxol production through endophytic fungal biotechnology: A review. Orient. Pharm. Exp. Med. 2019, 19, 1–13. [Google Scholar] [CrossRef]
- Strobel, G.; Yang, X.; Sears, J.; Kramer, R.; Sidhu, R.S.; Hess, W.M. Taxol from Pestalotiopsis microspora, an endophytic fungus of Taxus wallachiana. Microbiology 1996, 142, 435–440. [Google Scholar] [CrossRef]
- Tian, R.P.; Yang, Q.; Zhou, G.L. Taxonomic study on a taxol producing fungus isolated from the bark of Taxus chinensis var. mairei. J. Wuhan Bot. Res. 2006, 24, 541–545. [Google Scholar]
- Strobel, G.A.; Hess, W.M.; Ford, E.; Sidhu, R.S.; Yang, X. Taxol from fungal endophytes and the issue of biodiversity. J. Ind. Microbiol. 1996, 17, 417–423. [Google Scholar] [CrossRef]
- Fu, Y.; Li, X.; Yuan, X.; Zhang, Z.; Wei, W.; Xu, C.; Song, J.; Gu, C. Alternaria alternata F3, a Novel Taxol-Producing Endophytic Fungus Isolated from the Fruits of Taxus cuspidata: Isolation, Characterization, Taxol Yield Improvement, and Antitumor Activity. Appl. Biochem. Biotechnol. 2023, 195. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.J.; Zhang, Z.; Wang, Y.; Su, Y.; Zhang, R. Screening endophytic fungus to produce taxol from Taxus Yunnanensis. Biotechnol. 2003, 13, 10–11. (In Chinese) [Google Scholar]
- Zhang, P.; Zhou, P.-P.; Yu, L.-J. An Endophytic Taxol-Producing Fungus from Taxus media, Cladosporium cladosporioides MD2. Curr. Microbiol. 2009, 59, 227–232. [Google Scholar] [CrossRef]
- Zhang, P.; Zhou, P.-P.; Yu, L.-J. An endophytic taxol-producing fungus from Taxus × media, Aspergillus candidus MD3. FEBS Microbiol. Lett. 2009, 293, 155–159. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Singh, B.; Thakur, V.; Thakur, A.; Thakur, N.; Pandey, D.; Chand, D. Hyper-production of taxol from Aspergillus fumigatus, an endophytic fungus isolated from Taxus sp. of the Northern Himalayan region. Biotechnol. Rep. 2019, 24, e00395. [Google Scholar] [CrossRef]
- Zhao, K.; Ping, W.X.; Li, Q. Aspergillus niger var. taxi, a new species variant of taxol-producing fungus isolated from Taxus cuspidata in China. J. Appl. Microbiol. 2009, 107, 1202–1207. [Google Scholar] [CrossRef]
- Chen, J.H.; Liu, J.J.; Zang, G.G. Screening of taxol-producing endophytic fungi and regulation of fermentation conditions. J. Cent. South Univ. Nat. Sci. 2004, 35, 65–69. [Google Scholar]
- Zhou, X.; Zhu, H.; Liu, L.; Lin, J.; Tang, K. A review: Recent advances and future prospects of taxol-producing endophytic fungi. Appl. Microbiol. Biotechnol. 2010, 86, 1707–1717. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Hu, C.H. Separation and identification of a new Taxus chinensis var. mairei endophytic fungus (Bionectria sp.) and the activity of its metabolites. J. Southwest Univ. Nat. Sci. Ed. 2007, 29, 131–135. [Google Scholar]
- Venkatachalam, R.; Subban, K.; Paul, M.J. Taxol from Botryodiplodia theobromae (BT 115)-an endophytic fungus of Taxus baccata. J. Biotechnol. 2008, 136, 189–190. [Google Scholar] [CrossRef]
- Zhao, K.; Zhao, L.; Jin, Y.; Wei, H.; Ping, W.; Zhou, D. Isolation of a taxol-producing endophytic fungus and inhibiting effect of the fungus metabolites on HeLa cell. Mycosystema 2008, 27, 735–744. (In Chinese) [Google Scholar]
- Hu, K.; Tan, F.; Tang, K.; Zhu, S.; Wang, W. Isolation and screening of endophytic fungi synthesizing taxol from Taxus chinensis var. mairei. J. Southwest China Normal Univ. Nat. Sci. Ed. 2006, 31, 134–137. [Google Scholar]
- Wang, Y.; Ma, X.Y.; Ping, W.; Zhou, D. A new species of Botrytis. J. Fungal. Res. 2006, 4, 62–64. (In Chinese) [Google Scholar]
- Wang, Y.; Tang, K. A new endophytic taxol- and baccatin III-producing fungus isolated from Taxus chinensis var. mairei. Afr. J. Biotechnol. 2011, 10, 16379–16386. [Google Scholar]
- Li, C.T.; Li, Y.; Wang, Q.; Sung, C. Taxol production by Fusarium Arthrosporioides isolated from yew, Taxus cuspidata. J. Med. Biochem. 2008, 27, 454–458. [Google Scholar] [CrossRef]
- El-Sayed, A.S.A.; Ali, D.M.I.; Yassin, M.A.; Zayed, R.A.; Ali, G.S. Sterol inhibitor “Fluconazole” enhance the Taxol yield and molecular expression of its encoding genes cluster from Aspergillus flavipes. Process Biochem. 2019, 76, 55–67. [Google Scholar] [CrossRef]
- Dai, W.L.; Tao, W.Y. Preliminary study on fermentation conditions of taxol-producing endophytic fungus. Chem. Ind. Eng. Prog. 2008, 27, 883–886. (In Chinese) [Google Scholar]
- Garyali, S.; Kumar, A.; Reddy, M.S. Taxol production by an endophytic fungus Fusarium redolens, isolated from Himalayan Yew. J. Microbiol. Biotechnol. 2013, 23, 1372–1380. [Google Scholar] [CrossRef]
- Deng, B.W.; Liu, K.H.; Chen, W.Q.; Ding, X.W.; Xie, X.C. Fusarium solani, Tax-3, a new endophytic taxol-producing fungus from Taxus chinensis. World J. Microbiol. Biotechnol. 2009, 25, 139–143. [Google Scholar] [CrossRef]
- Lu, L.Y.; Qin, Z.; Xu, J.K.; Li, X.S. Production of taxol by an endophytic fungus isolated from Taxus chinensis var. Mairei. Chin. Med. Biotechnol. 2010, 5, 202–207. (In Chinese) [Google Scholar]
- Cheng, L.; Ma, Q.M.; Tao, G.J.; Tao, W.Y.; Wang, R.M.; Yang, J.; Guo, X.L. Systematic identification of a paclitaxel-producing endofungus. Ind. Microbiol. 2007, 37, 23–30. (In Chinese) [Google Scholar]
- Xiong, Z.Q.; Yang, Y.Y.; Zhao, N. Diversity of endophytic fungi and screening of fungal paclitaxel producer from Anglo jap yew, Taxus × media. BMC Microbiol. 2013, 13, 71. [Google Scholar] [CrossRef] [PubMed]
- Miao, L.Y.; Zhang, P.; Liu, B.; Xu, M.; Zhou, P.P.; Yu, L.J. Isolation and identification of a taxol-producing endophytic fungus Z58. Chin. J. Biochem. Mol. Biol. 2012, 28, 1141–1146. (In Chinese) [Google Scholar]
- Liu, W.H.; Yao, B.; Zhu, S.Q. Advances in studies on biosynthetic pathway of taxol precursor and its correlative biotechnology. Chin. Tradit. Herb Drugs 2009, 40, 1327–1331. [Google Scholar]
- Miao, Z.; Wang, Y.; Yu, X.; Guo, B.; Tang, K. New endophytic taxane production fungus from T. chinensis. Appl. Biochem. Microbiol. 2009, 45, 81–86. [Google Scholar] [CrossRef]
- Zhang, P.; Liu, B.; Xu, M.; Ao, M.Z.; Fu, C.H.; Yu, L.J.; Gu, Y.C. Isolation and identification of a taxol-producing endophytic fungus O60B1. Hubei Agric. Sci. 2012, 51, 5315–5317. (In Chinese) [Google Scholar]
- Zhou, D.; Zhao, K.; Ping, W. Study on the mutagenesis of protoplasts from taxol-producing fungus Nodulisporium sylviforme. J. Am. Sci. 2005, 1, 55–62. [Google Scholar]
- Zhao, K.; Sun, L.X.; Wang, X. Screening of high taxol producing fungi by mutagenesis and construction of subtracted cDNA library by Suppression substracted hybridization for differentially expressed genes. Acta. Microbiol. Sin. 2011, 51, 923–933. [Google Scholar]
- Guo, B.H.; Wang, Y.C.; Zhou, X.W. An endophytic taxol-producing fungus BT2 isolated from Taxus chinensis var. mairei. Afr. J. Biotechnol. 2006, 5, 875–877. [Google Scholar]
- Zhang, P.; Liu, B.; Zhou, B.B.; Wang, C.L.; Jiang, C.; Yu, L.J. Isolation and identification of a taxol-producing endophytic fungus YN6. Chin. J. Biochem. Mol. Biol. 2011, 27, 961–967. (In Chinese) [Google Scholar]
- Gangadevi, V.; Muthumary, J. Taxol production by Pestalotiopsis terminaliae, an endophytic fungus of Terminalia arjuna (arjun tree). Biotechnol. Appl. Biochem. 2009, 52, 9–15. [Google Scholar] [CrossRef]
- Kumaran, R.S.; Hur, B.K. Screening of species of the endophytic fungus Phomopsis for the production of the anticancer drug taxol. Biotechnol. Appl. Biochem. 2009, 54, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Li, T.Q.; Zhang, Z.J.; Zhang, P.; Wang, C.L.; Liu, B.; Liu, T.T.; Fu, C.H.; Yu, L.J. Isolation and identification of a taxol-producing endophytic fungus identified from Taxus media. Agric. Sci. Technol. 2010, 11, 38–40+68. (In Chinese) [Google Scholar]
- Mirjalili, M.H.; Farzaneh, M.; Bonfill, M.; Rezadoost, H.; Ghassempour, A. Isolation and characterization of Stemphylium sedicola SBU-16 as a new endophytic taxol-producing fungus from Taxus baccata grown in Iran. FEMS Microbiol. Lett. 2012, 328, 122–129. [Google Scholar] [CrossRef] [PubMed]
- Staniek, A.; Woerdenbag, H.J.; Kayser, O. Taxomyces andreanae: A presumed paclitaxel producer demystified. Planta. Med. 2009, 75, 1561–1566. [Google Scholar] [CrossRef]
- Wang, J.F.; Li, G.L.; Lu, H.Y. Taxol from Tubercularia sp. Strain TF5, an endophytic fungus of Taxus mairei. FEMS Microbiol. Lett. 2000, 193, 249–253. [Google Scholar] [CrossRef]
- Bi, J.; Ji, Y.; Pan, J.; Yu, Y.; Chen, H.; Zhu, X. A new taxol-producing fungus (Pestalotiopsis malicola) and evidence for taxol as a transient product in the culture. Afr. J. Biotechnol. 2011, 10, 6647–6654. [Google Scholar]
- Strobel, G.A.; Hess, W.M.; Li, J.Y.; Ford, E.; Sears, J.; Sidhu, R.S.; Summerell, B. Pestalotiopsis guepinii, a taxol-producing endophyte of the Wollemi pine, Wollemia nobilis. Aust. J. Bot. 1997, 45, 1073–1082. [Google Scholar] [CrossRef]
- Li, J.Y.; Strobel, G.; Sidhu, R. Endophytic taxol-producing fungi from bald cypress, Taxodium distichum. Microbiology 1996, 142, 2223–2236. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zhao, H.; Barrero, R.A.; Zhang, B.; Sun, G.; Wilson, I.W.; Xie, F.; Walker, K.D.; Parks, J.W.; Bruce, R. Genome sequencing and analysis of the paclitaxel-producing endophytic fungus Penicillium aurantiogriseum NRRL 62431. BMC Genom. 2014, 15, 69. [Google Scholar] [CrossRef] [PubMed]
- Kumaran, R.S.; Choi, Y.K.; Lee, S.; Jeon, H.J.; Jung, H.; Kim, H.J. Isolation of taxol, an anticancer drug produced by the endophytic fungus, Phoma betae. Afr. J. Biotechnol. 2012, 11, 950–960. [Google Scholar]
- Kumaran, R.S.; Muthumary, J.; Hur, B.K. Production of taxol from Phyllosticta spinarum, an endophytic fungus of Cupressus sp. Eng. Life Sci. 2008, 8, 438–446. [Google Scholar] [CrossRef]
- Sun, D.F.; Ran, X.Q.; Wang, J.F. Isolation and identifcation of a taxol-producing endophytic fungus from Podocarpus. Acta. Microbiol. Sin. 2008, 48, 589–595. [Google Scholar]
- Gangadevi, V.; Murugan, M.; Muthumary, J. Taxol determination from Pestalotiopsis pauciseta, a fungal endophyte of a medicinal plant. Chin. J. Biotechnol. 2008, 24, 1433–1438. [Google Scholar] [CrossRef]
- Gangadevi, V.; Muthumary, J. A novel endophytic taxolproducing fungus Chaetomella raphigera isolated from a medicinal plant, Terminalia arjuna. Appl. Biochem. Biotechnol. 2009, 158, 675–684. [Google Scholar] [CrossRef]
- Kumaran, R.S.; Muthumary, J.; Hur, B.K. Isolation and identifcation of an anticancer drug, taxol from Phyllosticta tabernaemontanae, a leaf spot fungus of an angiosperm Wrightia tinctoria. J. Microbiol. 2009, 47, 40–49. [Google Scholar] [CrossRef]
- Gokul Raj, K.; Manikandan, R.; Arulvasu, C.; Pandi, M. Anti-proliferative effect of fungal taxol extracted from Cladosporium oxysporum against human pathogenic bacteria and human colon cancer cell line HCT 15. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 138, 667–674. [Google Scholar] [CrossRef]
- Gu, Y.; Wang, Y.; Ma, X.; Wang, C.; Yue, G.; Zhang, Y.; Zhang, Y.; Li, S.; Ling, S.; Liu, X.; et al. Greater Taxol Yield of Fungus Pestalotiopsis hainanensis from Dermatitic Scurf of the Giant Panda (Ailuropoda melanoleuca). Appl. Biochem. Biotechnol. 2015, 175, 155–165. [Google Scholar] [CrossRef] [PubMed]
- Garyali, S.; Kumar, A.; Reddy, M.S. Enhancement of taxol production from endophytic fungus Fusarium redolens. Biotechnol. Bioproc. E. 2014, 19, 908–915. [Google Scholar] [CrossRef]
- Soliman, S.S.M.; Mosa, K.A.; El-Keblawy, A.A.; Husseiny, M.I. Exogenous and endogenous increase in fungal GGPP increased fungal Taxol production. Appl. Microbiol. Biotechnol. 2017, 101, 7523–7533. [Google Scholar] [CrossRef] [PubMed]
- Qiao, W.; Ling, F.; Yu, L.; Huang, Y.; Wang, T. Enhancing taxol production in a novel endophytic fungus, Aspergillus aculeatinus Tax-6, isolated from Taxus chinensis var. mairei. Fungal Biol. 2017, 121, 1037–1044. [Google Scholar] [CrossRef]
- El-Sayed, A.S.A.; Shindia, A.A.; AbouZeid, A.; Koura, A.; Hassanein, S.E.; Ahmed, R.M. Triggering the biosynthetic machinery of Taxol by Aspergillus flavipes via cocultivation with Bacillus subtilis: Proteomic analyses emphasize the chromatin remodeling upon fungal-bacterial interaction. Environ. Sci. Pollut. Res. 2021, 28, 39866–39881. [Google Scholar] [CrossRef] [PubMed]
- El-Sayed, A.S.A.; Fathalla, M.; Yassin, M.A.; Zein, N.; Morsy, S.; Sitohy, M.; Sitohy, B. Conjugation of Aspergillus flavipes Taxol with Porphyrin Increases the Anticancer Activity of Taxol and Ameliorates Its Cytotoxic Effects. Molecules 2020, 25, 263. [Google Scholar] [CrossRef]
- Subban, K.; Subramani, R.; Srinivasan, V.P.M.; Johnpaul, M.; Chelliah, J. Salicylic acid as an effective elicitor for improved taxol production in endophytic fungus Pestalotiopsis microspora. PLoS ONE 2019, 14, e0212736. [Google Scholar] [CrossRef]
- El-Sayed, A.; Enan, G.; Al-Mohammadi, A.-R.; Moustafa, A.H.; El-Gazzar, N. Detection, Purification and Elucidation of Chemical Structure and Antiproliferative Activity of Taxol Produced by Penicillium chrysogenum. Molecules 2020, 25, 4822. [Google Scholar] [CrossRef]
- Yang, N.; Pan, X.W.; Chen, G.J.; Sarsaiya, S.; Yu, J.; Fan, X.K.; Jin, L.L.; Zhang, B.H.; Shi, J.; Chen, J.S. Fermentation Engineering for Enhanced Paclitaxel Production by Taxus Media Endophytic Fungus MF-5 (Alternaria sp.). J. Biobased Mater. Biol. 2018, 12, 545–550. [Google Scholar] [CrossRef]
- Abdel-Fatah, S.S.; El-Sherbiny, G.M.; Khalaf, M.; Baz, A.F.E.; El-Sayed, A.S.A.; El-Batal, A.I. Boosting the Anticancer Activity of Aspergillus flavus “endophyte of Jojoba” Taxol via Conjugation with Gold Nanoparticles Mediated by γ-Irradiation. Appl. Biochem. Biotechnol. 2022, 194, 3558–3581. [Google Scholar] [CrossRef]
- Chakravarthi, B.V.S.K.; Singh, S.; Kamalraj, S.; Gupta, V.K.; Jayabaskaran, C. Evaluation of spore inoculum and confirmation of pathway genetic blueprint of T13αH and DBAT from a Taxol-producing endophytic fungus. Sci. Rep. 2020, 10, 21139. [Google Scholar] [CrossRef] [PubMed]
- Soliman, S.S.; Greenwood, J.S.; Bombarely, A.; Mueller, L.A.; Tsao, R.; Mosser, D.D.; Raizada, M.N. An Endophyte Constructs Fungicide-Containing Extracellular Barriers for Its Host Plant. Curr. Biol. 2015, 25, 2570–2576. [Google Scholar] [CrossRef] [PubMed]
- Soliman, S.S.M.; Raizada, M.N. Darkness: A Crucial Factor in Fungal Taxol Production. Front. Microbiol. 2018, 9, 353. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Li, L.; Zhuang, W.; Zhang, F.; Shu, X.; Wang, N.; Wang, Z. Recent Research Progress in Taxol Biosynthetic Pathway and Acylation Reactions Mediated by Taxus Acyltransferases. Molecules 2021, 26, 2855. [Google Scholar] [CrossRef]
- Muchiri, R.; Walker, K.D. Taxol Biosynthesis: Tyrocidine Synthetase A Catalyzes the Production of Phenylisoserinyl CoA and Other Amino Phenylpropanoyl Thioesters. Cell Chem. Biol. 2012, 19, 679–685. [Google Scholar] [CrossRef][Green Version]
- Walker, K.; Fujisaki, S.; Long, R.; Croteau, R. Molecular cloning and heterologous expression of the C-13 phenylpropanoid side chain-CoA acyltransferase that functions in Taxol biosynthesis. Proc. Natl. Acad. Sci. USA 2002, 99, 12715–12720. [Google Scholar] [CrossRef]
- Ajikumar, P.K.; Xiao, W.-H.; Tyo, K.E.J.; Wang, Y.; Simeon, F.; Leonard, E.; Mucha, O.; Phon, T.H.; Pfeifer, B.; Stephanopoulos, G. Isoprenoid Pathway Optimization for Taxol Precursor Overproduction in Escherichia coli. Science 2010, 330, 70–74. [Google Scholar] [CrossRef]
- Biggs, B.W.; Lim, C.G.; Sagliani, K.; Shankar, S.; Stephanopoulos, G.; De Mey, M.; Ajikumar, P.K. Overcoming heterologous protein interdependency to optimize P450-mediated Taxol precursor synthesis in Escherichia coli. Proc. Natl. Acad. Sci. USA 2016, 113, 3209–3214. [Google Scholar] [CrossRef]
- Huang, Q.; Roessner, C.A.; Croteau, R.; Scott, A.I. Engineering Escherichia coli for the synthesis of taxadiene, a key intermediate in the biosynthesis of taxol. Bioorg. Med. Chem. 2001, 9, 2237–2242. [Google Scholar] [CrossRef]
- Zhou, K.; Qiao, K.; Edgar, S.; Stephanopoulos, G. Distributing a metabolic pathway among a microbial consortium enhances production of natural products. Nat. Biotechnol. 2015, 33, 377–383. [Google Scholar] [CrossRef]
- Abdallah, I.I.; Pramastya, H.; van Merkerk, R.; Sukrasno; Quax, W.J. Metabolic Engineering of Bacillus subtilis toward Taxadiene Biosynthesis as the First Committed Step for Taxol Production. Front. Microbiol. 2019, 10, 218. [Google Scholar] [CrossRef]
- Dejong, J.M.; Liu, Y.; Bollon, A.P.; Long, R.M.; Jennewein, S.; Williams, D.; Croteau, R.B. Genetic engineering of taxol biosynthetic genes in Saccharomyces cerevisiae. Biotechnol. Bioeng. 2006, 93, 212–224. [Google Scholar] [CrossRef] [PubMed]
- Engels, B.; Dahm, P.; Jennewein, S. Metabolic engineering of taxadiene biosynthesis in yeast as a first step towards Taxol (Paclitaxel) production. Metab. Eng. 2008, 10, 201–206. [Google Scholar] [CrossRef] [PubMed]
- Ding, M.-z.; Yan, H.-f.; Li, L.-f.; Zhai, F.; Shang, L.-q.; Yin, Z.; Yuan, Y.-j. Biosynthesis of Taxadiene in Saccharomyces cerevisiae: Selection of Geranylgeranyl Diphosphate Synthase Directed by a Computer-Aided Docking Strategy. PLoS ONE 2014, 9, e109348. [Google Scholar] [CrossRef] [PubMed]
- Reider Apel, A.; d’Espaux, L.; Wehrs, M.; Sachs, D.; Li, R.A.; Tong, G.J.; Garber, M.; Nnadi, O.; Zhuang, W.; Hillson, N.J.; et al. A Cas9-based toolkit to program gene expression in Saccharomyces cerevisiae. Nucleic Acids Res. 2017, 45, 496–508. [Google Scholar] [CrossRef]
- Nowrouzi, B.; Li, R.A.; Walls, L.E.; d’Espaux, L.; Malcı, K.; Liang, L.; Jonguitud-Borrego, N.; Lerma-Escalera, A.I.; Morones-Ramirez, J.R.; Keasling, J.D.; et al. Enhanced production of taxadiene in Saccharomyces cerevisiae. Microb. Cell Fact. 2020, 19, 200. [Google Scholar] [CrossRef]
- Walls, L.E.; Malcı, K.; Nowrouzi, B.; Li, R.A.; d’Espaux, L.; Wong, J.; Dennis, J.A.; Semião, A.J.C.; Wallace, S.; Martinez, J.L.; et al. Optimizing the biosynthesis of oxygenated and acetylated Taxol precursors in Saccharomyces cerevisiae using advanced bioprocessing strategies. Biotechnol. Bioeng. 2021, 118, 279–293. [Google Scholar] [CrossRef]
- Walls, L.E.; Martinez, J.L.; Rios-Solis, L. Enhancing Saccharomyces cerevisiae Taxane Biosynthesis and Overcoming Nutritional Stress-Induced Pseudohyphal Growth. Microorganisms 2022, 10, 163. [Google Scholar] [CrossRef]
- Besumbes, O.; Sauret-Güeto, S.; Phillips, M.A.; Imperial, S.; Rodríguez-Concepción, M.; Boronat, A. Metabolic engineering of isoprenoid biosynthesis in Arabidopsis for the production of taxadiene, the first committed precursor of Taxol. Biotechnol. Bioeng. 2004, 88, 168–175. [Google Scholar] [CrossRef]
- Kovacs, K.; Zhang, L.; Linforth, R.S.; Whittaker, B.; Hayes, C.J.; Fray, R.G. Redirection of carotenoid metabolism for the efficient production of taxadiene [taxa-4(5),11(12)-diene] in transgenic tomato fruit. Transgenic Res. 2007, 16, 121–126. [Google Scholar] [CrossRef]
- Rontein, D.; Onillon, S.; Herbette, G.; Lesot, A.; Werck-Reichhart, D.; Sallaud, C.; Tissier, A. CYP725A4 from yew catalyzes complex structural rearrangement of taxa-4(5),11(12)-diene into the cyclic ether 5(12)-oxa-3(11)-cyclotaxane. J. Biol. Chem. 2008, 283, 6067–6075. [Google Scholar] [CrossRef]
- Hasan, M.M.; Kim, H.-S.; Jeon, J.-H.; Kim, S.H.; Moon, B.; Song, J.-Y.; Shim, S.H.; Baek, K.-H. Metabolic engineering of Nicotiana benthamiana for the increased production of taxadiene. Plant Cell Rep. 2014, 33, 895–904. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Wang, X.; Li, X.; Shi, H.; Wang, F.; Zhang, Y.; Li, X. Combinatorial Engineering of Mevalonate Pathway and Diterpenoid Synthases in Escherichia coli for cis-Abienol Production. J. Agric. Food Chem. 2019, 67, 6523–6531. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Xu, W.; Huang, W.; Wang, B.; Li, S.; Zhang, J.; Chang, L. Importation of taxadiene synthase into chloroplast improves taxadiene production in tobacco. Planta 2021, 253, 107. [Google Scholar] [CrossRef] [PubMed]
- Cha, M.; Shim, S.H.; Kim, S.H.; Kim, O.T.; Lee, S.W.; Kwon, S.Y.; Baek, K.H. Production of taxadiene from cultured ginseng roots transformed with taxadiene synthase gene. BMB Rep. 2012, 45, 589–594. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Anterola, A.; Shanle, E.; Perroud, P.F.; Quatrano, R. Production of taxa-4(5),11(12)-diene by transgenic Physcomitrella patens. Transgenic Res. 2009, 18, 655–660. [Google Scholar] [CrossRef] [PubMed]
- Bian, G.; Yuan, Y.; Tao, H.; Shi, X.; Zhong, X.; Han, Y.; Fu, S.; Fang, C.; Deng, Z.; Liu, T. Production of taxadiene by engineering of mevalonate pathway in Escherichia coli and endophytic fungus Alternaria alternata TPF6. Biotechnol. J. 2017, 12, 1–12. [Google Scholar] [CrossRef]
- Kirby, J.; Keasling, J.D. Biosynthesis of Plant Isoprenoids: Perspectives for Microbial Engineering. Annu. Rev. Plant Biol. 2009, 60, 335–355. [Google Scholar] [CrossRef]
- Li, B.J.; Wang, H.; Gong, T.; Chen, J.-J.; Chen, T.-J.; Yang, J.-L.; Zhu, P. Improving 10-deacetyl baccatin III-10-beta-O-acetyltransferase catalytic fitness for Taxol production. Nat. Commun. 2017, 8, 15544. [Google Scholar] [CrossRef]
Condition or Disease | Partner Drugs | Condition or Disease | Partner Drugs |
---|---|---|---|
Lung cancer | Cisplatinum | Lymphoma | Cisplatinum |
Gastric cancer | Tegafur | Adriamycin | |
Capecitabine | Capecitabine | ||
Head and neck tumors | Cisplatinum | Gemcitabine | |
Esophageal cancer | Cisplatinum | Adriamycin + cyclophosphamide | |
Capecitabine | Pancreatic | Gemcitabine |
Partner Drugs | Condition or Disease | Phase | Clinical Trial Identifier |
---|---|---|---|
Gemcitabine | Refractory solid tumors | I | NCT03507491 |
Raltitrexed | Advanced pancreatic cancer | II | NCT04581876 |
Apatinib and camrelizumab | Advanced gastric cancer | I/II | NCT04286711 |
AZD2014 | Advanced cancer | I | NCT02193633 |
Fostamatinib | Ovarian cancer | I | NCT03246074 |
Tilelizumab | High-risk non-muscle-invasive urothelial bladder carcinoma that is not completely resectable | II | NCT04730232 |
LDE225 | Recurrent ovarian cancer | I | NCT02195973 |
Camrelizumab | Non-small cell lung cancer | II | NCT04167774 |
Gemcitabine and ficlatuzumab | Pancreatic cancer | I | NCT03316599 |
Durvalumab | Squamous cell carcinoma of the head and neck | II | NCT03723967 |
fruquintinib | Gastric cancer | III | NCT03223376 |
Chiauranib | Ovarian cancer | III | NCT04921527 |
Lovastatin | Ovarian cancer | II | NCT00585052 |
Capibasertib | Locally advanced (inoperable) or metastatic triple-negative breast cancer | III | NCT03997123 |
Pembrolizumab and carboplatin | Recurrent/metastatic head and neck squamous cell carcinoma | IV | NCT04489888 |
Research Groups | Year | Synthetic Strategy | Starting Materials | Total Steps | Refs. |
---|---|---|---|---|---|
Nicolaou et al. | 1994 | (1) Coupling of the A and C rings by Shapiro reaction at the C1–C2 positions; (2) formation of the B ring by McMurry coupling at the C9–C10 positions; (3) and finally, formation of the side chain, selective oxidation of the C13 position and formation of the D ring. | Ethyl 4-hydroxy-2-methylbut-2-enoate and 3-hydroxy-2-pyrone | 51 | [53] |
Holton et al. | 1994 | (1) Formation of AB ring by epoxy alcohol cleavage; (2) formation of the C ring by Dieckmann condensation; (3) formation of the D ring based on intramolecular SN2 cyclization; (4) introduction of the C9 oxygen functional group and side chain. | Camphor | 41 | [54,55] |
Danishefsky et al. | 1996 | (1) Coupling of A and CD rings at the C1–C2 sites via 1,2-addition reactions; (2) generation of B rings via Heck coupling at the C9–C10 sites; (3) selective oxidation of C9 and C13 and formation of side chains. | 2-Methyl-1,3-cyclohexandione | 47 | [58] |
Wender et al. | 1997 | (1) Formation of the AB ring by Grob-type fragmentation; (2) formation of the C ring by aldol cyclization reaction; (3) formation of the D ring based on intramolecular SN2 cyclization and introduction of the side chain. | Verbenone | 37 | [59,60] |
Kuwajima et al. | 1998 | (1) Coupling of the A ring and C ring at the C1–C2 site by 1,2-addition reaction; (2) generation of the B ring at the C9–C10 site by Vinylogous Mukaiyama aldol reaction; (3) formation of the D ring and C13 side chain by introducing C19-methyl and the C3 standing center. | 2-(Prop-2-yn-1-yloxy)tetrahydro-2H-pyran | 47 | [61] |
Mukaiyama et al. | 1999 | (1) Formation of octacycles at the C3–C8 sites by intramolecular aldol cyclization of SmI2; (2) formation of C rings at the C7–C8 sites based on Michael addition and intramolecular hydroxyl aldol cyclization; (3) formation of A rings at the C11–C12 sites based on pinacol coupling cyclization; (4) final selective oxidation of C13 as well as the formation of D rings and side chains. | Methyl 3-hydroxy-2,2-dimethylpropanoate | 38 | [62] |
Kishi et al. | 2000 | (1) Introduction of a C8 all-carbon quaternary center by [2,3] rearrangement; (2) Coupling of A and C rings at the C1–C2 sites by 1,2-addition reaction; (3) generation of the B ring by NHK coupling at C9–C10 sites; (4) formation of the D ring and side chain, oxidation of C13. | 3-Methylcyclohex-2-en-1-ol | 45 | [56] |
Takahashi et al. | 2006 | (1) Coupling of the A ring and CD ring at the C1–C2 sites by 1,2-addition reaction; (2) generation of the B ring by microwave-assisted alkylation at the C9–C10 sites; (3) selective oxidation of C9 and formation of the D ring. | Geraniol | 47 | [63] |
Nakada et al. | 2015 | (1) Coupling of the A and C rings at the C1–C2 sites based on 1,2-addition reactions; (2) generation of the B ring by palladium-catalyzed alkenylation at the C9–C10 sites; (3) formation of the D ring by SN2 cyclization. | Acetal aldehyde and vinyl iodide | 37 | [64] |
Chida et al. | 2015 | (1) Linking the A and C rings by 1,2-addition at the C1–C2 site; (2) forming the B ring by palladium-catalyzed alkenylation at the C10–C11 bond; (3) constructing the D ring of oxetane by SN2 cyclization. | Tri-O-acethl-D-glucal and 1,3-cyclohexanedione | 42 | [65,66] |
Baran et al. | 2020 | (1) Type II intramolecular Diels–Alder reaction to form the ABC framework; (2) stereoselective oxidation to C13, C5, C10 and C9 sites; (3) dioxane-mediated C–H oxidation to produce bridging tertiary alcohols at the C1 site; (4) formation of the D ring and side chain. | 2,3-Dimethylbut-2-ene; 3-ethoxy-2-cyclohexen-1-one; CHBr3; acrylaldehyde | 24 | [67] |
Li et al. | 2021 | (1) Asymmetric synthesis to form the AC ring; (2) SmI2-mediated pinacol coupling reaction to form the B ring; (3) generation of C3 stereocenters by the Hutchins–Kabalka method; (4) formation of the D ring as well as the introduction of the C13 side chain. | (2R, 3S)-2-Allyl-3-hydroxy-2-methylcyclohexan-1-one | 21 | [68] |
Chida et al. | 2022 | (1) Linking the A and C rings by 1,2-addition at the C1–C2 site; (2) forming the B ring by palladium-catalyzed allylation at the C10–C11 bond; (3) forming the C13 and C5 hydroxyl groups by Rubottom oxidation; and (4) forming the D ring by a novel sliver-promoted cyclization method. | Tri-O-acethl-D-glucal | 22 | [69] |
Inoue et al. | 2023 | (1) Intermolecular and intramolecular radical coupling processes to link and cyclize the A- and C-ring fragments, respectively; (2) efficient decoration of the A- and C-ring functional groups using newly discovered chemo-, regio- and stereoselective processes; (3) finally, D ring formation and conjugation with amino-acid-delivered taxol. | 2,2-Dimethylcyclohexane-1,3-dione | 34 | [70] |
Family | Fungus | Host | Strain | Yield (μg/L) | Reference |
---|---|---|---|---|---|
Taxaceae | Alternaria alternata | T. hicksii | Tbp-9 | 0.13 | [92] |
Alternaria alternata | T. hicksii | - | 332–512 | [89] | |
Alternaria alternata | T. chinensis var mairei | TPF6 | 84.5 | [93] | |
Alternaria sp. | T. cuspidata | Ja-69 | 0.16 | [94] | |
Alternaria alternata | T. cuspidata | F3 | 195.4 | [95] | |
Anthina Fr. | T. yunnanensis | Tax-15 | 6.23 | [96] | |
Aspergillus candidus | Taxus media | MD2 | 112 | [97] | |
Aspergillus candidus | T. media | MD3 | 73 | [98] | |
Aspergillus fumigatus | Taxus sp. | TPF-06 | 1590.00 | [99] | |
Aspergillus niger | T. cuspidata | HD86-9 | 273.46 | [100] | |
Aspergillus niger | Taxus yunnanensis | IBFC-Z3S | 1000 | [101] | |
Aspergillus niger var taxi | T. cuspidata | - | 91 | [102] | |
Bionectria sp. | T. chinensis var mairei | XH004 | 33.90–430.46 | [103] | |
Botryodiplodia theobromae | T. baccata | BT115 | 280.5 | [104] | |
Botrytis sp. | T. cuspidata | HD181-23 | 206.34 | [105] | |
Botrytis sp. | T. chinensis var mairei | XT-2 | 161.24 | [106] | |
Botrytis taxi | T. cuspidata | HD104 | - | [107] | |
Cephalosporium sp. | T. yunnanensis | Tax-36 | 3.781 | [96] | |
Chaetomium sp. | T. yunnanensis | Tax-60 | 21.1 | [96] | |
Cladosporium cladosporioides | T. media | MD2 | 80 | [97] | |
Didymostilbe sp. | T. chinensis var mairei | DF110 | - | [108] | |
Dimemasporium sp. | T. yunnanensis | Tax-35 | 3.34 | [96] | |
Ectostroma sp. | T. chinensis var mairei | XT 5 | 276.75 | [106] | |
Ectostroma sp. | T. yunnanensis | Tax-16 | 4.092 | [96] | |
Ectostroma sp. | T. yunnanensis | Tax-25 | 2.16 | [96] | |
Fusarium anthrosporioides | T. cuspidata | F-40 | 131 | [109] | |
Fusarium lateritium | T. baccata | Tbp-9 | 0.13 | [94] | |
Fusarium mairei | T. chinensis | - | 78 | [110] | |
Fusarium mairei | Taxus × media | UH23 | 20 | [111] | |
Fusarium redolens | T. baccata | TBPJ-B | 66 | [112] | |
Fusarium solani | T. chinensis | Tax-3 | 164 | [113] | |
Fusarium sp. | T. chinensis var mairei | D62 | 148.95 | [114] | |
Fusarium sp. | T. chinensis var mairei | Y1117 | 2.70 | [115] | |
Gliocladium sp. | T. baccata | - | 90 | [110] | |
Gonatobotrys sp. | T. yunnanensis | Tax-13 | 4.092 | [96] | |
Guignardia mangiferae | Taxus × media | HAA 11, HBA 29 | - | [116] | |
Hypocrea sp. | T. media | Z58 | 2.50–3.00 | [117] | |
Metarhizium anisopliae | T. chinensis | H-27 | 846.10 | [118] | |
Monochaetia sp. | T. baccata | Tbp-2 | 0.1 | [92] | |
Mucor rouxianus | T. chinensis | DA10 | 30 | [119] | |
Mucor sp. | T. yunnanensis | Tax-56 | 1.08 | [96] | |
Mucor sp. | T. media | 060B1 | 2.50–3.00 | [120] | |
Nodulisporium sylviforme | T. cuspidata | HQD33, HQD48 | 51.06–125.70 | [121] | |
Nodulisporium sylviforme | T. cuspidata | NCEU-1 | 314 | [121] | |
Nodulisporium sylviforme | T. cuspidata | UV40-19, UL50-6 | 392 | [121] | |
Nodulisporium sylviforme | T. cuspidata | HDF68 | 468.62 | [122] | |
Nodulisporium sylviforme | T. cuspidata | - | 450 | [89] | |
Nodulisporium sylviforme | T. cuspidata | HDFS4-26 | 516.37 | [105] | |
Ozonium sp. | T. chinensis var mairei | BT 2 | 4–18 | [123] | |
Papulaspora sp. | T. chinensis var mairei | XT17 | 10.25 | [106] | |
Penicillium sp. | T. yunnanensis | Tax-20 | 8.24 | [96] | |
Pestalotia bicilia | T. baccata | Tbx-2 | 1.08 | [92] | |
Pestalotiopsis microspora | T. walichiana | Ne-32 | 50.00 | [92] | |
Pestalotiopsis microspora | T. cuspidata | Ja-73 | 0.27 | [92] | |
Pestalotiopsis sp. | T. yunnanensis | YN6 | 120–140 | [124] | |
Pestalotiopsis terminaliae | T. arjuna | TAP 15 | 211.10 | [125] | |
Phoma sp. | T. yunnanensis | Tax-26 | 18.56 | [96] | |
Phoma sp. | T. yunnanensis | Tax-47 | 47.302 | [96] | |
Phomopsis sp. | T. cuspidata | BKH27 | 418 | [126] | |
Pithomyces sp. | T. sumatrana | P-96 | 0.095 | [92] | |
Placodium sp. | T. yunnanensis | Tax-24 | 13.63 | [96] | |
Placodium sp. | T. yunnanensis | Tax-49 | 31.06 | [96] | |
Placodium sp. | T. yunnanensis | Tax-55 | 0.46 | [96] | |
Placodium sp. | T. yunnanensis | Tax-63 | 3.11 | [96] | |
Placodium sp. | T. yunnanensis | Tax-65 | 6.27 | [96] | |
Rhizoctonia sp. | T. yunnanensis | Tax-1 | 1.43 | [96] | |
Rhizopus | T. media | M57 | 45.00–50.00 | [127] | |
Stemphylium sedicola | T. baccata | SBU-16 | 6.90 | [128] | |
Taxomyces andreanae | T. brevifolia | Tbp-2 | 0.02–0.05 | [129] | |
Trichoderma sp. | T. yunnanensis | Tax-23 | 19.59 | [96] | |
Tubercularia sp. | T. chinensis var mairei | TF-5 | 185.40 | [130] | |
Rhizosphere | Alternaria sp. | Rhizosphere | - | 4.2 | [110] |
Aspergillus flavipes | Rhizosphere | - | 185–850 | [110] | |
Aspergillus flavus | Rhizosphere | - | 2.8 | [110] | |
Aspergillus oryzae | Rhizosphere | - | 3.2 | [110] | |
Penicillium chrysogenum | Rhizosphere | - | 85 | [110] | |
Pestalotiopsis malicola | Rhizosphere | - | 186 | [131] | |
Bromeliaceae | Fusarium proliferatum | Tillandsia usneoides | - | 165 | [110] |
Pestalotiopsis humus 133 | Tillandsia usneoides | - | 6.1 | [110] | |
Pestalotiopsis humus 154 | Tillandsia usneoides | - | 5.7 | [110] | |
Pestalotiopsis sp. 118 | Tillandsia usneoides | - | 8.9 | [110] | |
Pestalotiopsis sp. 107 | Tillandsia usneoides | - | 89 | [110] | |
Pestalotiopsis sp. 155 | Tillandsia usneoides | - | 4.3 | [110] | |
Pestalotiopsis sp. 163 | Tillandsia usneoides | - | 4.0 | [110] | |
Phomopsis sp. 116 | Tillandsia usneoides | - | 22 | [110] | |
Araucariaceae | Pestalotiopsis guepinii | Wollemia nobilis | w-1, f-2 | 0.49 | [132] |
Pestalotiopsis sp. | Wollemia nobilis | w-x-3 | 0.13 | [132] | |
Pestalotiopsis sp. | Wollemia nobilis | w-1, f-1 | 0.17 | [132] | |
Phomopsis sp. | Wollemia nobilis | - | 170 | [129] | |
Cupressaceae | Fusarium mairei | Taxodium distichum | UH23 | 20.00 | [111] |
Pestalotiopsis microspora | Taxodium distichum | Cp-4 | 0.01–1.49 | [133] | |
Rutaceae | Bartalinia robillardoides | Aegle mamelos | - | 187.6 | [134] |
Phyllosticta citricarpa | Citrus media | - | 265.00 | [110] | |
Ginkgoaceae | Phoma betae | Ginkgo biloba | SBU-16 | 795.00 | [135] |
Phomopsis sp. | Ginkgo biloba | - | 372 | [136] | |
Rubiaceae Juss. | Lasiodiplodia theobromae | Morinda citrifolia | - | 120 | [110] |
Pestalotiopsis microspora | Maguireothamnus speciosus | - | 0.11 | [92] | |
Podocarpaceae | Aspergillus fumigatus | Podocarpus sp. | EPTP-1 | 560.00 | [137] |
Sapindaceae Juss. | Pestalotiopsis pauciseta | Cardiospermum helicacabum | CHP-11 | 113.30 | [138] |
Combretaceae R. Br. | Pestalotiopsis terminaliae | Terminalia arjuna | TAP-15 | 211.10 | [139] |
Apocynaceae Juss. | Phyllosticta tabernaemontanae | Wrightia tinctoria | - | 461.00 | [140] |
Sterculiaceae | Phyllostica melochiae | Melochia corchorifolia | - | 478 | [110] |
Malvaceae Juss. | Phyllosticta dioscorea | Hibiscus rosa-sinensis | - | 298 | [136] |
Moringa Adans. | Cladosporium oxysporum | Moringa oleifera | - | 550 | [141] |
Betulaceae Gray | Penicillium aurantiogriseum | Corylus avellana | NRRL 62431 | 70 | [134] |
Products | Concentration | Host | Reference |
---|---|---|---|
Taxadiene | 1.0 g/L | E. coli | [158] |
Oxygenated taxanes | 570 mg/L | E. coli | [159] |
Taxadiene | 1.3 mg/L | E. coli | [160] |
Oxygenated taxanes | 33 mg/L | E. coli and S. cerevisiae | [161] |
Taxadiene | 1.98 mg/L | Bacillus subtilis | [162] |
Taxadiene and taxadiene-5α-ol | 1.0 mg/L and~25 μg/L | S. cerevisiae | [163] |
Taxadiene | 8.7 mg/L | S. cerevisiae | [164] |
Taxadiene | 72.8 mg/L | S. cerevisiae | [165] |
Taxadiene | 20 mg/L | S. cerevisiae | [166] |
Taxadiene | 129 mg/L | S. cerevisiae | [167] |
Taxadien-5α-yl-acetate and total oxygenated taxane | 3.7 mg/L and 78 mg/L | S. cerevisiae | [168] |
Taxadiene and taxadien-5α-yl-acetate | 71 mg/L and 21 mg/L | S. cerevisiae | [169] |
Taxadiene | 600 ng/g DW | A. thaliana | [170] |
Taxadiene | 160 mg/kg | Tomato fruits | [171] |
Taxadiene and 5(12)-oxa-(11)-cyclotaxane | no yield | Tobacco (Nicotiana sylvestris) | [172] |
Taxadiene | 27 μg/g DW | Tobacco (Nicotiana benthamiana) | [173] |
Taxadiene and taxadiene-5α-ol | 56.6 μg/g and 1.3 μg/g FW | Tobacco (Nicotiana benthamiana) | [174] |
Taxadiene | 87.7 μg/g DW | Nicotiana tabacum cv. Petit Havana | [175] |
TS-transgenic ginseng | 14.6–15.9 μg/g DW | Ginseng (Panax ginseng) roots | [176] |
Taxadiene | 0.05% FW of plant tissue | Physcomitrella patens (moss) | [177] |
Taxadiene | 61.9 μg/L | Alternaria alternata (endophytic fungus) | [178] |
Methods | Advantages | Disadvantages |
---|---|---|
Extraction from plants |
|
|
Total synthesis |
|
|
Semi-synthesis |
|
|
Tissue and cell culture |
|
|
endophytic fungi method |
|
|
Synthetic biology method |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Ye, T.; Liu, Y.; Hou, G.; Wang, Q.; Zhao, F.; Li, F.; Meng, Q. Research Advances in Clinical Applications, Anticancer Mechanism, Total Chemical Synthesis, Semi-Synthesis and Biosynthesis of Paclitaxel. Molecules 2023, 28, 7517. https://doi.org/10.3390/molecules28227517
Zhang S, Ye T, Liu Y, Hou G, Wang Q, Zhao F, Li F, Meng Q. Research Advances in Clinical Applications, Anticancer Mechanism, Total Chemical Synthesis, Semi-Synthesis and Biosynthesis of Paclitaxel. Molecules. 2023; 28(22):7517. https://doi.org/10.3390/molecules28227517
Chicago/Turabian StyleZhang, Shengnan, Taiqiang Ye, Yibin Liu, Guige Hou, Qibao Wang, Fenglan Zhao, Feng Li, and Qingguo Meng. 2023. "Research Advances in Clinical Applications, Anticancer Mechanism, Total Chemical Synthesis, Semi-Synthesis and Biosynthesis of Paclitaxel" Molecules 28, no. 22: 7517. https://doi.org/10.3390/molecules28227517
APA StyleZhang, S., Ye, T., Liu, Y., Hou, G., Wang, Q., Zhao, F., Li, F., & Meng, Q. (2023). Research Advances in Clinical Applications, Anticancer Mechanism, Total Chemical Synthesis, Semi-Synthesis and Biosynthesis of Paclitaxel. Molecules, 28(22), 7517. https://doi.org/10.3390/molecules28227517