Chemical Analysis of Gunpowder and Gunshot Residues
Abstract
:1. Introduction
2. Main Components of Gunpowder and Gunshot Residue
2.1. Inorganic Compounds
2.2. Organic Compounds
2.3. Potential Sources of SG and GSR Compounds
3. Analysis of Gunpowder and Gunshot Residue
3.1. Morphological Analysis
3.2. Chemical Analysis
3.2.1. Sample Preparation
Solvent Extraction
Solid-Phase Microextraction (SPME)
Headspace Sorptive Extraction (HSSE)
3.2.2. Spectroscopy
Technique | Objectives | Target Analytes | Matrix | Conclusions | Ref. |
---|---|---|---|---|---|
Optical and scanning electron microscopy; X-ray microanalysis; infrared spectroscopy | Evaluation of the GSR distribution for close-range shots with a silenced gun | GSR | Cotton cloth and fresh porcine skin | Attaching a silencer to the studied weapon significantly modifies the distribution and amount of GSR on the tested surfaces | [122] |
ATR-FTIR and AFM | Discrimination between different manufacturers by analysing GSR particles | GSR | Polyethylene and aluminium foil sheets | Identifying specific compounds using these techniques was not possible, but different bands on FTIR spectra may help to identify the manufacturer | [43] |
FTIR microscopy | Detection and estimation of NG and other GSR on suspects’ hands and clothes | OGSR (mainly NG) | Cloth | A promising method to estimate the shooting distance | [45] |
Raman | Identification of OGSR using Raman (first study) | MC, EC, DNT, and DPA and its nitration products, | Unburnt gunpowder and GSR | Raman was a helpful screening tool for GSR, and to distinguish it from other particles; establish a correlation between intact and burnt gunpowder | [23] |
Raman and FTIR | Comparison of profiles obtained from both techniques. Discriminate and identify different gunpowder | OGSR | Gunpowder solutions (in methyl ethyl ketone) | Combining FTIR and Raman spectroscopy with discriminant analysis proved to be a valuable tool for the classification and the possible identification of unknown samples of gunpowder | [111] |
Raman and FTIR | Development of a new analytical and statistical approach to GSR analysis | OGSR | - | Both spectroscopic techniques provide complementary information | [74] |
Microscopic ATR-FTIR spectroscopy imaging | Automated detection of IGSR and OGSR particles using automatic visual scanning | GSR | Cloth (followed by tape lifting) | New automatic method to detect macro and microscopic particles and determine the “vibrational fingerprints” | [124] |
Raman microspectroscopic | Chemical mapping and automated GSR particles detection | GSR | Cloth (followed by tape lifting) | Development of a procedure which is not dependent on heavier metals in GSR | [75] |
ATR-FTIR | Establish a link between evidence and suspects | GSR | - | High potential for GSR analysis and linking specific suspects with certain ammunition calibres | [121] |
Raman | Spectroscopically characterise and statistically explore differences in the Raman spectra of GSR of different calibre weapons | GSR | Cloth | High correlation and identification capacity of ammunition via the obtained spectra | [76] |
Surface-enhanced Raman scattering (SERS) | Development of a new analytical procedure for fast and sensitive analysis of GSR | GSR | Gunpowder and GSR solutions | Detection of several compounds, mainly EC, DPA, and its derivates | [99] |
Micro-Raman spectroscopy; SLA-ICPMS | Detection and identification of GSR compounds (IGSR and OGSR) | OGSR (micro-Raman); IGSR (SLA-ICPMS) | Tape-lift (modified) | Capable of detecting GSR from shooters’ hands | [120] |
Raman and LIBS | Differentiate OGSR samples from ammunition types of the same manufacturer | OGSR | Aid in the identification and characterisation of GSR components accurately | [125] |
3.2.3. Chromatography
Liquid Chromatography
Technique | Objectives | Target Analytes | Matrix | Conclusions | Ref. |
---|---|---|---|---|---|
LC-MS/MS; SEM-EDX | Separation and detection of both IGSR and OGSR in the same sample | GSR | GSR solution (in methanol and acetonitrile) | Development and validation of the methodology | [37] |
UPLC/MS/MS | Separation and detection of OGSR compounds | Organic components from SG | Gunpowder solutions (in methylene chloride) | Separation and identification of 21 OGSR compounds. According to the authors, this procedure allows the differentiation between brands and lots by analysing the compositional differences | [28] |
UHPLC-UV | Separation and identification of 32 target OGSR compounds, with the aid of Artificial Neural Networks (ANN) | 32 OGSR target compounds | Gunpowder solutions (in dichloromethane); GSR solutions (in MTBE, after hand swab) | Separation and identification of 32 OGSR, faster and with lower LOD, thanks to ANN optimisation | [54] |
HPLC | Prediction of the age of gunpowder, with the aid of statistical models | Derivates of DPA, mainly N-nitroso-DPA | Gunpowder solutions (in methanol) | Successfully determined the age of gunpowder samples using multiple linear regression with a square root transformation model | [22] |
LC-MS/MS | Development of methodologies for the analysis of OGSR to determine their application in chemical ballistic | OGSR | GSR solutions (in isopropyl/water, after hand swab) | New protocols for sample collection and preparation and analysis procedure for OGSR | [57] |
UHPLC-MS | Comparison of the efficiency of various sampling materials in collecting OGSR | OGSR | GSR solutions (in methanol, after hand swab); Gunpowder solutions (in methanol) | Modern instrumentation allied with efficient sample preparation makes it easier to detect and identify OGSR from discharged material, even a few hours after discharge | [56] |
Gas Chromatography
Technique | Objectives | Target Analytes | Matrix | Conclusions | Ref. |
---|---|---|---|---|---|
SPME/GC-FID | Estimate the time since discharge and environmental effects on the estimation based on the degradation of organic compounds on GSR | Naphthalene; 2,6-DNT; 2,4-DNT; DPA; DBP | Spent cartridges | Successfully detected the organic compounds in the cartridge up to 14 days after firing; reliable determination of time since discharged based on DPA, DBP and naphthalene | [132] |
SPME/GC-MS | Determination of the time since discharge of spent cartridges | OGSR | Spent cartridges | Detection of 32 OSGR in spent cartridges; DPA and 1,2-dicyanobenzes decrease the slowest over 32 h | [102] |
SPME/GC-MS; SEM-EDX | Obtain chemical profiles of single GSR samples collected from the shooter’s hands | OGSR (GC) and IGSR (SEM-EDX) | Unburnt gunpowder and GSR | Successfully determined the chemical profile of samples, using the two techniques combined | [31] |
SPME/GC-FID | Optimisation of an SPME procedure and determination of the viability of multiple extractions | OGSR | Spent cartridges | Spent cartridges can be analysed repeatedly and non-destructively (if appropriately sealed) | [107] |
SPEM/GC-MS | Determination of the most suitable SPME fibre for extracting OGSR compounds | DPA; 4-NDPA; EC; NG; DBP | Unburnt gunpowder | By comparing the average peak areas of the compounds, the most suitable fibre type was determined to be the 65 µm PDMS/DVB | [26] |
SPME/GC-NPD | Development of an analytical method to analyse a single particle of partially burnt gunpowder | OGSR | A single particle of partially burnt gunpowder; unburnt gunpowder | Successfully detected organic compounds in the sample | [27] |
HSSE/GC-MS | Evaluate the composition and variability of volatile compounds in OGSR in handgun ammunition | OGSR | GSR (after HSSE extraction) | Identification of 166 compounds, most being additives of gunpowder | [61] |
HSSE/GC-MS | Study of the ageing of several OGSR volatiles compounds | OGSR | Spent cartridges | Detection of 51 OGSR compounds, which presented noticeable ageing profiles | [29] |
3.3. Emerging Applications
Statistical Method | Experimental Procedure | Target Analytes | Conclusions | Ref. |
---|---|---|---|---|
PCA and HCA | LC-TOF/MS | SG and OSGR | Discrimination of SG based on the chemical composition by matching SG’s organic compounds to OGSR | [152] |
Spearman’s correlation test | HPLC and micellar electrokinetic | SG | The comparison of both techniques showed slightly different results and complementary potential | [127] |
Database and analysis of the statistical impact | Raman and FTIR | GSR | Creation of a database with combined FTIR and Raman spectra; determination of the different impacts that these techniques had on a chemometric model | [74] |
PLS and SVM | NIR Raman | GSR | Successful discrimination and identification of GSR particles | [76] |
LR | SPME/GC-MS | GSR | Creation of a logical approach to determining the time since discharge, with a successful application to a hypothetical scenario | [33] |
Pairwise log ratio normalisation combined with RF and PLS regression | HSSE/GC-MS | GSR | Estimation of time since shooting on spent cartridges | [109] |
LR | GSR | Evaluation of judgment and conclusions of forensic experts in identification ballistics, determining their results to have high sensitivity and specificity | [7] | |
PCA and PLS-DA | ATR-FTIR | GSR | Successful discrimination of ammunition calibre | [121] |
ANN | UHPLC-UV | OGSR | Prediction of retention time of 32 OGSR compounds during method optimisation | [54] |
ANN | IMS | GSR | Differentiation of particles collected by hand swabs, discriminating between shooters and non-shooters | [148] |
4. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- UNODC. Global Firearms Programme. Available online: https://www.unodc.org/unodc/en/firearms-protocol/index.html (accessed on 20 February 2023).
- Krüsselmann, K.; Aarten, P.; Liem, M. Firearms and Violence in Europe—A Systematic Review. PLoS ONE 2021, 16, e0248955. [Google Scholar] [CrossRef] [PubMed]
- European Parliament; Council of the European Union Directive (EU). 2021/555 of the European Parliament and of the Council of 24 March 2021 on Control of the Acquisition and Possession of Weapons (Codification); L 115/1; EU: Maastricht, The Netherlands, 2021; pp. 1–25. [Google Scholar]
- Institute for Health Metrics and Evaluation (IHME). GBD Results. Available online: https://vizhub.healthdata.org/gbd-results/ (accessed on 6 April 2022).
- Heard, B.J. Handbook of Firearms and Ballistics: Examining and Interpreting Forensic Evidence, 2nd ed.; John Wiley & Sons, Ltd.: Chichester, UK, 2008; ISBN 9780470694602. [Google Scholar]
- Smyth Wallace, J. Chemical Analysis of Firearms, Ammunition, and Gunshot Residue; Houck, M., Ed.; CRC Press: Boca Raton, FL, USA, 2008; ISBN 978-1-4200-6966-2. [Google Scholar]
- Mattijssen, E.J.A.T.; Witteman, C.L.M.; Berger, C.E.H.; Brand, N.W.; Stoel, R.D. Validity and Reliability of Forensic Firearm Examiners. Forensic Sci. Int. 2020, 307, 110112. [Google Scholar] [CrossRef] [PubMed]
- Carlucci, D.E.; Jacobson, S.S.; CRC Press. Ballistics: Theory and Design of Guns and Ammunition [Electronic Resource]; CRC Press: Boca Raton, FL, USA, 2008; ISBN 1420066188/9781420066180. [Google Scholar]
- Gallidabino, M.D.; Weyermann, C. Time since Last Discharge of Firearms and Spent Ammunition Elements: State of the Art and Perspectives. Forensic Sci. Int. 2020, 311, 110290. [Google Scholar] [CrossRef] [PubMed]
- Lehman, D.C. Introduction to Forensic Science. Clin. Lab. Sci. 2012, 25, 107–108. [Google Scholar] [CrossRef] [PubMed]
- Blakey, L.S.; Sharples, G.P.; Chana, K.; Birkett, J.W. Fate and Behavior of Gunshot Residue—A Review. J. Forensic Sci. 2018, 63, 9–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maitre, M.; Kirkbride, K.P.; Horder, M.; Roux, C.; Beavis, A. Current Perspectives in the Interpretation of Gunshot Residues in Forensic Science: A Review. Forensic Sci. Int. 2017, 270, 1–11. [Google Scholar] [CrossRef]
- Jain, B.; Yadav, P. Vibrational Spectroscopy and Chemometrics in GSR: Review and Current Trend. Egypt. J. Forensic Sci. 2021, 11, 15. [Google Scholar] [CrossRef]
- Shrivastava, P.; Jain, V.K.; Nagpal, S. Gunshot Residue Detection Technologies—A Review. Egypt. J. Forensic Sci. 2021, 11, 11. [Google Scholar] [CrossRef]
- Goudsmits, E.; Sharples, G.P.; Birkett, J.W. Recent Trends in Organic Gunshot Residue Analysis. TrAC—Trends Anal. Chem. 2015, 74, 46–57. [Google Scholar] [CrossRef]
- Dalby, O.; Butler, D.; Birkett, J.W. Analysis of Gunshot Residue and Associated Materials—A Review. J. Forensic Sci. 2010, 55, 924–943. [Google Scholar] [CrossRef]
- Zeichner, A. Recent Developments in Methods of Chemical Analysis in Investigations of Firearm-Related Events. Anal. Bioanal. Chem. 2003, 376, 1178–1191. [Google Scholar] [CrossRef] [PubMed]
- Brożek-Mucha, Z. Trends in Analysis of Gunshot Residue for Forensic Purposes. Anal. Bioanal. Chem. 2017, 409, 5803–5811. [Google Scholar] [CrossRef] [PubMed]
- Chang, K.H.; Jayaprakash, P.T.; Yew, C.H.; Abdullah, A.F.L. Gunshot Residue Analysis and Its Evidential Values: A Review. Aust. J. Forensic Sci. 2013, 45, 3–23. [Google Scholar] [CrossRef]
- Saverio Romolo, F.; Margot, P. Identification of Gunshot Residue: A Critical Review. Forensic Sci. Int. 2001, 119, 195–211. [Google Scholar] [CrossRef] [PubMed]
- Khandasammy, S.R.; Bartlett, N.R.; Halámková, L.; Lednev, I.K. Hierarchical Modelling of Raman Spectroscopic Data Demonstrates the Potential for Manufacturer and Caliber Differentiation of Smokeless Powders. Chemosensors 2023, 11, 11. [Google Scholar] [CrossRef]
- López-Ĺopez, M.; Bravo, J.C.; Garciá-Ruiz, C.; Torre, M. Diphenylamine and Derivatives as Predictors of Gunpowder Age by Means of HPLC and Statistical Models. Talanta 2013, 103, 214–220. [Google Scholar] [CrossRef]
- López-López, M.; Delgado, J.J.; García-Ruiz, C. Ammunition Identification by Means of the Organic Analysis of Gunshot Residues Using Raman Spectroscopy. Anal. Chem. 2012, 84, 3581–3585. [Google Scholar] [CrossRef]
- Scherperel, G.; Reid, G.E.; Waddell Smith, R. Characterization of Smokeless Powders Using Nanoelectrospray Ionization Mass Spectrometry (NESI-MS). Anal. Bioanal. Chem. 2009, 394, 2019–2028. [Google Scholar] [CrossRef]
- Redouté Minzière, V.; Werner, D.; Schneider, D.; Manganelli, M.; Jung, B.; Weyermann, C.; Gassner, A.L. Combined Collection and Analysis of Inorganic and Organic Gunshot Residues. J. Forensic Sci. 2020, 65, 1102–1113. [Google Scholar] [CrossRef]
- Dalby, O.; Birkett, J.W. The Evaluation of Solid Phase Micro-Extraction Fibre Types for the Analysis of Organic Components in Unburned Propellant Powders. J. Chromatogr. A 2010, 1217, 7183–7188. [Google Scholar] [CrossRef]
- Burleson, G.L.; Gonzalez, B.; Simons, K.; Yu, J.C.C. Forensic Analysis of a Single Particle of Partially Burnt Gunpowder by Solid Phase Micro-Extraction-Gas Chromatography-Nitrogen Phosphorus Detector. J. Chromatogr. A 2009, 1216, 4679–4683. [Google Scholar] [CrossRef] [PubMed]
- Thomas, J.L.; Lincoln, D.; McCord, B.R. Separation and Detection of Smokeless Powder Additives by Ultra Performance Liquid Chromatography with Tandem Mass Spectrometry (UPLC/MS/MS). J. Forensic Sci. 2013, 58, 609–615. [Google Scholar] [CrossRef] [PubMed]
- Gallidabino, M.; Romolo, F.S.; Bylenga, K.; Weyermann, C. Development of a Novel Headspace Sorptive Extraction Method to Study the Aging of Volatile Compounds in Spent Handgun Cartridges. Anal. Chem. 2014, 86, 4471–4478. [Google Scholar] [CrossRef] [PubMed]
- Taudte, R.V.; Roux, C.; Blanes, L.; Horder, M.; Kirkbride, K.P.; Beavis, A. The Development and Comparison of Collection Techniques for Inorganic and Organic Gunshot Residues. Anal. Bioanal. Chem. 2016, 408, 2567–2576. [Google Scholar] [CrossRef] [PubMed]
- Goudsmits, E.; Blakey, L.S.; Chana, K.; Sharples, G.P.; Birkett, J.W. The Analysis of Organic and Inorganic Gunshot Residue from a Single Sample. Forensic Sci. Int. 2019, 299, 168–173. [Google Scholar] [CrossRef] [PubMed]
- Charles, S.; Geusens, N.; Vergalito, E.; Nys, B. Interpol Review of Gunshot Residue 2016–2019. Forensic Sci. Int. Synerg. 2020, 2, 416–428. [Google Scholar] [CrossRef]
- Gallidabino, M.; Weyermann, C.; Romolo, F.S.; Taroni, F. Estimating the Time since Discharge of Spent Cartridges: A Logical Approach for Interpreting the Evidence. Sci. Justice 2013, 53, 41–48. [Google Scholar] [CrossRef] [Green Version]
- Rijnders, M.R.; Stamouli, A.; Bolck, A. Comparison of GSR Composition Occurring at Different Locations around the Firing Position. J. Forensic Sci. 2010, 55, 616–623. [Google Scholar] [CrossRef]
- Schwoeble, A.J.; Exline, D.L. Current Methods in Forensic Gunshot Residue Analysis, 1st ed.; CRC Press: Boca Raton, FL, USA, 2000; ISBN 9780849300295. [Google Scholar]
- Scientific Working Group for Gunshot Residue. Guide for Primer Gunshot Residue Analysis by Scanning Electron Microscopy/Energy Dispersive X-ray Spectrometry; Swggsr: San Antonio, TX, USA, 2011; pp. 1–100. [Google Scholar]
- Feeney, W.; Menking-Hoggatt, K.; Vander Pyl, C.; Ott, C.E.; Bell, S.; Arroyo, L.; Trejos, T. Detection of Organic and Inorganic Gunshot Residues from Hands Using Complexing Agents and LC-MS/MS. Anal. Methods 2021, 13, 3024–3039. [Google Scholar] [CrossRef]
- Garofano, L.; Capra, M.; Ferrari, F.; Bizzaro, G.P.; Di Tullio, D.; Dell’Olio, M.; Ghitti, A. Gunshot Residue. Further Studies on Particles of Environmental and Occupational Origin. Forensic Sci. Int. 1999, 103, 1–21. [Google Scholar] [CrossRef]
- Khandasammy, S.R.; Rzhevskii, A.; Lednev, I.K. A Novel Two-Step Method for the Detection of Organic Gunshot Residue for Forensic Purposes: Fast Fluorescence Imaging Followed by Raman Microspectroscopic Identification. Anal. Chem. 2019, 91, 11731–11737. [Google Scholar] [CrossRef] [PubMed]
- ASTM E1588—16a; Standard Practice for Gunshot Residue Analysis by Scanning Electron Microscopy/Energy Dispersive X-ray Spectrometry. ASTM International, Scientific Working Group for Gunshot Residue: West Conshohocken, PA, USA, 2011; Volume 14, pp. 1–100.
- Niewoehner, L.; Wenz, H.W.; Andrasko, J.; Beijer, R.; Gunaratnam, L. ENFSI Proficiency Test Program on Identification of GSR by SEM/EDX. J. Forensic Sci. 2003, 48, 2002396. [Google Scholar] [CrossRef]
- Mistek, E.; Fikiet, M.A.; Khandasammy, S.R.; Lednev, I.K. Toward Locard’s Exchange Principle: Recent Developments in Forensic Trace Evidence Analysis Toward Locard’s Exchange Principle: Recent Developments in Forensic Trace Evidence Analysis. Anal. Chem. 2019, 91, 637–654. [Google Scholar] [CrossRef] [PubMed]
- Mou, Y.; Lakadwar, J.; Rabalais, J.W. Evaluation of Shooting Distance by AFM and FTIR/ATR Analysis of GSR. J. Forensic Sci. 2008, 53, 1381–1386. [Google Scholar] [CrossRef]
- Sen, P.; Panigrahi, N.; Rao, M.S.; Varier, K.M.; Sen, S.; Mehta, G.K. Application of Proton-Induced X-Ray Emission Technique to Gunshot Residue Analyses. J. Forensic Sci. 1982, 27, 11487J. [Google Scholar] [CrossRef]
- Sharma, S.P.; Lahiri, S.C. A Preliminary Investigation into the Use of FTIR Microscopy as a Probe for the Identification of Bullet Entrance Holes and the Distance of Firing. Sci. Justice 2009, 49, 197–204. [Google Scholar] [CrossRef]
- Martiny, A.; Campos, A.P.C.; Sader, M.S.; Pinto, M.A.L. SEM/EDS Analysis and Characterization of Gunshot Residues from Brazilian Lead-Free Ammunition. Forensic Sci. Int. 2008, 177, 9–17. [Google Scholar] [CrossRef]
- Moxnes, J.F.; Jensen, T.L.; Smestad, E.; Unneberg, E.; Dullum, O. Lead Free Ammunition without Toxic Propellant Gases. Propellants Explos. Pyrotech. 2013, 38, 255–260. [Google Scholar] [CrossRef]
- U.S. Fish and Wildlife Service. 2021–2022 Station-Specific Hunting and Sport Fishing Regulations; U.S. Fish and Wildlife Service: Washington, DC, USA, 2021; pp. 48822–48883.
- European Comission Commission Regulation (EU). 2021/57 of 25 January 2021 Amending Annex XVII to Regulation (EC) No 1907/2006 of the European Parliament and of the Council Concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) as Regards; L 24/19; EU: Maastricht, The Netherlands, 2021; pp. 19–24. [Google Scholar]
- Doty, K.C.; Lednev, I.K. Raman spectroscopy for forensic purposes: Recent applications for serology and gunshot residue analysis. TrAC Trends Anal. Chem. 2018, 103, 215–222. [Google Scholar] [CrossRef]
- Taudte, R.V.; Beavis, A.; Blanes, L.; Cole, N.; Doble, P.; Roux, C. Detection of Gunshot Residues Using Mass Spectrometry. BioMed Res. Int. 2014, 2014, 965403. [Google Scholar] [CrossRef] [Green Version]
- Muller, D.; Levy, A.; Vinokurov, A.; Ravreby, M.; Shelef, R.; Wolf, E.; Eldar, B.; Glattstein, B. A Novel Method for the Analysis of Discharged Smokeless Powder Residues. J. Forensic Sci. 2007, 52, 75–78. [Google Scholar] [CrossRef] [PubMed]
- Benito, S.; Abrego, Z.; Sánchez, A.; Unceta, N.; Goicolea, M.A.; Barrio, R.J. Characterization of Organic Gunshot Residues in Lead-Free Ammunition Using a New Sample Collection Device for Liquid Chromatography-Quadrupole Time-of-Flight Mass Spectrometry. Forensic Sci. Int. 2015, 246, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Taudte, R.V.; Roux, C.; Bishop, D.; Blanes, L.; Doble, P.; Beavis, A. Development of a UHPLC Method for the Detection of Organic Gunshot Residues Using Artificial Neural Networks. Anal. Methods 2015, 7, 7447–7454. [Google Scholar] [CrossRef] [Green Version]
- Espinoza, E.O.; Thornton, J.I. Characterization of Smokless Gunpowder by Means of Diphenylamine Stabilizer and Its Nitrated Derivatives. Anal. Chim. Acta 1994, 288, 57–69. [Google Scholar] [CrossRef]
- Gassner, A.L.; Weyermann, C. LC-MS Method Development and Comparison of Sampling Materials for the Analysis of Organic Gunshot Residues. Forensic Sci. Int. 2016, 264, 47–55. [Google Scholar] [CrossRef] [Green Version]
- Laza, D.; Nys, B.; De Kinder, J.; Kirsch-De Mesmaeker, A.; Moucheron, C. Development of a Quantitative LC-MS/MS Method for the Analysis of Common Propellant Powder Stabilizers in Gunshot Residue. J. Forensic Sci. 2007, 52, 842–850. [Google Scholar] [CrossRef]
- Arndt, J.; Bell, S.; Crookshanks, L.; Lovejoy, M.; Oleska, C.; Tulley, T.; Wolfe, D. Preliminary Evaluation of the Persistence of Organic Gunshot Residue. Forensic Sci. Int. 2012, 222, 137–145. [Google Scholar] [CrossRef]
- Zhao, M.; Zhang, S.; Yang, C.; Xu, Y.; Wen, Y.; Sun, L.; Zhang, X. Desorption Electrospray Tandem MS (DESI-MSMS) Analysis of Methyl Centralite and Ethyl Centralite as Gunshot Residues on Skin and Other Surfaces. J. Forensic Sci. 2008, 53, 807–811. [Google Scholar] [CrossRef]
- Tong, Y.; Wu, Z.; Yang, C.; Yu, J.; Zhang, X.; Yang, S.; Deng, X.; Xu, Y.; Wen, Y. Determination of Diphenylamine Stabilizer and Its Nitrated Derivatives in Smokeless Gunpowder Using a Tandem MS Method. Analyst 2001, 126, 480–484. [Google Scholar] [CrossRef]
- Gallidabino, M.; Romolo, F.S.; Weyermann, C. Characterization of Volatile Organic Gunshot Residues in Fired Handgun Cartridges by Headspace Sorptive Extraction. Anal. Bioanal. Chem. 2015, 407, 7123–7134. [Google Scholar] [CrossRef]
- Busky, R.T.; Botcher, T.R.; Sandstrom, J.L.; Erickson, J.A. Nontoxic, Noncorrosive Phosphorus-Based Primer Compositions and an Ordnance Element Including the Same. U.S. Patent 8,540,828, 24 September 2013. 15p. [Google Scholar]
- Grima, M.; Butler, M.; Hanson, R.; Mohameden, A. Firework Displays as Sources of Particles Similar to Gunshot Residue. Sci. Justice 2012, 52, 49–57. [Google Scholar] [CrossRef]
- Mosher, P.V.; McVicar, M.J.; Randall, E.D.; Sild, E.H. Gunshot Residue-Similar Particles Produced by Fireworks. J. Can. Soc. Forensic Sci. 1998, 31, 157–168. [Google Scholar] [CrossRef]
- Zeichner, A.; Levin, N. More on the Uniqueness of Gunshot Residue (GSR) Particles. J. Forensic Sci. 1997, 42, 14255J. [Google Scholar] [CrossRef]
- Wallace, J.S.; McQuillan, J. Discharge Residues from Cartridge-Operated Industrial Tools. J. Forensic Sci. Soc. 1984, 24, 495–508. [Google Scholar] [CrossRef]
- Cook, M. Gunshot Residue Contamination of the Hands of Police Officers Following Start-of-Shift Handling of Their Firearm. Forensic Sci. Int. 2016, 269, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Ali, L.; Brown, K.; Castellano, H.; Wetzel, S.J. A Study of the Presence of Gunshot Residue in Pittsburgh Police Stations Using SEM/EDS and LC-MS/MS. J. Forensic Sci. 2016, 61, 928–938. [Google Scholar] [CrossRef] [PubMed]
- Lloyd, J.B.F. Diphenylamine Traces in Handswabs and Clothing Debris: Cleanup and Liquid Chromatography with Sequential Oxidative and Reductive Electrochemical Detection. Anal. Chem. 1987, 59, 1401–1404. [Google Scholar] [CrossRef] [PubMed]
- Larrañaga, M.D.; Lewis, R.J.; Lewis, R.A. Hawley’s Condensed Chemical Dictionary, 16th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2016; ISBN 9781119312468. [Google Scholar]
- Pun, K.M.; Gallusser, A. Macroscopic Observation of the Morphological Characteristics of the Ammunition Gunpowder. Forensic Sci. Int. 2008, 175, 179–185. [Google Scholar] [CrossRef]
- Chang, K.H.; Jayaprakash, P.T.; Abdullah, A.F.L. Application of Different Standard Loading Approaches during Solid Phase Microextraction for Forensic Analysis of Single Particle Smokeless Powders. Aust. J. Forensic Sci. 2015, 47, 147–160. [Google Scholar] [CrossRef]
- Chang, K.H.; Yew, C.H.; Abdullah, A.F.L. Optimization of Headspace Solid-Phase Microextraction Technique for Extraction of Volatile Smokeless Powder Compounds in Forensic Applications. J. Forensic Sci. 2014, 59, 1100–1108. [Google Scholar] [CrossRef]
- Bueno, J.; Lednev, I.K. Advanced Statistical Analysis and Discrimination of Gunshot Residue Implementing Combined Raman and FT-IR Data. Anal. Methods 2013, 5, 6292–6296. [Google Scholar] [CrossRef]
- Bueno, J.; Lednev, I.K. Raman Microspectroscopic Chemical Mapping and Chemometric Classification for the Identification of Gunshot Residue on Adhesive Tape. Anal. Bioanal. Chem. 2014, 406, 4595–4599. [Google Scholar] [CrossRef] [PubMed]
- Bueno, J.; Sikirzhytski, V.; Lednev, I.K. Raman Spectroscopic Analysis of Gunshot Residue Offering Great Potential for Caliber Differentiation. Anal. Chem. 2012, 84, 4334–4339. [Google Scholar] [CrossRef] [PubMed]
- Vuki, M.; Shiu, K.K.; Galik, M.; O’Mahony, A.M.; Wang, J. Simultaneous Electrochemical Measurement of Metal and Organic Propellant Constituents of Gunshot Residues. Analyst 2012, 137, 3265–3270. [Google Scholar] [CrossRef] [PubMed]
- O’Mahony, A.M.; Wang, J. Electrochemical Detection of Gunshot Residue for Forensic Analysis: A Review. Electroanalysis 2013, 25, 1341–1358. [Google Scholar] [CrossRef]
- Northrop, D.M.; MacCrehan, W.A. Smokeless Powder Residue Analysis by Capillary Electrophoresis; US Department of Justice, Office of Justice Programs, National Institute of Justice: Washington, DC, USA, 1997.
- Gassner, A.L.; Ribeiro, C.; Kobylinska, J.; Zeichner, A.; Weyermann, C. Organic Gunshot Residues: Observations about Sampling and Transfer Mechanisms. Forensic Sci. Int. 2016, 266, 369–378. [Google Scholar] [CrossRef] [Green Version]
- Persin, B.; Touron, P.; Mille, F.; Bernier, G.; Subercazes, T. Évaluation De La Date D’Un Tir. J. Can. Soc. Forensic Sci. 2007, 40, 65–85. [Google Scholar] [CrossRef]
- Andrasko, J.; Ståhling, S. Time Since Discharge of Pistols and Revolvers. J. Forensic Sci. 2003, 48, 2002035. [Google Scholar] [CrossRef]
- Wilson, J.D.; Tebow, J.D.; Moline, K.W. Time Since Discharge of Shotgun Shells. J. Forensic Sci. 2003, 48, 2003119. [Google Scholar] [CrossRef]
- Serwy, I.B.; Wanderley, K.A.; Lucena, M.A.M.; Maldaner, A.O.; Talhavini, M.; Rodrigues, M.O.; Weber, I.T. [Ln2(BDC)3(H2O)4]n: A Low Cost Alternative for GSR Luminescent Marking. J. Lumin. 2018, 200, 24–29. [Google Scholar] [CrossRef]
- Filho, E.V.; de Sousa Filho, P.C.; Serra, O.A.; Weber, I.T.; Lucena, M.A.M.; Luz, P.P. New Luminescent Lanthanide-Based Coordination Compounds: Synthesis, Studies of Optical Properties and Application as Marker for Gunshot Residues. J. Lumin. 2018, 202, 89–96. [Google Scholar] [CrossRef]
- Weber, I.T.; Melo, A.J.G.; Lucena, M.A.M.; Consoli, E.F.; Rodrigues, M.O.; de Sá, G.F.; Maldaner, A.O.; Talhavini, M.; Alves, S. Use of Luminescent Gunshot Residues Markers in Forensic Context. Forensic Sci. Int. 2014, 244, 276–284. [Google Scholar] [CrossRef] [PubMed]
- Weber, I.T.; De Melo, A.J.G.; Lucena, M.A.D.M.; Rodrigues, M.O.; Alves Junior, S. High Photoluminescent Metal—Organic Frameworks as Optical Markers for the Identification of Gunshot Residues. Anal. Chem. 2011, 83, 4720–4723. [Google Scholar] [CrossRef] [PubMed]
- Lucena, M.A.M.; Oliveira, M.F.L.; Arouca, A.M.; Talhavini, M.; Ferreira, E.A.; Alves, S.; Veiga-Souza, F.H.; Weber, I.T. Application of the Metal-Organic Framework [Eu(BTC)] as a Luminescent Marker for Gunshot Residues: A Synthesis, Characterization, and Toxicity Study. ACS Appl. Mater. Interfaces 2017, 9, 4684–4691. [Google Scholar] [CrossRef]
- Albino de Carvalho, M.; Talhavini, M.; Pimentel, M.F.; Amigo, J.M.; Pasquini, C.; Junior, S.A.; Weber, I.T. NIR Hyperspectral Images for Identification of Gunshot Residue from Tagged Ammunition. Anal. Methods 2018, 10, 4711–4717. [Google Scholar] [CrossRef]
- Melo Lucena, M.A.; Rodrigues, M.O.; Gatto, C.C.; Talhavini, M.; Maldaner, A.O.; Alves, S.; Weber, I.T. Synthesis of [Dy(DPA)(HDPA)] and Its Potential as Gunshot Residue Marker. J. Lumin. 2016, 170, 697–700. [Google Scholar] [CrossRef]
- Destefani, C.A.; Motta, L.C.; Vanini, G.; Souza, L.M.; Filho, J.F.A.; Macrino, C.J.; Silva, E.M.; Greco, S.J.; Endringer, D.C.; Romão, W. Europium-Organic Complex as Luminescent Marker for the Visual Identification of Gunshot Residue and Characterization by Electrospray Ionization FT-ICR Mass Spectrometry. Microchem. J. 2014, 116, 216–224. [Google Scholar] [CrossRef]
- Chang, K.H.; Abdullah, A.F.L. A Review on Solid Phase Microextraction and Its Applications in Gunshot Residue Analysis. Malays. J. Forensic Sci. 2010, 1, 42–47. [Google Scholar]
- Fitsev, I.M.; Blokhin, V.K.; Budnikov, G.K. Chromatographic Techniques in Forensic Chemical Examinations. Zhurnal Anal. Khimii 2004, 59, 1289–1298. [Google Scholar] [CrossRef]
- Lo, T.C.; Baird, M.H.I. Solvent Extraction. In Encyclopedia of Physical Science and Technology; Meyers, R.A., Ed.; Elsevier: Tarzana, CA, USA, 2001; pp. 341–362. [Google Scholar]
- de Perre, C.; Corbin, I.; Blas, M.; McCord, B.R. Separation and Identification of Smokeless Gunpowder Additives by Capillary Electrochromatography. J. Chromatogr. A 2012, 1267, 259–265. [Google Scholar] [CrossRef]
- Zeichner, A.; Eldar, B. A Novel Method for Extraction and Analysis of Gunpowder Residues on Double-Side Adhesive Coated Stubs. J. Forensic Sci. 2004, 49, 1194–1206. [Google Scholar] [CrossRef] [PubMed]
- López-López, M.; de la Ossa, M.Á.F.; Galindo, J.S.; Ferrando, J.L.; Vega, A.; Torre, M.; García-Ruiz, C. New Protocol for the Isolation of Nitrocellulose from Gunpowders: Utility in Their Identification. Talanta 2010, 81, 1742–1749. [Google Scholar] [CrossRef] [PubMed]
- Fryš, O.; Bajerová, P.; Eisner, A.; Mudruňková, M.; Ventura, K. Method Validation for the Determination of Propellant Components by Soxhlet Extraction and Gas Chromatography/Mass Spectrometry. J. Sep. Sci. 2011, 34, 2405–2410. [Google Scholar] [CrossRef] [PubMed]
- López-López, M.; Merk, V.; García-Ruiz, C.; Kneipp, J. Surface-Enhanced Raman Spectroscopy for the Analysis of Smokeless Gunpowders and Macroscopic Gunshot Residues. Anal. Bioanal. Chem. 2016, 408, 4965–4973. [Google Scholar] [CrossRef] [PubMed]
- Zeichner, A.; Eldar, B.; Glattstein, B.; Koffman, A.; Tamiri, T.; Muller, D. Vacuum Collection of Gunpowder Residues from Clothing Worn by Shooting Suspects, and Their Analysis by GC/TEA, IMS, and GC/MS. J. Forensic Sci. 2003, 48, 2002390. [Google Scholar] [CrossRef]
- Sauzier, G.; Bors, D.; Ash, J.; Goodpaster, J.V.; Lewis, S.W. Optimisation of Recovery Protocols for Double-Base Smokeless Powder Residues Analysed by Total Vaporisation (TV) SPME/GC-MS. Talanta 2016, 158, 368–374. [Google Scholar] [CrossRef] [Green Version]
- Weyermann, C.; Belaud, V.; Riva, F.; Romolo, F.S. Analysis of Organic Volatile Residues in 9 mm Spent Cartridges. Forensic Sci. Int. 2009, 186, 29–35. [Google Scholar] [CrossRef]
- Andrasko, J.; Ståhling, S. Time Since Discharge of Rifles. J. Forensic Sci. 2000, 45, 14874J. [Google Scholar] [CrossRef]
- Joshi, M.; Rigsby, K.; Almirall, J.R. Analysis of the Headspace Composition of Smokeless Powders Using GC-MS, GC-ΜECD and Ion Mobility Spectrometry. Forensic Sci. Int. 2011, 208, 29–36. [Google Scholar] [CrossRef]
- Furton, K.G.; Almirall, J.R.; Bi, M.; Wang, J.; Wu, L. Application of Solid-Phase Microextraction to the Recovery of Explosives and Ignitable Liquid Residues from Forensic Specimens. J. Chromatogr. A 2000, 885, 419–432. [Google Scholar] [CrossRef]
- Pert, A.D.; Baron, M.G.; Birkett, J.W. Review of Analytical Techniques for Arson Residues. J. Forensic Sci. 2006, 51, 1033–1049. [Google Scholar] [CrossRef] [PubMed]
- Chang, K.H.; Abdullah, A.F.L. Extraction Efficiency of the Sequential Solid Phase Microextraction of Gunshot Residues from Spent Cartridges. Malays. J. Forensic Sci. 2014, 5, 7–11. [Google Scholar]
- Gallidabino, M.; Romolo, F.S.; Weyermann, C. Time since Discharge of 9 Mm Cartridges by Headspace Analysis, Part 1: Comprehensive Optimisation and Validation of a Headspace Sorptive Extraction (HSSE) Method. Forensic Sci. Int. 2017, 272, 159–170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gallidabino, M.; Romolo, F.S.; Weyermann, C. Time since Discharge of 9 Mm Cartridges by Headspace Analysis, Part 2: Ageing Study and Estimation of the Time since Discharge Using Multivariate Regression. Forensic Sci. Int. 2017, 272, 171–183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tienpont, B.; David, F.; Bicchi, C.; Sandra, P. High Capacity Headspace Sorptive Extraction. J. Microcolumn Sep. 2000, 12, 577–584. [Google Scholar] [CrossRef]
- López-López, M.; Ferrando, J.L.; García-Ruiz, C. Comparative Analysis of Smokeless Gunpowders by Fourier Transform Infrared and Raman Spectroscopy. Anal. Chim. Acta 2012, 717, 92–99. [Google Scholar] [CrossRef]
- Griffiths, P.R.; de Haseth, J.A. Fourier Transform Infrared Spectrometry, 2nd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2007; ISBN 9780470106310. [Google Scholar]
- Hammes, G.G. Spectroscopy for the Biological Sciences; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2005; ISBN 9780471733553. [Google Scholar]
- White, R. Chromatography/Fourier Transform Infrared Spectroscopy and Its Applications, 10th ed.; CRC Press: Boca Raton, FL, USA, 2020; ISBN 9781003066323. [Google Scholar]
- Schrader, B. Infrared and Raman Spectroscopy: Methods and Applications; Weinheim: New York, NY, USA, 2008; ISBN 978-3-527-61542-1. [Google Scholar]
- Lee, L.C.; Liong, C.Y.; Jemain, A.A. A Contemporary Review on Data Preprocessing (DP) Practice Strategy in ATR-FTIR Spectrum. Chemom. Intell. Lab. Syst. 2017, 163, 64–75. [Google Scholar] [CrossRef]
- Zhang, J.; Li, B.; Wang, Q.; Li, C.; Zhang, Y.; Lin, H.; Wang, Z. Characterization of Postmortem Biochemical Changes in Rabbit Plasma Using ATR-FTIR Combined with Chemometrics: A Preliminary Study. Spectrochim. Acta—Part A Mol. Biomol. Spectrosc. 2017, 173, 733–739. [Google Scholar] [CrossRef] [Green Version]
- Gardiner, D.J.; Graves, P.R. Practical Raman Spectroscopy; Gardiner, D.J., Graves, P.R., Eds.; Springer: Berlin/Heidelberg, Germany, 1989; ISBN 978-3-540-50254-8. [Google Scholar]
- Atkins, P.; de Paula, J. Elements of Physical Chemistry, 5th ed.; Oxford U.P.: Oxford, UK, 2009; ISBN 978-0-19-922672-6. [Google Scholar]
- Abrego, Z.; Grijalba, N.; Unceta, N.; Maguregui, M.; Sanchez, A.; Fernández-Isla, A.; Goicolea, M.A.; Barrió, R.J. A Novel Method for the Identification of Inorganic and Organic Gunshot Residue Particles of Lead-Free Ammunitions from the Hands of Shooters Using Scanning Laser Ablation-ICPMS and Raman Micro-Spectroscopy. Analyst 2014, 139, 6232–6241. [Google Scholar] [CrossRef]
- Bueno, J.; Sikirzhytski, V.; Lednev, I.K. Attenuated Total Reflectance-FT-IR Spectroscopy for Gunshot Residue Analysis: Potential for Ammunition Determination. Anal. Chem. 2013, 85, 7287–7294. [Google Scholar] [CrossRef]
- Brożek-Mucha, Z. A Study of Gunshot Residue Distribution for Close-Range Shots with a Silenced Gun Using Optical and Scanning Electron Microscopy, X-Ray Microanalysis and Infrared Spectroscopy. Sci. Justice 2017, 57, 87–94. [Google Scholar] [CrossRef]
- Sharma, S.P.; Lahiri, S.C. Characterization and Identification of Explosives and Explosive Residues Using GC-MS, an FTIR Microscope, and HPTLC. J. Energ. Mater. 2005, 23, 239–264. [Google Scholar] [CrossRef]
- Bueno, J.; Lednev, I.K. Attenuated Total Reflectance-FT-IR Imaging for Rapid and Automated Detection of Gunshot Residue. Anal. Chem. 2014, 86, 3389–3396. [Google Scholar] [CrossRef] [PubMed]
- Khandasammy, S.R.; Halámková, L.; Baudelet, M.; Lednev, I.K. Identification and Highly Selective Differentiation of Organic Gunshot Residues Utilizing Their Elemental and Molecular Signatures. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2023, 291, 122316. [Google Scholar] [CrossRef] [PubMed]
- Chaves das Neves, H.J.; Costa Freitas, A.M. Introdução à Cromatografia Gás-Líquido de Alta Resolução; Dias de Sousa: Póvoa de Santa Iria, Portugal, 1996; ISBN 972-967-900-2. [Google Scholar]
- Moran, J.W.; Bell, S. Skin Permeation of Organic Gunshot Residue: Implications for Sampling and Analysis. Anal. Chem. 2014, 86, 6071–6079. [Google Scholar] [CrossRef] [PubMed]
- Cascio, O.; Trettene, M.; Bortolotti, F.; Milana, G.; Tagliaro, F. Analysis of Organic Components of Smokeless Gunpowders: High-Performance Liquid Chromatography vs. Micellar Electrokinetic Capillary Chromatography. Electrophoresis 2004, 25, 1543–1547. [Google Scholar] [CrossRef] [PubMed]
- Lussier, L.S.; Gagnon, H.; Bohn, M.A. On the Chemical Reactions of Diphenylamine and Its Derivatives with Nitrogen Dioxide at Normal Storage Temperature Conditions. Propellants Explos. Pyrotech. 2000, 25, 117–125. [Google Scholar] [CrossRef]
- Chajistamatiou, A.S.; Bakeas, E.B. A Rapid Method for the Identification of Nitrocellulose in High Explosives and Smokeless Powders Using GC-EI-MS. Talanta 2016, 151, 192–201. [Google Scholar] [CrossRef]
- Joshi, M.; Delgado, Y.; Guerra, P.; Lai, H.; Almirall, J.R. Detection of Odor Signatures of Smokeless Powders Using Solid Phase Microextraction Coupled to an Ion Mobility Spectrometer. Forensic Sci. Int. 2009, 188, 112–118. [Google Scholar] [CrossRef]
- Chang, K.H.; Yew, C.H.; Abdullah, A.F.L. Study of the Behaviors of Gunshot Residues from Spent Cartridges by Headspace Solid-Phase Microextraction-Gas Chromatographic Techniques. J. Forensic Sci. 2015, 60, 869–877. [Google Scholar] [CrossRef]
- Tarifa, A.; Almirall, J.R. Fast Detection and Characterization of Organic and Inorganic Gunshot Residues on the Hands of Suspects by CMV-GC-MS and LIBS. Sci. Justice 2015, 55, 168–175. [Google Scholar] [CrossRef] [PubMed]
- Cook, G.W.; LaPuma, P.T.; Hook, G.L.; Eckenrode, B.A. Using Gas Chromatography with Ion Mobility Spectrometry to Resolve Explosive Compounds in the Presence of Interferents. J. Forensic Sci. 2010, 55, 1582–1591. [Google Scholar] [CrossRef]
- Sauzier, G.; Van Bronswijk, W.; Lewis, S.W. Chemometrics in Forensic Science: Approaches and Applications. Analyst 2021, 146, 2415–2448. [Google Scholar] [CrossRef] [PubMed]
- Rohman, A.; Ghazali, M.A.I.B.; Windarsih, A.; Irnawati; Riyanto, S.; Yusof, F.M.; Mustafa, S. Comprehensive Review on Application of FTIR Spectroscopy Coupled with Chemometrics for Authentication Analysis of Fats and Oils in the Food Products. Molecules 2020, 25, 5485. [Google Scholar] [CrossRef] [PubMed]
- Tortorella, S.; Cinti, S. How Can Chemometrics Support the Development of Point of Need Devices? Anal. Chem. 2021, 93, 2713–2722. [Google Scholar] [CrossRef]
- Ziegel, E.R. Statistics and Chemometrics for Analytical Chemistry. Technometrics 2004, 46, 498–499. [Google Scholar] [CrossRef]
- Gosav, S.; Praisler, M.; Van Bocxlaer, J.; De Leenheer, A.P.; Massart, D.L. Class Identity Assignment for Amphetamines Using Neural Networks and GC-FTIR Data. Spectrochim. Acta—Part A Mol. Biomol. Spectrosc. 2006, 64, 1110–1117. [Google Scholar] [CrossRef]
- Wold, S.; Sjöström, M.; Eriksson, L. PLS-Regression: A Basic Tool of Chemometrics. Chemom. Intell. Lab. Syst. 2001, 58, 109–130. [Google Scholar] [CrossRef]
- Costa, C.; Maraschin, M.; Rocha, M. An R Package for the Integrated Analysis of Metabolomics and Spectral Data. Comput. Methods Programs Biomed. 2016, 129, 117–124. [Google Scholar] [CrossRef] [Green Version]
- Bro, R.; Smilde, A.K. Principal Component Analysis. Anal. Methods 2014, 6, 2812–2831. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, F. Hierarchical Clustering. In Introduction to HPC with MPI for Data Science; Springer: Berlin/Heidelberg, Germany, 2016; pp. 195–211. [Google Scholar]
- Ruiz-Perez, D.; Guan, H.; Madhivanan, P.; Mathee, K.; Narasimhan, G. So You Think You Can PLS-DA? BMC Bioinform. 2020, 21, 2. [Google Scholar] [CrossRef] [PubMed]
- Lee, L.C.; Liong, C.-Y.; Jemain, A.A. Partial Least Squares-Discriminant Analysis (PLS-DA) for Classification of High-Dimensional (HD) Data: A Review of Contemporary Practice Strategies and Knowledge Gaps. Analyst 2018, 143, 3526–3539. [Google Scholar] [CrossRef] [PubMed]
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning; Springer Series in Statistics; Springer: New York, NY, USA, 2009; ISBN 978-0-387-84857-0. [Google Scholar]
- Friedman, J.H. Multivariate Adaptive Regression Splines. Ann. Stat. 1991, 19, 1–67. [Google Scholar] [CrossRef]
- Bell, S.; Seitzinger, L. From Binary Presumptive Assays to Probabilistic Assessments: Differentiation of Shooters from Non-Shooters Using IMS, OGSR, Neural Networks, and Likelihood Ratios. Forensic Sci. Int. 2016, 263, 176–185. [Google Scholar] [CrossRef] [PubMed]
- Jolliffe, I.T.; Cadima, J. Principal Component Analysis: A Review and Recent Developments. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2016, 374, 20150202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taunk, K.; De, S.; Verma, S.; Swetapadma, A. A Brief Review of Nearest Neighbor Algorithm for Learning and Classification. In Proceedings of the 2019 International Conference on Intelligent Computing and Control Systems (ICCS), Madurai, India, 15–17 May 2019; pp. 1255–1260. [Google Scholar]
- Cortes, C.; Vapnik, V. Support-Vector Networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Reese, K.L.; Jones, A.D.; Smith, R.W. Characterization of Smokeless Powders Using Multiplexed Collision-Induced Dissociation Mass Spectrometry and Chemometric Procedures. Forensic Sci. Int. 2017, 272, 16–27. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Serol, M.; Ahmad, S.M.; Quintas, A.; Família, C. Chemical Analysis of Gunpowder and Gunshot Residues. Molecules 2023, 28, 5550. https://doi.org/10.3390/molecules28145550
Serol M, Ahmad SM, Quintas A, Família C. Chemical Analysis of Gunpowder and Gunshot Residues. Molecules. 2023; 28(14):5550. https://doi.org/10.3390/molecules28145550
Chicago/Turabian StyleSerol, Miguel, Samir Marcos Ahmad, Alexandre Quintas, and Carlos Família. 2023. "Chemical Analysis of Gunpowder and Gunshot Residues" Molecules 28, no. 14: 5550. https://doi.org/10.3390/molecules28145550
APA StyleSerol, M., Ahmad, S. M., Quintas, A., & Família, C. (2023). Chemical Analysis of Gunpowder and Gunshot Residues. Molecules, 28(14), 5550. https://doi.org/10.3390/molecules28145550