Synthesis and Characterization of Eco-Efficient Alkali-Activated Composites with Self-Cleaning Properties for Sustainable Construction
Abstract
:1. Introduction
2. Results
Photocatalytic Assessment
3. Discussion
4. Materials and Methods
5. Conclusions
- The degree of activation of AAMs depends on the amount of sodium silicate and the type of precursor. The best strength parameters were obtained for BFS and a mixture of BFS and Mk. Water added at the expense of sodium silicate promoted the hydration of blast furnace slag, and only for a matrix made on slag alone were the strength gains recorded. Matrices made of BFS and natural and artificial pozzolans obtained lower strengths, but, nevertheless, the compressive strength values were in the 34–37 MPa range.
- Titanium dioxide added at 2 wt.% caused strength gains, but only at a later maturation time. At the beginning of maturation, this retarded the setting, resulting in a reduction in the heat of hydration, and it slightly reduced the workability of mortars and imparted self-cleaning properties to AAMs.
- Self-cleaning properties are dependent on the type of precursor. Metakaolinite and fly ash promoted and enhanced the photocatalytic effect of nanometric titanium dioxide.
- The designed AAM composites characterized by lower hydration heat and self-cleaning properties may provide a pro-environmental alternative to cementitious binder for green technologies.
- It is worth noting that producing composites with the addition of titanium dioxide particles will be less cost-effective compared with pure composites. However, the improvement in mechanical properties and new features, such as self-cleaning properties, make TiO2-doped composites an attractive material. To enhance the cost-effectiveness of using TiO2 particles as additives in composites, one can consider the use of waste products.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Pérez-Lombard, L.; Ortiz, J.; Pout, C. A review on buildings energy consumption information. Energy Build. 2008, 40, 394–398. [Google Scholar] [CrossRef]
- Monteiro, H.; Cruz, P.L.; Moura, B. Integrated environmental and economic life cycle assessment of improvement strategies for a ceramic industry. J. Clean. Prod. 2022, 345, 131173. [Google Scholar]
- Olmez, G.M.; Dilek, F.B.; Karanfil, T.; Yetis, U. The environmental impacts of iron and steel industry: A life cycle assessment study. J. Clean. Prod. 2016, 130, 195–201. [Google Scholar] [CrossRef]
- Van Damme, H. Concrete material science: Past, present, and future innovations. Cem. Concr. Res. 2018, 112, 5–24. [Google Scholar]
- Almutairi, A.L.; Tayeh, B.A.; Adesina, A.; Isleem, H.F.; Zeyad, A.M. Potential applications of geopolymer concrete in construction: A review. Case Stud. Constr. Mater. 2021, 15, e00733. [Google Scholar] [CrossRef]
- Miller, S.A.; John, V.M.; Pacca, S.A.; Horvath, A. Carbon dioxide reduction potential in the global cement industry by 2050. Cem. Concr. Res. 2018, 114, 115–124. [Google Scholar] [CrossRef]
- Schneider, M. The cement industry on the way to a low-carbon future. Cem. Concr. Res. 2019, 124, 105792. [Google Scholar] [CrossRef]
- Scrivener, K.L.; John, V.M.; Gartner, E.M. Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry. Cem. Concr. Res. 2018, 114, 2–26. [Google Scholar] [CrossRef]
- Ślosarczyk, A.; Fořt, J.; Klapiszewska, I.; Thomas, M.; Klapiszewski, Ł.; Černý, R. A literature review of the latest trends and perspectives regarding alkali-activated materials in terms of sustainable development. J. Mater. Res. Technol. 2023, 25, 5394–5425. [Google Scholar] [CrossRef]
- Shi, C.; Fernández Jiménez, A.; Palomo, A. New cements for the 21st century: The pursuit of an alternative to Portland cement. Cem. Concr. Res. 2011, 41, 750–763. [Google Scholar] [CrossRef]
- Gao, X.; Yao, X.; Wang, C.; Geng, C.; Yang, T. Properties and microstructure of eco-friendly alkali-activated slag cements under hydrothermal conditions relevant to well cementing applications. Constr. Build. Mater. 2022, 318, 125973. [Google Scholar] [CrossRef]
- Zhang, P.; Zheng, Y.; Wang, K.; Zhang, J. A review on properties of fresh and hardened geopolymer mortar. Compos. B Eng. 2018, 152, 79–95. [Google Scholar] [CrossRef]
- Awoyera, P.; Adesina, A. A critical review on application of alkali activated slag as a sustainable composite binder. Case Stud. Constr. Mater. 2019, 11, e00268. [Google Scholar]
- Nodehi, M.; Ozbakkaloglu, T.; Gholampour, A.; Mohammed, T.; Shi, X. The effect of curing regimes on physico-mechanical, microstructural and durability properties of alkali-activated materials: A review. Constr. Build. Mater. 2022, 321, 126335. [Google Scholar] [CrossRef]
- de Oliveira, L.B.; de Azevedo, A.R.G.; Marvila, M.T.; Pereira, E.C.; Fediuk, R.; Vieira, C.M.F. Durability of geopolymers with industrial waste. Case Stud. Constr. Mater. 2022, 16, e00839. [Google Scholar] [CrossRef]
- Tahir, M.F.M.; Al Bakri Abdullah, M.M.; Abd Rahim, S.Z.; Hasan, M.R.M.; Sandu, A.V.; Vizureanu, P.; Ghazali, C.M.R.; Kadir, A.A. Mechanical and Durability Analysis of Fly Ash Based Geopolymer with Various Compositions for Rigid Pavement Applications. Materials 2022, 15, 3458. [Google Scholar] [CrossRef]
- Thunuguntla, C.S.; Rao, T.D.G. Effect of mix design parameters on mechanical and durability properties of alkali activated slag concrete. Constr. Build. Mater. 2018, 193, 173–188. [Google Scholar] [CrossRef]
- Athira, V.S.; Bahurudeen, A.; Saljas, M.; Jayachandran, K. Influence of different curing methods on mechanical and durability properties of alkali activated binders. Constr. Build. Mater. 2021, 299, 123963. [Google Scholar] [CrossRef]
- Sun, B.; Ye, G.; de Schutter, G. A review: Reaction mechanism and strength of slag and fly ash-based alkali-activated materials. Constr. Build. Mater. 2022, 326, 126843. [Google Scholar] [CrossRef]
- Lyu, B.-C.; Ding, C.; Guo, L.-P.; Chen, B.; Wang, A.-G. Basic performances and potential research problems of strain hardening geopolymer composites: A critical review. Constr. Build. Mater. 2021, 287, 123030. [Google Scholar] [CrossRef]
- Phoo-ngernkham, T.; Maegawa, A.; Mishima, N.; Hatanaka, S.; Chindaprasirt, P. Effects of sodium hydroxide and sodium silicate solutions on compressive and shear bond strengths of FA–GBFS geopolymer. Constr. Build. Mater. 2015, 91, 1–8. [Google Scholar] [CrossRef]
- Humad, A.M.; Kothari, A.; Provis, J.L.; Cwirzen, A. The Effect of Blast Furnace Slag/Fly Ash Ratio on Setting, Strength, and Shrinkage of Alkali-Activated Pastes and Concretes. Front. Mater. 2019, 6, 9. [Google Scholar] [CrossRef] [Green Version]
- Abdila, S.R.; Al Bakri Abdullah, M.M.; Ahmad, R.; Nergis, D.D.B.; Abd Rahim, S.Z.; Omar, M.F.; Sandu, A.V.; Vizureanu, P.; Syafwandi. Potential of Soil Stabilization Using Ground Granulated Blast Furnace Slag (GGBFS) and Fly Ash via Geopolymerization Method: A Review. Materials 2022, 15, 375. [Google Scholar] [CrossRef] [PubMed]
- Mounika, G.; Ramesh, B.; Kalyana Rama, J.S. Experimental investigation on physical and mechanical properties of alkali activated concrete using industrial and agro waste. Mater. Today Proc. 2020, 33, 4372–4376. [Google Scholar] [CrossRef]
- Chi, M.; Huang, R. Binding mechanism and properties of alkali-activated fly ash/slag mortars. Constr. Build. Mater. 2013, 40, 291–298. [Google Scholar] [CrossRef]
- Longo, F.; Lassandro, P.; Moshiri, A.; Phatak, T.; Aiello, M.A.; Krakowiak, K.J. Lightweight geopolymer-based mortars for the structural and energy retrofit of buildings. Energy Build. 2020, 225, 110352. [Google Scholar] [CrossRef]
- Jindal, B.B.; Sharma, R. The effect of nanomaterials on properties of geopolymers derived from industrial by-products: A state-of-the-art review. Constr. Build. Mater. 2020, 252, 119028. [Google Scholar] [CrossRef]
- Shilar, F.A.; Ganachari, S.V.; Patil, V.B. Advancement of nano-based construction materials-A review. Constr. Build. Mater. 2022, 359, 129535. [Google Scholar] [CrossRef]
- Raza, A.; El Ouni, M.H.; Azab, M.; Ali, K.; Haider, H.; Rashedi, A. A scientometric review on mechanical and durability performance of geopolymer Paste: Effect of various raw materials. Constr. Build. Mater. 2022, 345, 128297. [Google Scholar] [CrossRef]
- Yang, L.Y.; Jia, Z.J.; Zhang, Y.M.; Dai, J.G. Effects of nano-TiO2 on strength, shrinkage and microstructure of alkali activated slag pastes. Cem. Concr. Compos. 2015, 57, 1–7. [Google Scholar] [CrossRef]
- Zhang, S.-L.; Qi, X.-Q.; Guo, S.-Y.; Ren, J.; Chen, J.-Z.; Chi, B.; Wang, X.-C. Effect of a novel hybrid TiO2-graphene composite on enhancing mechanical and durability characteristics of alkali-activated slag mortar. Constr. Build. Mater. 2021, 275, 122154. [Google Scholar] [CrossRef]
- Duan, P.; Yan, C.; Luo, W.; Zhou, W. Effects of adding nano-TiO2 on compressive strength, drying shrinkage, carbonation and microstructure of fluidized bed fly ash based geopolymer paste. Constr. Build. Mater. 2016, 106, 115–125. [Google Scholar] [CrossRef]
- Llano-Guerrero, E.A.; Gómez-Zamorano, L.Y.; Jiménez-Relinque, E. Effect of the addition of TiO2 nanoparticles in alkali-activated materials. Constr. Build. Mater. 2020, 245, 118370. [Google Scholar] [CrossRef]
- Coffetti, D.; Crotti, E.; Coppola, L. Long-term properties of self-cleaning alkali-activated slag-based mortars with titanium dioxide nanoparticles. Constr. Build. Mater. 2023, 392, 131976. [Google Scholar] [CrossRef]
- El-Kattan, I.M.; Saif, M.S.; El-Hariri, M.O.R.; Elgandy, A.H.; Pérez-Villarejo, L.; Eliche-Quesada, D. Assessing the individual impact of magnesia and titania nano- particles on the performance of alkali-activated slag mortars. Constr. Build. Mater. 2023, 365, 130103. [Google Scholar] [CrossRef]
- La Russa, M.F.; Rovella, N.; Alvarez de Buergo, M.; Belfiore, C.M.; Pezzino, A.; Crisci, G.M.; Ruffolo, S.A. Nano-TiO2 coatings for cultural heritage protection: The role of the binder on hydrophobic and self-cleaning efficacy. Prog. Org. Coat. 2016, 91, 1–8. [Google Scholar] [CrossRef]
- Munafò, P.; Goffredo, G.B.; Quagliarini, E. TiO2-based nanocoatings for preserving architectural stone surfaces: An overview. Constr. Build. Mater. 2015, 84, 201–218. [Google Scholar]
- Janczarek, M.; Klapiszewski, Ł.; Jędrzejczak, P.; Klapiszewska, I.; Ślosarczyk, A.; Jesionowski, T. Progress of functionalized TiO2-based nanomaterials in the construction industry: A comprehensive review. Chem. Eng. J. 2022, 430, 132062. [Google Scholar]
- Dikkar, H.; Kapre, V.; Diwan, A.; Sekar, S.K. Titanium dioxide as a photocatalyst to create self-cleaning concrete. Mater. Today Proc. 2021, 45, 4058–4062. [Google Scholar] [CrossRef]
- Sikora, P.; Horszczaruk, E.; Rucinska, T. The Effect of Nanosilica and Titanium Dioxide on the Mechanical and Self-Cleaning Properties of Waste-Glass Cement Mortar. Procedia Eng. 2015, 108, 146–153. [Google Scholar] [CrossRef] [Green Version]
- Amran, M.; Murali, G.; Khalid, N.H.A.; Fediuk, R.; Ozbakkaloglu, T.; Lee, Y.H.; Haruna, S.; Lee, Y.Y. Slag uses in making an ecofriendly and sustainable concrete: A review. Constr. Build. Mater. 2021, 272, 121942. [Google Scholar] [CrossRef]
- Nikolov, A.; Rostovsky, I.; Nugteren, H. Geopolymer materials based on natural zeolite. Case Stud. Constr. Mater. 2017, 6, 198–205. [Google Scholar] [CrossRef]
- Bernal, S.A.; de Gutiérrez, R.M.; Pedraza, A.L.; Provis, J.L.; Rodriguez, E.D.; Delvasto, S. Effect of binder content on the performance of alkali-activated slag concretes. Cem. Concr. Res. 2011, 41, 1–8. [Google Scholar]
- Li, N.; Shi, C.; Wang, Q.; Zhang, Z.; Ou, Z. Composition design and performance of alkali-activated cements. Mater. Struct. 2017, 50, 178. [Google Scholar] [CrossRef]
- Li, N.; Shi, C.; Zhang, Z.; Zhu, D.; Hwang, H.-J.; Zhu, Y.; Sun, T. A mixture proportioning method for the development of performance-based alkali-activated slag-based concrete. Cem. Concr. Compos. 2018, 93, 163–174. [Google Scholar] [CrossRef]
- Salas, D.A.; Ramirez, A.D.; Ulloa, N.; Baykara, H.; Boero, A.J. Life cycle assessment of geopolymer concrete. Constr. Build. Mater. 2018, 190, 170–177. [Google Scholar] [CrossRef]
- Alhassan, M.; Alkhawaldeh, A.; Betoush, N.; Alkhawaldeh, M.; Huseien, G.F.; Amaireh, L.; Elrefae, A. Life Cycle Assessment of the Sustainability of Alkali-Activated Binders. Biomimetics 2023, 8, 58. [Google Scholar] [CrossRef]
- Klapiszewska, I.; Ławniczak, Ł.; Balicki, S.; Gapiński, B.; Wieczorowski, M.; Wilk, K.A.; Jesionowski, T.; Klapiszewski, Ł.; Ślosarczyk, A. Influence of zinc oxide particles dispersion on the functional and antimicrobial properties of cementitious composites. J. Mater. Res. Technol. 2023, 24, 2239–2264. [Google Scholar] [CrossRef]
- Klapiszewska, I.; Parus, A.; Ławniczak, Ł.; Jesionowski, T.; Klapiszewski, Ł.; Ślosarczyk, A. Production of antibacterial cement composites containing ZnO/lignin and ZnO–SiO2/lignin hybrid admixtures. Cem. Concr. Compos. 2021, 124, 104250. [Google Scholar] [CrossRef]
Sample | “450” | “400” | ||
---|---|---|---|---|
Slump Test (cm) | Density (g/cm3) | Slump Test (cm) | Density (g/cm3) | |
SL | 17.3 ± 0.3 | 2.19 ± 0.02 | 24.3 ± 0.3 | 2.17 ± 0.03 |
SLMk | 20.8 ± 0.3 | 2.18 ± 0.02 | 26.3 ± 0.3 | 2.16 ± 0.02 |
SLFA | 22.8 ± 0.3 | 2.09 ± 0.04 | 27.3 ± 0.3 | 2.12 ± 0.01 |
SLZe | 16.5 ± 0.0 | 2.19 ± 0.03 | 19.3 ± 0.3 | 2.19 ± 0.02 |
T-SL | 23.3 ± 0.3 | 2.26 ± 0.02 | 23.0 ± 0.5 | 2.23 ± 0.00 |
T-SLMk | 19.0 ± 0.0 | 2.14 ± 0.02 | 25.8 ± 0.0 | 2.13 ± 0.00 |
T-SLFA | 19.5 ± 0.5 | 2.17 ± 0.01 | 27.5 ± 0.5 | 2.14 ± 0.02 |
T-SLZe | 16.0 ± 0.0 | 2.20 ± 0.01 | 15.5 ± 0.5 | 2.15 ± 0.02 |
Sample | Components (g) | |||||||
---|---|---|---|---|---|---|---|---|
Slag | Metakaolinite | Fly Ash | Zeolite | Glass Water | Water | Aggregate | TiO2 | |
SL-450 | 450 | - | - | - | 450 | - | 1350 | - |
SLMk-450 | 225 | 225 | - | - | ||||
SLFA-450 | 315 | - | 135 | - | ||||
SLZe-450 | 315 | - | - | 135 | ||||
T-SL-450 | 450 | - | - | - | 9 | |||
T-SLMk-450 | 225 | 225 | - | - | ||||
T-SLFA-450 | 315 | - | 135 | - | ||||
T-SLZe-450 | 315 | - | - | 135 | ||||
SL-400 | 450 | - | - | - | 400 | 50 | 1350 | - |
SLMk-400 | 225 | 225 | - | - | ||||
SLFA-400 | 315 | - | 135 | - | ||||
SLZe-400 | 315 | - | - | 135 | ||||
T-SL-400 | 450 | - | - | - | 9 | |||
T-SLMk-400 | 225 | 225 | - | - | ||||
T-SLFA-400 | 315 | - | 135 | - | ||||
T-SLZe-400 | 315 | - | - | 135 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ślosarczyk, A.; Klapiszewska, I.; Jędrzejczak, P.; Jędrzejczak, W.; Klapiszewski, Ł. Synthesis and Characterization of Eco-Efficient Alkali-Activated Composites with Self-Cleaning Properties for Sustainable Construction. Molecules 2023, 28, 6066. https://doi.org/10.3390/molecules28166066
Ślosarczyk A, Klapiszewska I, Jędrzejczak P, Jędrzejczak W, Klapiszewski Ł. Synthesis and Characterization of Eco-Efficient Alkali-Activated Composites with Self-Cleaning Properties for Sustainable Construction. Molecules. 2023; 28(16):6066. https://doi.org/10.3390/molecules28166066
Chicago/Turabian StyleŚlosarczyk, Agnieszka, Izabela Klapiszewska, Patryk Jędrzejczak, Weronika Jędrzejczak, and Łukasz Klapiszewski. 2023. "Synthesis and Characterization of Eco-Efficient Alkali-Activated Composites with Self-Cleaning Properties for Sustainable Construction" Molecules 28, no. 16: 6066. https://doi.org/10.3390/molecules28166066