Study on Gas Sorption and Iodine Uptake of a Metal-Organic Framework Based on Curcumin
Abstract
:1. Introduction
2. Results
2.1. Physicochemical Properties of Medi-MOF-1
2.2. Gas Sorption Properties
2.3. Iodine Uptake and Release
3. Materials and Methods
3.1. Materials and General Methods
3.2. Synthesis of Medi-MOF-1 and Iodine-Loaded Medi-MOF-1
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Md, M.R.; Abayomi, O.O.; Eskinder, G.; Amit, K. Assessment of energy storage technologies: A review. Energy Convers. Manag. 2020, 223, 113295. [Google Scholar]
- Rivera, F.P.; Zalamea, J.; Espinoza, J.L.; Gonzalez, L.G. Sustainable use of spilled turbinable energy in Ecuador: Three different energy storage systems. Renew. Sustain. Energy Rev. 2022, 156, 112005. [Google Scholar] [CrossRef]
- Denning, S.; Majid, A.A.A.; Crawford, J.M.; Carreon, M.A.; Koh, C.A. Promoting Methane Hydrate Formation for Natural Gas Storage over Chabazite Zeolites. ACS Appl. Energy Mater. 2021, 4, 13420–13424. [Google Scholar] [CrossRef]
- Kumar, S.; Bera, R.; Das, N.; Koh, J. Chitosan-based zeolite-Y and ZSM-5 porous biocomposites for H2 and CO2 storage. Carbohydr. Polym. 2020, 232, 115808. [Google Scholar] [CrossRef] [PubMed]
- Yue, B.; Liu, S.S.; Chai, Y.C.; Wu, G.J.; Guan, N.J.; Li, L.D. Zeolites for separation: Fundamental and application. J. Energy Chem. 2022, 71, 288–303. [Google Scholar] [CrossRef]
- Liu, S.R.; Chen, H.T.; Lv, H.X.; Qin, Q.P.; Fan, L.M.; Zhang, X.T. Chemorobust 4p-5p {InPb}-organic framework for efficiently catalyzing cycload6dition of CO2 with epoxides and deacetalization-Knoevenagel condensation. Mater. Today Chem. 2022, 24, 100984. [Google Scholar] [CrossRef]
- Gan, L.; Andres-Garcia, E.; Espallargas, G.M.; Planas, J.G. Adsorptive separation of CO2 by a hydrophobic carborane-based Metal−Organic Framework under humid conditions. ACS Appl. Mater. Interfaces 2023, 15, 5309–5316. [Google Scholar] [CrossRef]
- Zhang, T.; Chen, H.T.; Liu, S.R.; Lv, H.X.; Zhang, X.T.; Li, Q.L. Highly Robust {Ln4}-Organic Frameworks (Ln = Ho, Yb) for Excellent Catalytic Performance on Cycloaddition Reaction of Epoxides with CO2 and Knoevenagel Condensation. ACS Catal. 2021, 11, 14916–14925. [Google Scholar] [CrossRef]
- Guan, Q.; Zhou, L.L.; Dong, Y.B. Metalated covalent organic frameworks: From synthetic strategies to diverse applications. Chem. Soc. Rev. 2022, 51, 6307–6416. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Zhu, G.S. Porous aromatic frameworks. Chem. Rev. 2020, 120, 8934–8986. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.C.; Kitigawa, S. Metal-organic frameworks (MOFs). Chem. Soc. Rev. 2014, 43, 5415–5418. [Google Scholar] [CrossRef] [Green Version]
- He, H.; Sun, Q.; Gao, W.; Perman, J.A.; Sun, F.; Zhu, G.; Aguila, B.; Forrest, K.; Space, B.; Ma, S. A Stable Metal-Organic Framework Featuring a Local Buffer Environment for Carbon Dioxide Fixation. Angew. Chem. Int. Ed. 2018, 57, 4657–4662. [Google Scholar] [CrossRef]
- Liu, X.R.; Chen, H.T.; Zhang, X.T. Bifunctional {Pb10K2}–Organic Framework for High Catalytic Activity in Cycloaddition of CO2 with Epoxides and Knoevenagel Condensation. ACS Catal. 2022, 12, 10373–10383. [Google Scholar] [CrossRef]
- Li, X.F.; Bian, H.; Huang, W.Q.; Yan, B.Y.; Wang, X.Y.; Zhu, B. A review on anion-pillared metal-organic frameworks (APMOFs) and their composites with the balance of adsorption capacity and separation selectivity for efficient gas separation. Coord. Chem. Rev. 2022, 470, 214714. [Google Scholar] [CrossRef]
- He, H.M.; Wen, H.M.; Li, H.K.; Zhang, H.W. Recent advances in metal-organic frameworks and their derivatives for electrocatalytic nitrogen reduction to ammonia. Coord. Chem. Rev. 2022, 471, 214761. [Google Scholar] [CrossRef]
- Yuan, R.R.; Yan, Z.J.; Shaga, A.; He, H.M. Design and fabrication of an electrochemical sensing platform based on a porous organic polymer for ultrasensitive ampicillin detection. Sens. Actuator B Chem. 2021, 327, 128949. [Google Scholar] [CrossRef]
- Zhang, H.W.; Zhu, Q.Q.; Yuan, R.; He, H. Crystal Engineering of MOF@COF Core-Shell Composites for Ultra-Sensitively Electrochemical Detection. Sens. Actuators B Chem. 2021, 329, 129144. [Google Scholar] [CrossRef]
- He, H.; Zhu, Q.Q.; Li, C.P.; Du, M. Design of a Highly-Stable Pillar-Layer Zinc(II) Porous Framework for Rapid, Reversible, and Multi-Responsive Luminescent Sensor in Water. Cryst. Growth Des. 2019, 19, 694–703. [Google Scholar] [CrossRef]
- Fischer, M.; Hoffmann, F.; Froba, M. Preferred Hydrogen Adsorption Sites in Various MOFs-A Comparative Computational Study. ChemPhysChem 2009, 10, 2647–2657. [Google Scholar] [CrossRef]
- Suh, M.P.; Park, H.J.; Prasad, T.K.; Lim, D.W. Hydrogen Storage in Metal-Organic Frameworks. Chem. Rev. 2012, 112, 782–835. [Google Scholar] [CrossRef] [PubMed]
- Lamiel, C.; Hussain, I.; Rabiee, H.; Ogunsakin, O.R.; Zhang, K.L. Metal-organic framework-derived transition metal chalcogenides (S, Se, and Te): Challenges, recent progress, and future directions in electrochemical energy storage and conversion systems. Coord. Chem. Rev. 2023, 480, 215030. [Google Scholar] [CrossRef]
- Phan, A.; Doonan, C.J.; Uribe-Romo, F.J.; Knobler, C.B.; O’Keeffe, M.; Yaghi, O.M. Synthesis, Structure, and Carbon Dioxide Capture Properties of Zeolitic Imidazolate Frameworks. Acc. Chem. Res. 2010, 43, 58–67. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Perman, J.A.; Zhu, G.; Ma, S. Metal-Organic Frameworks for CO2 Chemical Transformations. Small 2016, 12, 6309–6324. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Zhang, T.; Liu, S.; Lv, H.; Fan, L.; Zhang, X. Fluorine-Functionalized NbO-Type {Cu2}-Organic Framework: Enhanced Catalytic Performance on the Cycloaddition Reaction of CO2 with Epoxides and Deacetalization-Knoevenagel Condensation. Inorg. Chem. 2022, 61, 11949–11958. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.T.; Liu, S.R.; Lv, H.X.; Qin, Q.P.; Zhang, X.T. Nanoporous {Y2}-Organic Frameworks for Excellent Catalytic Performance on the Cycloaddition Reaction of Epoxides with CO2 and Deacetalization–Knoevenagel Condensation. ACS Appl. Mater. Interfaces 2022, 14, 18589–18599. [Google Scholar] [CrossRef]
- Xu, G.R.; An, Z.H.; Xu, K.; Liu, Q.; Das, R.; Zhao, H.L. Metal organic framework (MOF)-based micro/nanoscaled materials for heavy metal ions removal: The cutting-edge study on designs, synthesis, and applications. Coord. Chem. Rev. 2021, 427, 213554. [Google Scholar] [CrossRef]
- Ma, L.; Huang, C.; Yao, Y.Y.; Fu, M.T.; Han, F.; Li, Q.N.; Wu, M.H.; Zhang, H.J.; Xu, L.; Ma, H.J. Self-assembled MOF microspheres with hierarchical porous structure for efficient uranium adsorption. Sep. Purif. Technol. 2023, 314, 123526. [Google Scholar] [CrossRef]
- Zhang, X.R.; Maddock, J.; Nenoff, T.M.; Denecke, M.A.; Yang, S.H.; Schroer, M. Adsorption of iodine in metal-organic framework materials. Chem. Soc. Rev. 2022, 51, 3243–3262. [Google Scholar] [CrossRef]
- Tang, Y.Z.; Huang, H.L.; Li, J.; Xue, W.J.; Zhong, C.L. IL-induced formation of dynamic complex-iodine anions in IL@MOF composites for efficient iodine capture. J. Mater. Chem. A 2019, 7, 18324–18329. [Google Scholar] [CrossRef]
- Mandal, A.; Adhikary, A.; Sarkar, A.; Das, D. Naked Eye Cd2+ Ion Detection and Reversible Iodine Uptake by a Three-Dimensional Pillared-Layered Zn-MOF. Inorg. Chem. 2020, 59, 17758–17765. [Google Scholar] [CrossRef]
- Sarkar, A.; Adhikary, A.; Mandal, A.; Chakraborty, T.; Das, D. Zn-BTC MOF as an Adsorbent for Iodine Uptake and Organic Dye Degradation. Cryst. Growth Des. 2020, 20, 7833–7839. [Google Scholar] [CrossRef]
- Lee, J.W.; Cha, D.K.; Oh, Y.K.; Ko, K.B.; Song, J.S. Zero-valent iron pretreatment for detoxifying iodine in liquid crystal display (LCD) manufacturing wastewater. J. Hazard. Mater. 2009, 164, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Chapman, K.W.; Chupas, P.J.; Nenoff, T.M. Radioactive Iodine Capture in Silver-Containing Mordenites through Nanoscale Silver Iodide Formation. J. Am. Chem. Soc. 2010, 132, 8897–8899. [Google Scholar] [CrossRef] [PubMed]
- Riebe, B.; Dultz, S.; Bunnenberg, C. Temperature effects on iodine adsorption on organo-clay minerals: I. Influence of pretreatment and adsorption temperature. Appl. Clay Sci. 2005, 28, 9–16. [Google Scholar] [CrossRef]
- Xie, W.; Cui, D.; Zhang, S.R.; Xu, Y.H.; Jiang, D.L. Iodine capture in porous organic polymers and metal-organic frameworks materials. Mater. Horiz. 2019, 6, 1571–1595. [Google Scholar] [CrossRef]
- Zeng, M.H.; Wang, Q.X.; Tan, Y.X.; Hu, S.; Zhao, H.X.; Long, L.S.; Kurmoo, M. Rigid Pillars and Double Walls in a Porous Metal-Organic Framework: Single-Crystal to Single-Crystal, Controlled Uptake and Release of Iodine and Electrical Conductivity. J. Am. Chem. Soc. 2010, 132, 2561–2563. [Google Scholar] [CrossRef]
- Wang, C.; Tian, L.; Zhu, W.; Wang, P.; Liang, Y.; Zhang, W.L.; Zhao, H.W.; Li, G.T. Dye@bio-MOF-1 Composite as a Dual-Emitting Platform for Enhanced Detection of a Wide Range of Explosive Molecules. ACS Appl. Mater. Interfaces 2017, 9, 20076–20085. [Google Scholar] [CrossRef]
- Yan, Z.; Qiao, Y.; Wang, J.; Xie, J.; Cui, B.; Fu, Y.; Lu, J.; Yang, Y.; Bu, N.; Yuan, Y.; et al. An Azo-Group-Functionalized Porous Aromatic Framework for Achieving Highly Efficient Capture of Iodine. Molecules 2022, 27, 6297. [Google Scholar] [CrossRef]
- Kamal, S.; Khalid, M.; Khan, M.S.; Shanid, M.; Ahmad, M. Amine- and Imine-Functionalized Mn-Based MOF as an Unusual Turn-On and Turn-Off Sensor for d10 Heavy Metal Ions and an Efficient Adsorbent to Capture Iodine. Cryst. Growth Des. 2022, 22, 3277–3294. [Google Scholar] [CrossRef]
- Sava, D.F.; Chapman, K.W.; Rodriguez, M.A.; Greathouse, J.A.; Crozier, P.S.; Zhao, H.Y.; Chupas, P.J.; Nenoff, T.M. Competitive I2 Sorption by Cu-BTC from Humid Gas Streams. Chem. Mater. 2013, 25, 2591–2596. [Google Scholar] [CrossRef]
- Marshall, R.J.; Griffin, S.L.; Wilson, C.; Forgan, R.S. Single-Crystal to Single-Crystal Mechanical Contraction of Metal-Organic Frameworks through Stereoselective Postsynthetic Bromination. J. Am. Chem. Soc. 2015, 137, 9527–9530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, H.M.; Sun, F.X.; Jia, J.T.; He, H.M.; Wang, A.F.; Zhu, G.S. A highly porous medical metal-organic framework constructed from bioactive curcumin. Chem. Commun. 2015, 51, 5774–5777. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.D.; Wang, Y.F.; Muhammad, F.; Sun, F.X.; Tian, Y.Y.; Zhu, G.S. Size, Shape, and Porosity Control of Medi-MOF-1 via Growth Modulation under Microwave Heating. Cryst. Growth Des. 2019, 19, 889–895. [Google Scholar] [CrossRef]
- He, H.; Xue, Y.Q.; Wang, S.Q.; Zhu, Q.Q.; Chen, J.; Li, C.P. A Double-Walled Bimetal-Organic Framework for Antibiotics Sensing and Size-Selective Catalysis. Inorg. Chem. 2018, 57, 15062–15068. [Google Scholar] [CrossRef]
- An, J.; Geib, S.J.; Rosi, N.L. High and Selective CO2 Uptake in a Cobalt Adeninate Metal-Organic Framework Exhibiting Pyrimidine- and Amino-Decorated Pores. J. Am. Chem. Soc. 2010, 132, 38–39. [Google Scholar] [CrossRef] [PubMed]
- Freund, R.; Zaremba, O.; Dinca, M.; Arnauts, G.; Ameloot, R.; Skorupskii, G.; Bavykina, A.; Gascon, J.; Ejsmont, A.; Goscianska, J.; et al. The Current Status of MOF and COF Applications. Angew. Chem. Int. Ed. 2021, 60, 23975–24001. [Google Scholar] [CrossRef]
- Chen, Y.F.; Jiang, J.W. A Bio-Metal-Organic Framework for Highly Selective CO2 Capture: A Molecular Simulation Study. ChemSusChem 2010, 3, 982–988. [Google Scholar] [CrossRef]
- Levine, D.J.; Runcevski, T.; Kapelewski, M.T.; Keitz, B.K.; Oktawiec, J.; Reed, D.A.; Mason, J.A.; Jiang, H.Z.H.; Colwell, K.A.; Legendre, C.M.; et al. Olsalazine-Based Metal-Organic Frameworks as Biocompatible Platforms for H2 Adsorption and Drug Delivery. J. Am. Chem. Soc. 2016, 138, 10143–10150. [Google Scholar] [CrossRef] [Green Version]
- An, J.; Rosi, N.L. Tuning MOF CO2 Adsorption Properties via Cation Exchange. J. Am. Chem. Soc. 2010, 132, 5578–5579. [Google Scholar] [CrossRef]
- Zulys, A.; Yulia, F.; Muhadzib, N.; Nasruddin. Biological Metal-Organic Frameworks (Bio-MOFs) for CO2 Capture. Ind. Eng. Chem. Res. 2021, 60, 37–51. [Google Scholar] [CrossRef]
- Han, B.; Chakraborty, A.; Saha, B.B. Isosteric Heats and Entropy of Adsorption in Henry’s Law Region for Carbon and MOFs Structures for Energy Conversion Applications. Int. J. Heat Mass Transf. 2022, 182, 122000. [Google Scholar] [CrossRef]
- Rojas, S.; Devic, T.; Horcajada, P. Metal organic frameworks based on bioactive components. J. Mater. Chem. B 2017, 5, 2560–2573. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Chen, D.L.; Sullivan, J.E.; Kozlowski, M.T.; Johnson, J.K.; Rosi, N.L. Systematic modulation and enhancement of CO2: N2 selectivity and water stability in an isoreticular series of bio-MOF-11 analogues. Chem. Sci. 2013, 4, 1746–1755. [Google Scholar] [CrossRef]
- Safarifard, V.; Morsali, A. Influence of an amine group on the highly efficient reversible adsorption of iodine in two novel isoreticular interpenetrated pillared-layer microporous metal-organic frameworks. Crystengcomm 2014, 16, 8660–8663. [Google Scholar] [CrossRef]
- Yan, Z.J.; Yuan, Y.; Tian, Y.Y.; Zhang, D.M.; Zhu, G.S. Highly Efficient Enrichment of Volatile Iodine by Charged Porous Aromatic Frameworks with Three Sorption Sites. Angew. Chem. Int. Ed. 2015, 54, 12733–12737. [Google Scholar] [CrossRef] [PubMed]
- Gee, W.J.; Hatcher, L.E.; Cameron, C.A.; Stubbs, C.; Warren, M.R.; Burrows, A.D.; Raithby, P.R. Evaluating Iodine Uptake in a Crystalline Sponge Using Dynamic X-ray Crystallography. Inorg. Chem. 2018, 57, 4959–4965. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Luo, J.H.; Luo, X.L.; Zhao, J.; Li, D.S.; Li, G.H.; Huo, Q.S.; Liu, Y.L. Assembly of a Three-Dimensional Metal-Organic Framework with Copper(I) Iodide and 4-(Pyrimidin-5-yl) Benzoic Acid: Controlled Uptake and Release of Iodine. Cryst. Growth Des. 2015, 15, 915–920. [Google Scholar] [CrossRef]
- Yang, Y.T.; Tu, C.Z.; Yin, H.J.; Liu, J.J.; Cheng, F.X.; Luo, F. Molecular Iodine Capture by Covalent Organic Frameworks. Molecules 2022, 27, 9045. [Google Scholar] [CrossRef]
- Marshall, R.J.; Griffin, S.L.; Wilson, C.; Forgan, R.S. Stereoselective Halogenation of Integral Unsaturated C-C Bonds in Chemically and Mechanically Robust Zr and Hf MOFs. Chem.-Eur. J. 2016, 22, 4870–4877. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, H.; Zhou, Y.; Huang, T.; Sun, F. Study on Gas Sorption and Iodine Uptake of a Metal-Organic Framework Based on Curcumin. Molecules 2023, 28, 5237. https://doi.org/10.3390/molecules28135237
Su H, Zhou Y, Huang T, Sun F. Study on Gas Sorption and Iodine Uptake of a Metal-Organic Framework Based on Curcumin. Molecules. 2023; 28(13):5237. https://doi.org/10.3390/molecules28135237
Chicago/Turabian StyleSu, Hongmin, Yang Zhou, Tao Huang, and Fuxing Sun. 2023. "Study on Gas Sorption and Iodine Uptake of a Metal-Organic Framework Based on Curcumin" Molecules 28, no. 13: 5237. https://doi.org/10.3390/molecules28135237
APA StyleSu, H., Zhou, Y., Huang, T., & Sun, F. (2023). Study on Gas Sorption and Iodine Uptake of a Metal-Organic Framework Based on Curcumin. Molecules, 28(13), 5237. https://doi.org/10.3390/molecules28135237