Validation of an Eco-Friendly Automated Method for the Determination of Glucose and Fructose in Wines
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Parameters and Measurement Ranges
3.2. Samples
3.3. Chemicals
3.4. Enzymatic Method
3.4.1. Operating Modes
Reference Method OIV-MA-AS311-02 (Manual Method)
Automated Method OIV-MA-AS311-02
3.5. Method Validation
- The range of acceptability = C ± (0.056 × C)
- C = nominal concentration of the standard
- (0.056 × C) = method repeatability.
3.6. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Barbosa, C.; Ramalhosa, E.; Vasconcelos, I.; Reis, M.; Mendes-Ferreira, A. Machine Learning Techniques Disclose the Combined Effect of Fermentation Conditions on Yeast Mixed-Culture Dynamics and Wine Quality. Microorganisms 2022, 10, 107. [Google Scholar] [CrossRef]
- Commission Regulation (EC) No 607/2009 Laying down certain detailed rules for the implementation of Council Regulation (EC) No 479/2008 as regards protected designations of origin and geographical indications, traditional terms, labelling and presentation of certain wine sector products. J. Eur. Union 2009, 22, 60–139.
- Vyshkvarkova, E.; Rybalko, E.; Marchukova, O.; Baranova, N. Assessment of the Current and Projected Conditions of Water Availability in the Sevastopol Region for Grape Growing. Agronomy 2021, 11, 1665. [Google Scholar] [CrossRef]
- Ubeda, C.; Hornedo-Ortega, R.; Cerezo, A.B.; Garcia-Parrilla, M.C.; Troncoso, A.M. Chemical hazards in grapes and wine, climate Change and challenges to face. Food Chem. 2020, 314, 126222. [Google Scholar] [CrossRef]
- Beech, N.; Hewer, M.J. A Climate Change Impact Assessment (CCIA) of Key Indicators and Critical Thresholds for Viticulture and Oenology in the Fraser Valley, British Columbia, Canada. Weather Clim. Soc. 2021, 13, 687–705. [Google Scholar] [CrossRef]
- Neethling, E.; Petitjean, T.; Quénol, H.; Barbeau, G. Assessing local climate vulnerability and winegrowers’ adaptive processes in the context of climate change. Mitig. Adapt. Strateg. Glob. Chang. 2017, 22, 777–803. [Google Scholar] [CrossRef]
- Romano, P.; Braschi, G.; Siesto, G.; Patrignani, F.; Lanciotti, R. Role of Yeasts on the Sensory Component of Wines. Foods 2022, 11, 1921. [Google Scholar] [CrossRef] [PubMed]
- Jackson, R.S. Wine Science: Principles and Applications, 3rd ed.; Academic Press: Waltham, MA, USA, 2008; p. 751. [Google Scholar]
- Sereni, A.; Osborne, J.; Tomasino, E. Exploring Retro-Nasal Aroma’s Influence on Mouthfeel Perception of Chardonnay Wines. Beverages 2016, 2, 7. [Google Scholar] [CrossRef] [Green Version]
- Portaro, L.; Maioli, F.; Canuti, V.; Picchi, M.; Lencioni, L.; Mannazzu, I.; Domizio, P. Schizosaccharomyces japonicus/Saccharomyces cerevisiae mixed starter cultures: New perspectives for the improvement of Sangiovese aroma, taste, and color stability. LWT 2022, 156, 113009. [Google Scholar] [CrossRef]
- Straathof, A.J. Modelling of end-product inhibition in fermentation. Biochem. Eng. J. 2023, 191, 108796. [Google Scholar] [CrossRef]
- Jakabová, S.; Fikselová, M.; Mendelová, A.; Ševčík, M.; Jakab, I.; Aláčová, Z.; Kolačkovská, J.; Ivanova-Petropulos, V. Chemical Composition of White Wines Produced from Different Grape Varieties and Wine Regions in Slovakia. Appl. Sci. 2021, 11, 11059. [Google Scholar] [CrossRef]
- Tronchoni, J.; Gamero, A.; Arroyo-López, F.N.; Barrio, E.; Querol, A. Differences in the glucose and fructose consumption profiles in diverse Saccharomyces wine species and their hybrids during grape juice fermentation. Int. J. Food Microbiol. 2009, 134, 237–243. [Google Scholar] [CrossRef] [Green Version]
- Official Methods of Analysis of AOAC International, 21st ed.; Latimer, G.W.; AOAC International (Eds.) AOAC International: Gaithersburg, MD, USA, 2019; Volume 3. [Google Scholar]
- Parpinello, G.P.; Rombolà, A.D.; Simoni, M.; Versari, A. Chemical and sensory characterisation of Sangiovese red wines: Comparison between biodynamic and organic management. Food Chem. 2015, 167, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Dini, I.; Seccia, S.; Senatore, A.; Coppola, D.; Morelli, E. Development and Validation of an Analytical Method for Total Polyphenols Quantification in Extra Virgin Olive Oils. Food Anal. Methods 2019, 13, 457–464. [Google Scholar] [CrossRef]
- Dini, I.; Di Lorenzo, R.; Senatore, A.; Coppola, D.; Laneri, S. Comparison between Mid-Infrared (ATR-FTIR) Spectroscopy and Official Analysis Methods for Determination of the Concentrations of Alcohol, SO2, and Total Acids in Wine. Separations 2021, 8, 191. [Google Scholar] [CrossRef]
- Cosenza, G.; Pauciullo, A.; Mancusi, A.; Nicodemo, D.; Di Palo, R.; Zicarelli, L.; Di Berardino, D.; Ramunno, L. Mediterranean river buffalooxytocin-neurophysin I (OXT) gene: Structure, promoter analysis and allele detection. Ital. J. Anim. Sci. 2007, 6, 303–306. [Google Scholar] [CrossRef]
- International Code of Oenological Practices. Available online: https://www.oiv.int/public/medias/3570/e-code-ii-358.pdf (accessed on 10 March 2022).
- Montone, A.M.I.; Capuano, F.; Mancusi, A.; Di Maro, O.; Peruzy, M.F.; Proroga, Y.T.R.; Cristiano, D. Exposure to Bacillus cereus in Water Buffalo Mozzarella Cheese. Foods 2020, 9, 1899. [Google Scholar] [CrossRef]
- Dini, I.; Senatore, A.; Coppola, D.; Mancusi, A. Validation of a rapid test to dose SO2 in vinegar. AIMS Agric. Food. 2023, 8, 1–24. [Google Scholar] [CrossRef]
- Ghernaout, D.; Aichouni, M.; Alghamdi, A. Overlapping ISO/IEC 17025: 2017 into big data: A review and perspectives. Inter. J.Sci. Qual. Anal. 2018, 4, 83–92. [Google Scholar]
- Dini, I.; Di Lorenzo, R.; Senatore, A.; Coppola, D.; Laneri, S. Validation of Rapid Enzymatic Quantification of Acetic Acid in Vinegar on Automated Spectrophotometric System. Foods 2020, 9, 761. [Google Scholar] [CrossRef]
- ISO/IEC 17025; General Requirements for the Competence of Testing and Calibration Laboratories. International Standard Organization (ISO): Geneva, Switzerland, 2005.
- Misra, S.; Huddy, J.; Hanna, G.; Oliver, N. Validation and regulation of point of care devices for medical applications. In Medical Biosensors for Point of Care (POC) Applications; Elsevier: Amsterdam, The Netherlands, 2017; pp. 27–44. [Google Scholar]
- Best, H.; Wolf, C.; Meuleman, B.; Loosveldt, G.; Emonds, V. Regression Analysis: Assumptions and Diagnostics; SAGE: Newcastle upon Tyne, UK, 2014; pp. 83–110. [Google Scholar]
- Coelho, E.M.; da Silva Padilha, C.V.; Miskinis, G.A.; de Sá, A.G.B.; Pereira, G.E.; de Azevêdo, L.C.; dos Santos Lima, M. Simultaneous analysis of sugars and organic acids in wine and grape juices by HPLC: Method validation and characterization of products from northeast Brazil. J. Food Compos. Anal. 2018, 66, 160–167. [Google Scholar] [CrossRef] [Green Version]
DRY RED WINE | ||
---|---|---|
Automated method Abs | Manual method Abs | |
2.64 | 2.447 | |
2.655 | 2.48 | |
2.621 | 2.44 | |
2.624 | 2.435 | |
2.643 | 2.402 | |
2.652 | 2.355 | |
2.622 | 2.434 | |
2.579 | 2.373 | |
2.603 | 2.398 | |
2.587 | 2.405 | |
Automated method | Manual method | |
Average (xm) | 2.623 | 2.417 |
Standard deviation | 0.026 | 0.037 |
Repeatability | 0.105 | |
Degrees of freedom | 18 | |
Method repeatability | 0.135 | |
r/r(M) | 0.779 | |
Method reproducibility | 0.304 | |
Uncertainty | 0.429 | |
T experimental | 13.534 | |
P | 0.000 | |
T critical | 2.100922 | |
DRY WHITE WINE | ||
Automated method Abs | Manual method Abs | |
1.678 | 1.679 | |
1.658 | 1.66 | |
1.651 | 1.661 | |
1.652 | 1.639 | |
1.65 | 1.725 | |
1.637 | 1.623 | |
1.64 | 1.726 | |
1.636 | 1.745 | |
1.663 | 1.756 | |
1.64 | 1.738 | |
Automated method | Manual method | |
Average (xm) | 1.651 | 1.695 |
Standard deviation | 0.013 | 0.048 |
Repeatability | 0.136 | |
Degrees of freedom | 18 | |
Method repeatability | 0.095 | |
r/r(M) | 1.435 | |
Method reproducibility | 0.249 | |
Uncertainty | 0.352 | |
T experimental | 2.684 | |
P | 0.000 | |
T critical | 2.10092204 | |
MODERATELY SWEET WINE | ||
Automated method Abs | Manual method Abs | |
7.08 | 7.187 | |
7.051 | 7.256 | |
6.986 | 7.235 | |
6.95 | 7.137 | |
6.919 | 7.29 | |
6.955 | 7.101 | |
6.959 | 7.317 | |
7.053 | 7.243 | |
6.995 | 7.378 | |
7.012 | 7.346 | |
Automated method | Manual method | |
Average (xm) | 6.996 | 7.249 |
Standard deviation | 0.052 | 0.089 |
Repeatability | 0.251 | |
Degrees of freedom | 18 | |
Method repeatability | 0.406 | |
r/r(M) | 0.619 | |
Method reproducibility | 0.671 | |
Uncertainty | 0.949 | |
T experimental | 7.360 | |
P | 0.000 | |
T critical | 2.100922 | |
SWEET WINE | ||
Automated method Abs | Manual method Abs | |
31.767 | 32.541 | |
31.09 | 33.125 | |
30.262 | 32.823 | |
31.793 | 32.979 | |
31.325 | 32.751 | |
31.583 | 31.077 | |
31.124 | 34.02 | |
31.197 | 31.683 | |
31.582 | 31.463 | |
31.912 | 32.483 | |
Automated method | Manual method | |
Average (xm) | 31.364 | 32.495 |
Standard deviation (S) | 0.485 | 0.874 |
Repeatability | 2.471 | |
Degrees of freedom | 18 | |
Method repeatability | 1.820 | |
r/r(M) | 1.358 | |
Method reproducibility | 2.590 | |
Uncertainty | 3.662 | |
T experimental | 3.396 | |
P | 0.003 | |
T critical | 2.100922 |
Sample | Concentration g/L | T-Test Result | Uncertainty | ||
---|---|---|---|---|---|
Automated Method | Manual Method | ||||
1 | red wine | <5 g/L | Significant difference | 0.052 | 0.074 |
2 | white wine | <5 g/L | Significant difference | 0.026 | 0.096 |
3 | moderately sweet wine | 5–12 g/L | Significant difference | 0.104 | 0.356 |
4 | sweet wine | >5 g/L | Significant difference | 0.97 | 1.748 |
Event | Possible Causes | Decision To Be Taken |
---|---|---|
A point is out of control limits. | The inexperience of the operator’s ex-pired check or incorrect conservation of the same. | Repeat the analysis; if the point is within the limit of control continues, otherwise stop, locate, and resolve the cause. |
Seven consecutive points are above or below the central line | Defective kit control or incorrect con-servation of the same | If the eighth point falls on the side opposite to the line central continue, otherwise stop, locate, and resolve the cause. |
Seven consecutive points are in ascending order (derive positive) | Obsolescence of reagents, progressive evaporation of solvent from the standard solution | If the eighth point changes, the order continues; otherwise, stop, locate, and resolve the cause. |
Seven consecutive points are in descending order (derives negative) | Solution obsolescence, standards or reagents | If the eighth point changes, the order continues; otherwise, stop, locate, and resolve the cause. |
METHOD | |
Sample volume (µL) | 3 |
Reactive 1 | 250 |
Reactive2 | 50 |
Wash | 1.2 |
Abs (nm) | 340 |
Reading 1 | 72 s |
Reading 2 | 600 s |
Reactive 2 | 96 s |
Temperature (°C) | 37 |
CALIBRATION | |
Calibration | Multiple calibrations |
Calibrate replicates | 3 |
Blank replicates | 3 |
OPTIONS | |
Blank limit (Abs; nm) | 0.300 |
Linearity limit (g/L) | 8 |
Concentration Range (g/L) | Dilution Factor |
---|---|
0–8.00 | 0 |
8.00–16.00 | 2 |
16.00–32.00 | 4 |
32.00–88.00 | 11 |
88.00–160.00 | 20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dini, I.; Tuccillo, D.; Coppola, D.; De Biasi, M.-G.; Morelli, E.; Mancusi, A. Validation of an Eco-Friendly Automated Method for the Determination of Glucose and Fructose in Wines. Molecules 2023, 28, 5585. https://doi.org/10.3390/molecules28145585
Dini I, Tuccillo D, Coppola D, De Biasi M-G, Morelli E, Mancusi A. Validation of an Eco-Friendly Automated Method for the Determination of Glucose and Fructose in Wines. Molecules. 2023; 28(14):5585. https://doi.org/10.3390/molecules28145585
Chicago/Turabian StyleDini, Irene, Dario Tuccillo, Daniele Coppola, Margherita-Gabriella De Biasi, Elena Morelli, and Andrea Mancusi. 2023. "Validation of an Eco-Friendly Automated Method for the Determination of Glucose and Fructose in Wines" Molecules 28, no. 14: 5585. https://doi.org/10.3390/molecules28145585
APA StyleDini, I., Tuccillo, D., Coppola, D., De Biasi, M. -G., Morelli, E., & Mancusi, A. (2023). Validation of an Eco-Friendly Automated Method for the Determination of Glucose and Fructose in Wines. Molecules, 28(14), 5585. https://doi.org/10.3390/molecules28145585