Dabcyl as a Naked Eye Colorimetric Chemosensor for Palladium Detection in Aqueous Medium
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis
2.2. Preliminary Chemosensing Tests
2.3. The Detection of Pd2+ in SDS Aqueous Solution
2.3.1. UV-Vis Titrations
2.3.2. 1H NMR Studies
2.3.3. The Influence of pH
2.3.4. Competition Assays
2.4. The Detection of Sn2+ and Fe3+ in SDS Aqueous Solution
2.4.1. UV-Vis Titrations
2.4.2. 1H NMR Studies
2.4.3. The Influence of pH
2.4.4. Competition Assays
3. Materials and Methods
3.1. Materials and Instruments
3.2. Stock Solutions
3.3. Preliminary Chemosensing Tests and UV-Vis Titrations
3.4. Determination of the Detection Limit (DL)
3.5. Binding Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Balamurugan, R.; Liu, J.-H.; Liu, B.-T. A review of recent developments in fluorescent sensors for the selective detection of palladium ions. Coord. Chem. Rev. 2018, 376, 196–224. [Google Scholar] [CrossRef]
- Kielhorn, J.; Melber, C.; Keller, D.; Mangelsdorf, I. Palladium—A review of exposure and effects to human health. Int. J. Hyg. Environ. Health 2002, 205, 417–432. [Google Scholar] [CrossRef] [PubMed]
- Wiseman, C.L.S.; Zereini, F. Airborne particulate matter, platinum group elements and human health: A review of recent evidence. Sci. Total Environ. 2009, 407, 2493–2500. [Google Scholar] [CrossRef] [PubMed]
- Prichard, H.M.; Fisher, P.C. Identification of platinum and palladium particles emitted from vehicles and dispersed into the surface environment. Environ. Sci. Technol. 2012, 46, 3149–3154. [Google Scholar] [CrossRef]
- Aarzoo; Nidhi; Samim, M. Palladium nanoparticles as emerging pollutants from motor vehicles: An in-depth review on distribution, uptake and toxicological effects in occupational and living environment. Sci. Total Environ. 2022, 823, 153787. [Google Scholar] [CrossRef]
- Magano, J.; Dunetz, J.R. Large-scale applications of transition metal-catalyzed couplings for the synthesis of pharmaceuticals. Chem. Rev. 2011, 111, 2177–2250. [Google Scholar] [CrossRef]
- Lai, Y.-L.; Zhang, H.-J.; Su, J.; Wang, X.-Z.; Luo, D.; Liu, J.-X.; Zhou, X.-P.; Li, D. Self-assembly of a quadrangular prismatic covalent cage templated by zinc ions: A selective fluorescent sensor for palladium ions. Chin. Chem. Lett. 2023, 34, 107686. [Google Scholar] [CrossRef]
- Tirri, B.; Turelli, M.; Boissonnat, G.; Ciofini, I.; Adamo, C. Protocols for the in-silico screening of the perceived color of industrial dyes: Anthraquinones and indigos as study cases. Dye. Pigment. 2022, 208, 110826. [Google Scholar] [CrossRef]
- Gao, Z.; Qiu, S.; Yan, M.; Lu, S.; Liu, H.; Lian, H.; Zhang, P.; Zhu, J.; Jin, M. A highly selective turn-on fluorescence probe with large Stokes shift for detection of palladium and its applications in environment water and living cells. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2022, 267, 120500. [Google Scholar] [CrossRef]
- Adhikari, S.; Ghosh, A.; Guria, S.; Sahana, A. Through bond energy transfer based ratiometric probe for fluorescent imaging of Sn2+ ions in living cells. RSC Adv. 2016, 6, 39657–39662. [Google Scholar] [CrossRef]
- Ravichandiran, P.; Prabakaran, D.S.; Bella, A.P.; Boguszewska-Czubara, A.; Masłyk, M.; Dineshkumar, K.; Johnson, P.M.; Park, B.-H.; Han, M.-K.; Kim, H.G.; et al. Naphthoquinone-dopamine linked colorimetric and fluorescence chemosensor for selective detection of Sn2+ ion in aqueous medium and its bio-imaging applications. ACS Sustain. Chem. Eng. 2020, 8, 10947–10958. [Google Scholar] [CrossRef]
- Manna, S.K.; Mondal, S.; Jana, B.; Samanta, K. Recent advances in tin ion detection using fluorometric and colorimetric chemosensors. New J. Chem. 2022, 46, 7309–7328. [Google Scholar] [CrossRef]
- Carter, K.P.; Young, A.M.; Palmer, A.E. Fluorescent sensors for measuring metal ions in living systems. Chem. Rev. 2014, 114, 4564–4601. [Google Scholar] [CrossRef]
- Barnham, K.J.; Masters, C.L.; Bush, A.I. Neurodegenerative diseases and oxidative stress. Nat. Rev. Drug Discov. 2004, 3, 205–214. [Google Scholar] [CrossRef] [PubMed]
- Ward, R.J.; Zucca, F.A.; Duyn, J.H.; Crichton, R.R.; Zecca, L. The role of iron in brain ageing and neurodegenerative disorders. Lancet Neurol. 2014, 13, 1045–1060. [Google Scholar] [CrossRef] [PubMed]
- Kaur, B.; Kaur, N.; Kumar, S. Colorimetric metal ion sensors—A comprehensive review of the years 2011–2016. Coord. Chem. Rev. 2018, 358, 13–69. [Google Scholar] [CrossRef]
- Sareen, D.; Kaur, P.; Singh, K. Strategies in detection of metal ions using dyes. Coord. Chem. Rev. 2014, 265, 125–154. [Google Scholar] [CrossRef]
- Yin, P.; Niu, Q.; Liu, J.; Wei, T.; Hu, T.; Li, T.; Qin, X.; Chen, J. A new AIEE-active carbazole based colorimetric/fluorimetric chemosensor for ultra-rapid and nano-level determination of Hg2+ and Al3+ in food/environmental samples and living cells. Sens. Actuators B Chem. 2021, 331, 129418. [Google Scholar] [CrossRef]
- Anslyn, E.V. Supramolecular analytical chemistry. J. Org. Chem. 2007, 72, 687–699. [Google Scholar] [CrossRef]
- Memon, S.S.; Nafady, A.; Solangi, A.R.; Al-Enizi, A.M.; Sirajuddin; Shah, M.R.; Sherazi, S.T.H.; Memon, S.; Arain, M.; Abro, M.I.; et al. Sensitive and selective aggregation based colorimetric sensing of Fe3+ via interaction with acetyl salicylic acid derived gold nanoparticles. Sens. Actuators B Chem. 2018, 259, 1006–1012. [Google Scholar] [CrossRef]
- Ábalos, T.; Moragues, M.; Royo, S.; Jiménez, D.; Martínez-Máñez, R.; Soto, J.; Sancenón, F.; Gil, S.; Cano, J. Dyes that bear thiazolylazo groups as chromogenic chemosensors for metal cations. Eur. J. Inorg. Chem. 2012, 2012, 76–84. [Google Scholar] [CrossRef]
- Khan, S.; Chen, X.; Almahri, A.; Allehyani, E.S.; Alhumaydhi, F.A.; Ibrahim, M.M.; Ali, S. Recent developments in fluorescent and colorimetric chemosensors based on Schiff bases for metallic cations detection: A review. J. Environ. Chem. Eng. 2021, 9, 106381. [Google Scholar] [CrossRef]
- Kempf, O.; Kempf, K.; Schobert, R.; Bombarda, E. Hydrodabcyl: A superior hydrophilic alternative to the dark fluorescence quencher Dabcyl. Anal. Chem. 2017, 89, 11893–11897. [Google Scholar] [CrossRef]
- Wu, L.; Huang, C.; Emery, B.P.; Sedgwick, A.C.; Bull, S.D.; He, X.-P.; Tian, H.; Yoon, J.; Sessler, J.L.; James, T.D. Förster resonance energy transfer (FRET)-based small-molecule sensors and imaging agents. Chem. Soc. Rev. 2020, 49, 5110–5139. [Google Scholar] [CrossRef]
- Zheng, J.; Yang, R.; Shi, M.; Wu, C.; Fang, X.; Li, Y.; Li, J.; Tan, W. Rationally designed molecular beacons for bioanalytical and biomedical applications. Chem. Soc. Rev. 2015, 44, 3036–3055. [Google Scholar] [CrossRef]
- Martins, C.D.F.; Raposo, M.M.M.; Costa, S.P.G. A new fluorogenic substrate for granzyme B based on fluorescence resonance energy transfer. Chem. Proc. 2021, 3, 6. [Google Scholar]
- Martins, C.D.F.; Raposo, M.M.M.; Costa, S.P.G. Synthesis and evaluation of an azo dye for the chromogenic detection of metal cations. Chem. Proc. 2022, 12, 26. [Google Scholar]
- Batista, P.M.R.; Martins, C.D.F.; Raposo, M.M.M.; Costa, S.P.G. Novel crown ether amino acids as fluorescent reporters for metal ions. Molecules 2023, 28, 3326. [Google Scholar] [CrossRef]
- Liu, B.; Chen, W.; Liu, D.; Wang, T.; Pan, C.; Liu, D.; Wang, L.; Bai, R. Detection of trace levels of Pd2+ in pure water using a fluorescent probe assisted by surfactants. Sens. Actuators B Chem. 2016, 237, 899–904. [Google Scholar] [CrossRef]
- Hu, C.; Sun, W.; Cao, J.; Gao, P.; Wang, J.; Fan, J.; Song, F.; Sun, S.; Peng, X. A ratiometric near-infrared fluorescent probe for hydrazine and its in vivo applications. Org. Lett. 2013, 15, 4022–4025. [Google Scholar] [CrossRef]
- Garrett, C.E.; Prasad, K. The art of meeting palladium specifications in active pharmaceutical ingredients produced by Pd-catalyzed reactions. Adv. Synth. Catal. 2004, 346, 889–900. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, J.; Zhou, H.; Zhang, Q.; Ma, T.; Niu, J. A highly sensitive and selective “off–on” chemosensor for the visual detection of Pd2+ in aqueous media. Sens. Actuators B Chem. 2012, 171–172, 508–514. [Google Scholar] [CrossRef]
- Kumar, A.; Virender; Mohan, B.; Solovev, A.A.; Saini, M.; Sharma, H.K. Development of 2-hydroxy-naphthaldehyde functionalized Schiff base chemosensor for spectroscopic and colorimetric detection of Cu2+ and Pd2+ ions. Microchem. J. 2022, 180, 107561. [Google Scholar] [CrossRef]
- Wang, M.; Liu, X.; Lu, H.; Wang, H.; Qin, Z. Highly selective and reversible chemosensor for Pd2+ detected by fluorescence, colorimetry, and test paper. ACS Appl. Mater. Interfaces 2015, 7, 1284–1289. [Google Scholar] [CrossRef] [PubMed]
- Mahapatra, A.K.; Manna, S.K.; Maiti, K.; Mondal, S.; Maji, R.; Mandal, D.; Mandal, S.; Uddin, M.R.; Goswami, S.; Quah, C.K.; et al. An azo dye–rhodamine-based fluorescent and colorimetric probe specific for the detection of Pd2+ in aqueous ethanolic solution: Synthesis, XRD characterization, computational studies and imaging in live cells. Analyst 2015, 140, 1229–1236. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Wang, H.; Ma, X.; Wang, M.; Zhang, Y.; Gao, G.; Liu, J.; Hou, S. Colorimetric and fluorescent probe for real-time detection of palladium (II) ion in aqueous medium and live cell imaging. Dye. Pigment. 2018, 148, 286–291. [Google Scholar] [CrossRef]
- Babić, D.; Ćurić, M.; Molčanov, K.; Ilc, G.; Plavec, J. Synthesis and characterization of dicylopalladated complexes of azobenzene derivatives by experimental and computational methods. Inorg. Chem. 2008, 47, 10446–10454. [Google Scholar] [CrossRef]
- Dupont, J.; Consorti, C.S.; Spencer, J. The potential of palladacycles: More than just precatalysts. Chem. Rev. 2005, 105, 2527–2571. [Google Scholar] [CrossRef]
- Hirade, T.; Okui, Y.; Han, M. A design strategy for stable light-sensitive palladium complexes. J. Mater. Chem. C 2013, 1, 2672–2679. [Google Scholar] [CrossRef]
- Tomat, E.; Cuesta, L.; Lynch, V.M.; Sessler, J.L. Binuclear fluoro-bridged zinc and cadmium complexes of a Schiff base expanded porphyrin: Fluoride abstraction from the tetrafluoroborate anion. Inorg. Chem. 2007, 46, 6224–6226. [Google Scholar] [CrossRef]
- Luty-Błocho, M.; Podborska, A.; Musielak, B.; Hessel, V. The specialized twin-solution method for selective Pd(II) ions determination and methyl orange removal. J. Mol. Liq. 2021, 340, 116884. [Google Scholar] [CrossRef]
- Pach, A.; Podborska, A.; Csapo, E.; Luty-Błocho, M. Tropaeolin OO as a chemical sensor for a trace amount of Pd(II) ions determination. Molecules 2022, 27, 4511. [Google Scholar] [CrossRef] [PubMed]
- Berhanu, A.L.; Gaurav; Mohiuddin, I.; Malik, A.K.; Aulakh, J.S.; Kumar, V.; Kim, K.-H. A review of the applications of Schiff bases as optical chemical sensors. Trends Anal. Chem. 2019, 116, 74–91. [Google Scholar] [CrossRef]
- Blunden, S.; Wallace, T. Tin in canned food: A review and understanding of occurrence and effect. Food Chem. Toxicol. 2003, 41, 1651–1662. [Google Scholar] [CrossRef] [PubMed]
- Dongare, P.R.; Gore, A.H.; Ajalkar, B.D. A dual colorimetric chemosensor based on Schiff base for highly selective and simultaneous recognition of CN− and Sn2+. Inorganica Chim. Acta 2020, 502, 119372. [Google Scholar] [CrossRef]
- Yan, Z.; Wei, G.; Guang, S.; Xu, M.; Ren, X.; Wu, R.; Zhao, G.; Ke, F.; Xu, H. A multidentate ligand chromophore with rhodamine-triazole-pyridine units and its acting mechanism for dual-mode visual sensing trace Sn2+. Dye. Pigment. 2018, 159, 542–550. [Google Scholar] [CrossRef]
- Cheah, P.W.; Heng, M.P.; Izati, A.; Ng, C.H.; Tan, K.W. Rhodamine B conjugate for rapid colorimetric and fluorimetric detection of aluminium and tin ions and its application in aqueous media. Inorganica Chim. Acta 2020, 512, 119901. [Google Scholar] [CrossRef]
- Ravichandiran, P.; Kaliannagounder, V.K.; Bella, A.P.; Boguszewska-Czubara, A.; Masłyk, M.; Kim, C.S.; Park, C.H.; Johnson, P.M.; Park, B.-H.; Han, M.-K.; et al. Simple colorimetric and fluorescence chemosensing probe for selective detection of Sn2+ ions in an aqueous solution: Evaluation of the novel sensing mechanism and its bioimaging applications. Anal. Chem. 2021, 93, 801–811. [Google Scholar] [CrossRef]
- Adhikari, S.; Mandal, S.; Ghosh, A.; Guria, S.; Das, D. Sn(II) induced concentration dependent dynamic to static excimer conversion of a conjugated naphthalene derivative. Dalton Trans. 2015, 44, 14388–14393. [Google Scholar] [CrossRef]
- Akram, D.; Elhaty, I.A.; AlNeyadi, S.S. Synthesis and antibacterial activity of rhodanine-based azo dyes and their use as spectrophotometric chemosensor for Fe3+ ions. Chemosensors 2020, 8, 16. [Google Scholar] [CrossRef]
- Murugan, A.S.; Vidhyalakshmi, N.; Ramesh, U.; Annaraj, J. In vivo bio-imaging studies of highly selective, sensitive rhodamine based fluorescent chemosensor for the detection of Cu2+/Fe3+ ions. Sens. Actuators B Chem. 2018, 274, 22–29. [Google Scholar] [CrossRef]
- Ghule, N.V.; Bhosale, R.S.; Puyad, A.L.; Bhosale, S.V.; Bhosale, S.V. Naphthalenediimide amphiphile based colorimetric probe for recognition of Cu2+ and Fe3+ ions. Sens. Actuators B Chem. 2016, 227, 17–23. [Google Scholar] [CrossRef]
- Saremi, M.; Kakanejadifard, A.; Adeli, M. A ratiometric fluorescent sensor based azo compound of 4-(4-dimethylamino-phenylazo)-N-pyridin-2-ylmethyl-benzamide for rapid and selective detection of Fe3+ ion. J. Mol. Liq. 2022, 358, 119168. [Google Scholar] [CrossRef]
- Yin, Z.-Y.; Hu, J.-H.; Gui, K.; Fu, Q.-Q.; Yao, Y.; Zhou, F.-L.; Ma, L.-L.; Zhang, Z.-P. AIE based colorimetric and “turn-on” fluorescence Schiff base sensor for detecting Fe3+ in an aqueous media and its application. J. Photochem. Photobiol. A 2020, 396, 112542. [Google Scholar] [CrossRef]
Reported Sensors | DL (M) | Method | Reference |
---|---|---|---|
Azo dye 2 | 5.4 × 10−8 | UV-Vis | This work |
Rhodamine-based chemosensor | 2.8 × 10−7 | UV-Vis | [32] |
Naphthaldehyde functionalized Schiff base | 9.8 × 10−7 | UV-Vis | [33] |
Sulphur-containing rhodamine-based probe | 6.3 × 10−9 | UV-Vis | [34] |
Azo dye-rhodamine-based chemosensor | 4.5 × 10−7 | Fluorescence | [35] |
Coumarin-based probe | 4.1 × 10−8 | Fluorescence | [36] |
Reported Probes | DL (M) | Method | Reference |
---|---|---|---|
Sn2+ | |||
Azo dye 2 | 1.3 × 10−7 | UV-Vis | This work |
Azo-linked Schiff base | 7.5 × 10−7 | UV-Vis | [45] |
Rhodamine-triazole-pyridine chemosensor | 1.2 × 10−7 | UV-Vis | [46] |
Rhodamine-based chemosensor | 5.1 × 10−6 | UV-Vis | [47] |
Naphthoquinone-based chemosensor | 1.1 × 10−7 | Fluorescence | [48] |
Naphthalene-based probe | 2.6 × 10−8 | Fluorescence | [49] |
Fe3+ | |||
Azo dye 2 | 5.2 × 10−8 | UV-Vis | This work |
Azo dye–rhodamine-based chemosensor | 5.1 × 10−6 | UV-Vis | [50] |
Rhodamine-based chemosensor | 4.0 × 10−8 | UV-Vis | [51] |
Naphthalenediimide-based probe | 1.0 × 10−7 | UV-Vis | [52] |
Sensor-based azo compound | 1.8 × 10−8 | UV-Vis | [53] |
Coumarin Schiff base derivatives | 4.8 × 10−7 | Fluorescence | [54] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martins, C.D.F.; Raposo, M.M.M.; Costa, S.P.G. Dabcyl as a Naked Eye Colorimetric Chemosensor for Palladium Detection in Aqueous Medium. Molecules 2023, 28, 6111. https://doi.org/10.3390/molecules28166111
Martins CDF, Raposo MMM, Costa SPG. Dabcyl as a Naked Eye Colorimetric Chemosensor for Palladium Detection in Aqueous Medium. Molecules. 2023; 28(16):6111. https://doi.org/10.3390/molecules28166111
Chicago/Turabian StyleMartins, Cátia D. F., M. Manuela M. Raposo, and Susana P. G. Costa. 2023. "Dabcyl as a Naked Eye Colorimetric Chemosensor for Palladium Detection in Aqueous Medium" Molecules 28, no. 16: 6111. https://doi.org/10.3390/molecules28166111