Selective Noble Gas Inclusion in Pentagon-Dodecahedral X20-Cages †
Abstract
1. Introduction
2. Computational Details
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kroto, H.W.; Heath, J.R.; O’Brien, S.C.; Curl, R.F.; Smalley, R.E. C60: Buckminsterfullerene. Nature 1985, 318, 162–163. [Google Scholar] [CrossRef]
- Ternansky, R.J.; Balogh, D.W.; Paquette, L.A. Dodecahedrane. J. Am. Chem. Soc. 1982, 104, 4503–4504. [Google Scholar] [CrossRef]
- Paquette, L.A.; Ternansky, R.J.; Balogh, D.W.; Kentgen, G. Total synthesis of dodecahedrane. J. Am. Chem. Soc. 1983, 105, 5446–5450. [Google Scholar] [CrossRef]
- Gallucci, J.C.; Taylor, R.T.; Kobayashi, T.; Weber, J.C.; Krause, J.; Paquette, L.A. X-ray crystallographic analysis of the structural distortions induced by substitution and annulation of the dodecahedrane nucleus. Acta Crystallogr. Sect. C Cryst. Struct. Commun. 1989, 45, 893–898. [Google Scholar] [CrossRef]
- Strout, D.L.J. Why Isn’t the N20 Dodecahedron Ideal for Three-Coordinate Nitrogen? Phys. Chem. A 2005, 109, 1478–1480. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, J.; Cao, Z.; Zhang, Q.J. Spherical double electric layer structure and unprecedented high stability of the P20O20 cage and its anionic endohedral complex Na-@ P20O20. Phys. Chem. B 2004, 108, 4579–4581. [Google Scholar] [CrossRef]
- Baruah, T.; Zope, R.R.; Richardson, S.L.; Pederson, M.R. Electronic structure and rebonding in the onionlike As@Ni12@As20 cluster. Phys. Rev. B 2003, 68, 241404. [Google Scholar] [CrossRef]
- Wang, Y.; Moses-DeBusk, M.; Stevens, L.; Hu, J.; Zavalij, P.; Bowen, K.; Dunlap, B.I.; Glaser, E.R.; Eichhorn, B.J. Sb@Ni12@Sb20−/+ and Sb@Pd12@Sb20n cluster anions, where n = +1,− 1,− 3,− 4: Multi-oxidation-state clusters of interpenetrating platonic solids. J. Am. Chem. Soc. 2017, 139, 619–622. [Google Scholar] [CrossRef]
- Zdetsis, A.D.J. Theoretical predictions of a new family of stable bismuth and other group 15 fullerenes. Phys. Chem. C 2010, 114, 10775–10781. [Google Scholar] [CrossRef]
- Alsbaiee, A.; Smith, B.J.; Xiao, L.; Ling, Y.; Helbling, D.E.; Dichtel, W.R. Rapid removal of organic micropollutants from water by a porous β-cyclodextrin polymer. Nature 2016, 529, 190–194. [Google Scholar] [CrossRef]
- Chaix, A.; Mouchaham, G.; Shkurenko, A.; Hoang, P.; Moosa, B.; Bhatt, P.M.; Adil, K.; Salama, K.N.; Eddaoudi, M.; Khashab, N.M.J. Trianglamine-based supramolecular organic framework with permanent intrinsic porosity and tunable selectivity. J. Am. Chem. Soc. 2018, 140, 14571–14575. [Google Scholar] [CrossRef]
- Yang, W.; Greenaway, A.; Lin, X.; Matsuda, R.; Blake, A.J.; Wilson, C.; Lewis, W.; Hubberstey, P.; Kitagawa, S.; Champness, N.R.; et al. Exceptional thermal stability in a supramolecular organic framework: Porosity and gas storage. J. Am. Chem. Soc. 2010, 132, 14457–14469. [Google Scholar] [CrossRef]
- Yang, J.-M.; Yu, Y.; Rebek, J.J. Selective macrocycle formation in cavitands. J. Am. Chem. Soc. 2021, 143, 2190–2193. [Google Scholar] [CrossRef]
- Li, F.; Yang, H.; Zhuo, Q.; Zhou, D.; Wu, X.; Zhang, P.; Yao, Z.; Sun, L. A cobalt@ cucurbit [5] uril complex as a highly efficient supramolecular catalyst for electrochemical and photoelectrochemical water splitting. Angew. Chem. Int. Ed. Engl. 2021, 60, 1976–1985. [Google Scholar] [CrossRef] [PubMed]
- Hettiarachchi, G.; Nguyen, D.; Wu, J.; Lucas, D.; Ma, D.; Isaacs, L.; Briken, V. Toxicology and drug delivery by cucurbit [n] uril type molecular containers. PLoS ONE 2010, 5, e10514. [Google Scholar] [CrossRef]
- Cross, R.J.; Saunders, M.; Prinzbach, H. Putting helium inside dodecahedrane. Org. Lett. 1999, 1, 1479–1481. [Google Scholar] [CrossRef]
- Saunders, M.; Cross, R.J.; Jiménez-Vázquez, H.A.; Shimshi, R.; Khong, A. Noble gas atoms inside fullerenes. Science 1996, 271, 1693–1697. [Google Scholar] [CrossRef]
- Jimenez-Vazquez, H.A.; Tamariz, J. Binding energy in and equilibrium constant of formation for the dodecahedrane compounds He@C20H20 and Ne@C20H20. J. Phys. Chem. A 2001, 105, 1315–1319. [Google Scholar] [CrossRef]
- Puchta, R.; Walther, D.; März, M.; Begel, S.; van Eldik, R.Z. Host-Guest Complexes of Dodeka (ethylene) octamine: Prediction of Ion Selectivity by Quantum Chemical Calculations IX. Z. Anorg. Allg. Chem. 2019, 645, 701–705. [Google Scholar] [CrossRef]
- Chai, J.-D.; Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys. Chem. Chem. Phys. 2008, 10, 6615–6620. [Google Scholar] [CrossRef]
- Řezáč, J.; Greenwell, C.; Beran, G.J.O. Accurate noncovalent interactions via dispersion-corrected second-order Møller–Plesset perturbation theory. J. Chem. Theory Comput. 2018, 14, 4711–4721. [Google Scholar] [CrossRef]
- Jan Řezáč, J.; Hobza, P. Benchmark calculations of interaction energies in noncovalent complexes and their applications. Chem. Rev. 2016, 116, 5038–5071. [Google Scholar] [CrossRef]
- Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305. [Google Scholar] [CrossRef]
- Eichkorn, K.; Treutler, O.; Ohm, H.; Haser, M.; Ahlrichs, R. Auxiliary basis sets to approximate Coulomb potentials. Chem. Phys. Lett. 1995, 240, 283–290. [Google Scholar] [CrossRef]
- Eichkorn, K.; Weigend, F.; Treutler, O.; Ahlrichs, R. Auxiliary basis sets for main row atoms and transition metals and their use to approximate Coulomb potentials. Theor. Chem. Acc. 1997, 97, 119–124. [Google Scholar] [CrossRef]
- Biswas, B.; Singh, P.C. Effect of hydration on the organo-noble gas molecule HKrCCH: Role of krypton in the stabilization of hydrated HKrCCH complexes. Phys. Chem. Chem. Phys. 2015, 17, 30632–30641. [Google Scholar] [CrossRef]
- Wu, L.-Y.; Li, J.-F.; Zhao, R.-F.; Luo, L.; Wang, Y.-C.; Yin, B. Exploring the structure, bonding and stability of noble gas compounds promoted by superhalogens. A case study on HNgMX 3 (Ng = Ar–Rn, M = Be–Ca, X = F–Br) via combined high-level ab initio and DFT calculations. Phys. Chem. Chem. Phys. 2019, 21, 19104–19114. [Google Scholar] [CrossRef] [PubMed]
- Ćoćić, D.; Puchta, R.; van Eldik, R. Noble guests in organic cages—Encapsulation of noble gases by cryptophane. J. Coord. Chem. 2020, 73, 2602–2613. [Google Scholar] [CrossRef]
- Austin, A.; Petersson, G.; Frisch, M.J.; Dobek, F.J.; Scalmani, G.; Throssell, K. A density functional with spherical atom dispersion terms. J. Chem. Theory Comput. 2012, 8, 4989–5007. [Google Scholar] [CrossRef]
- Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef] [PubMed]
- Stephens, P.J.; Devlin, F.J.; Chabalowski, C.F.; Frisch, M.J. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. J. Phys. Chem. 1994, 98, 11623–11629. [Google Scholar] [CrossRef]
- Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465. [Google Scholar] [CrossRef]
- Weigend, F.; Haser, M.; Patzelt, H.; Anlrichs, R. RI-MP2: Optimized auxiliary basis sets and demonstration of efficiency. Chem. Phys. Lett. 1998, 294, 143–152. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09, Revision C.01; Gaussian, Inc.: Wallingford, CT, USA, 2010.
- Johnson, E.R.; Keinan, S.; Mori− Sánchez, P.; Contreras−García, J.; Cohen, A.J.; Yang, W. Revealing noncovalent interactions. J. Am. Chem. Soc. 2010, 132, 6498–6506. [Google Scholar] [CrossRef]
- Tian, L.; Feiwu, C.J. Multiwfn: A multifunctional wavefunction analyzer. Comput. Chem. 2012, 33, 580–592. [Google Scholar]
- Puchta, R.; Cocic, D.; Michel, M.; van Eldik, R. Host-guest complexes of the Beer-Can-cryptand: Prediction of ion selectivity by quantum chemical calculations XI. J. Coord. Chem. 2019, 72, 2106–2114. [Google Scholar] [CrossRef]
- Puchta, R.; Begel, S.; van Eldik, R. Prediction of ion selectivity by quantum chemical calculations X: A recent (personal) review. Adv. Inorg. Chem. 2019, 73, 445–505. [Google Scholar]
- Aylward, G.H.; Findlay, T.J.V. Datensammlung Chemie in SI-Einheiten; Wiley-VCH: Weinheim, Germany, 1986. [Google Scholar]
- Dubost, E.; Dognon, J.-P.; Rousseau, B.; Milanole, G.; Dugave, C.; Boulard, Y.; Leonce, E.; Boutin, C.; Berthault, P. Understanding a Host–Guest Model System through 129Xe NMR Spectroscopic Experiments and Theoretical Studies. Angew. Chem. Int. Ed. Engl. 2014, 53, 9837–9840. [Google Scholar] [CrossRef] [PubMed]
Host/Ecom (BSSE) a [kcal/mol] | ||||||
---|---|---|---|---|---|---|
Noble Gas | R [Å] | C | Si | Ge | Sn | Pb |
He | 0.31 | 36.94 (0.54) | 0.72 (0.37) | −0.01 (0.53) | −1.09 (0.29) | −1.31 (0.27) |
Ne | 0.38 | 103.50 (1.33) | 3.31 (0.93) | −0.29 (1.24) | −3.86 (0.72) | −4.34 (0.65) |
Ar | 0.71 | 311.71 (1.59) | 14.86 (1.07) | 7.64 (1.59) | −5.63 (0.66) | −7.69 (0.59) |
Kr | 0.88 | 437.35 (1.71) | 24.34 (1.14) | 14.94 (1.83) | −6.41 (0.63) | −9.68 (0.51) |
Xe | 1.08 | 623.12 (0.58) | 42.88 (0.62) | 32.43 (1.45) | −2.20 (0.27) | −8.65 (0.18) |
Rn | 1.20 | 709.69 (0.70) | 49.80 (0.57) | 39.28 (1.49) | −2.34 (0.26) | −10.55 (0.17) |
Host/Ecom (BSSE) a [kcal/mol] | ||||||
---|---|---|---|---|---|---|
Noble Gas | R [Å] | N | P | As | Sb | Bi |
He | 0.31 | 57.18 (1.47) | 5.62 (0.39) | 0.66 (0.41) | −0.57 (0.27) | −0.73 (0.26) |
Ne | 0.38 | 165.05 (2.47) | 12.70 (0.94) | 3.34 (1.32) | −1.64 (0.66) | −2.78 (0.63) |
Ar | 0.71 | 474.46 (2.55) | 46.16 (1.25) | 17.13 (2.14) | −0.76 (0.74) | −5.24 (0.69) |
Kr | 0.88 | 659.58 (2.77) | 72.46 (1.47) | 30.57 (2.86) | 1.36 (0.83) | −6.13 (0.69) |
Xe | 1.08 | 907.21 (1.80) | 120.56 (1.06) | 59.43 (2.78) | 10.22 (0.71) | −2.50 (0.60) |
Rn | 1.20 | 989.41 (1.62) | 143.90 (1.05) | 73.03 (2.81) | 12.90 (0.70) | −2.72 (0.61) |
Host/Ecom [kcal/mol] | |||||
---|---|---|---|---|---|
Noble Gas | R [Å] | Pb20H20 a | Bi20 a | Pb20H20 b | Bi20 b |
He | 0.31 | −1.62 | −1.25 | −1.09 | −0.78 |
Ne | 0.38 | −4.51 | −3.51 | −3.66 | −3.06 |
Ar | 0.71 | −12.34 | −10.28 | −10.77 | −9.01 |
Kr | 0.88 | −16.14 | −13.45 | −13.65 | −11.08 |
Xe | 1.08 | −20.32 | −16.46 | −16.42 | −11.86 |
Rn | 1.20 | −21.52 | −17.06 | −16.93 | −11.35 |
X20H20 Cage | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Noble Gas | C | Si | Ge | Sn | Pb | ||||||
R [Å] | d [Å] | b [Å] | d [Å] | b [Å] | d [Å] | b [Å] | d [Å] | b [Å] | d [Å] | b [Å] | |
He | 0.31 | 1.56 | 2.18 | 2.37 | 3.32 | 2.45 | 3.44 | 2.81 | 3.93 | 2.93 | 4.11 |
Ne | 0.38 | 1.57 | 2.20 | 2.37 | 3.32 | 2.45 | 3.44 | 2.80 | 3.93 | 2.93 | 4.11 |
Ar | 0.71 | 1.61 | 2.26 | 2.38 | 3.33 | 2.46 | 3.45 | 2.81 | 3.94 | 2.94 | 4.11 |
Kr | 0.88 | 1.63 | 2.29 | 2.39 | 3.34 | 2.47 | 3.46 | 2.81 | 3.94 | 2.94 | 4.12 |
Xe | 1.08 | 1.66 | 2.33 | 2.40 | 3.36 | 2.48 | 3.47 | 2.82 | 3.95 | 2.95 | 4.13 |
Rn | 1.20 | 1.68 | 2.35 | 2.40 | 3.36 | 2.49 | 3.48 | 2.83 | 3.96 | 2.95 | 4.14 |
Empty host | 1.55 | 2.37 | 2.45 | 2.81 | 2.93 |
X20 Cage | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Noble Gas | N | P | As | Sb | Bi | ||||||
R [Å] | d [Å] | b [Å] | d [Å] | b [Å] | d [Å] | b [Å] | d [Å] | b [Å] | d [Å] | b [Å] | |
He | 0.31 | 1.47 | 2.07 | 2.26 | 3.16 | 2.46 | 3.44 | 2.84 | 3.98 | 2.99 | 4.18 |
Ne | 0.38 | 1.50 | 2.11 | 2.26 | 3.17 | 2.46 | 3.45 | 2.84 | 3.98 | 2.99 | 4.18 |
Ar | 0.71 | 1.58 | 2.21 | 2.28 | 3.19 | 2.47 | 3.46 | 2.84 | 3.99 | 2.98 | 4.18 |
Kr | 0.88 | 1.62 | 2.27 | 2.29 | 3.21 | 2.48 | 3.48 | 2.85 | 3.99 | 2.99 | 4.19 |
Xe | 1.08 | 1.66 | 2.33 | 2.31 | 3.23 | 2.49 | 3.50 | 2.86 | 4.01 | 2.99 | 4.20 |
Rn | 1.20 | 1.68 | 2.35 | 2.32 | 3.25 | 2.50 | 3.51 | 2.86 | 4.01 | 3.00 | 4.21 |
Empty host | 1.47 | 2.25 | 2.46 | 2.84 | 2.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weinert, C.; Ćoćić, D.; Puchta, R.; van Eldik, R. Selective Noble Gas Inclusion in Pentagon-Dodecahedral X20-Cages. Molecules 2023, 28, 5676. https://doi.org/10.3390/molecules28155676
Weinert C, Ćoćić D, Puchta R, van Eldik R. Selective Noble Gas Inclusion in Pentagon-Dodecahedral X20-Cages. Molecules. 2023; 28(15):5676. https://doi.org/10.3390/molecules28155676
Chicago/Turabian StyleWeinert, Christopher, Dušan Ćoćić, Ralph Puchta, and Rudi van Eldik. 2023. "Selective Noble Gas Inclusion in Pentagon-Dodecahedral X20-Cages" Molecules 28, no. 15: 5676. https://doi.org/10.3390/molecules28155676
APA StyleWeinert, C., Ćoćić, D., Puchta, R., & van Eldik, R. (2023). Selective Noble Gas Inclusion in Pentagon-Dodecahedral X20-Cages. Molecules, 28(15), 5676. https://doi.org/10.3390/molecules28155676