Sequential Esterification—Diels-Alder Reactions for Improving Pine Rosin Durability within Road Marking Paint
Abstract
:1. Introduction
2. Results and Discussion
2.1. Modification of Gum Rosin
2.1.1. Single Esterification Reaction
2.1.2. Diels–Alder Reaction
2.1.3. Combined Esterification and Diels-Alder Reaction
2.2. Road Marking Performance Tests
3. Materials and Methods
3.1. Materials
3.2. Rosin Modification
3.3. Blending Methods
3.4. Analysis Methods
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lopez, C.A. Pavement Marking Handbook: Specifications, Test Methods, and Standard Sheets; Texas Department of Transportation: Austin, TX, USA, 2004. [Google Scholar]
- Migletz, J.; Fish, J.K.; Graham, J.L. Roadway Delineation Practices Handbook; Federal Highway Administration: Washington, DC, USA, 1994. [Google Scholar]
- Vokhidov, H.; Hong, H.G.; Kang, J.K.; Hoang, T.M.; Park, K.R. Recognition of Damaged Arrow-Road Markings by Visible Light Camera Sensor Based on Convolutional Neural Network. Sensors 2016, 16, 2160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naidu, V.; Bhaiswar, V. Review on Road Marking Paint Machine and Material. IOP Conf. Ser. Mater. Sci. Eng. 2020, 954, 012016. [Google Scholar] [CrossRef]
- Mirabedini, S.M.; Zareanshahraki, F.; Mannari, V. Enhancing Thermoplastic Road-Marking Paints Performance Using Sustainable Rosin Ester. Prog. Org. Coat. 2020, 139, 105454. [Google Scholar] [CrossRef]
- Mandaogade, P.M.; Satturwar, P.M.; Fulzele, S.V.; Gogte, B.B.; Dorle, A.K. Rosin Derivatives: Novel Film Forming Materials for Controlled Drug Delivery. React. Funct. Polym. 2002, 50, 233–242. [Google Scholar] [CrossRef]
- Sugihara, S. Petroleum Resin. In Encyclopedia of Polymeric Nanomaterials; Kobayashi, S., Müllen, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 1–6. ISBN 978-3-642-36199-9. [Google Scholar]
- Raja, P.R.; Hagood, A.G.; Peters, M.A.; Croll, S.G. Rheological and Morphological Evaluation of Natural Rubber Latex-Based PSAs Containing Waterborne Aliphatic Hydrocarbon Tackifier Dispersions. J. Adhes. 2013, 89, 881–897. [Google Scholar] [CrossRef]
- Barabde, U.V.; Fulzele, S.V.; Satturwar, P.M.; Dorle, A.K.; Joshi, S.B. Film Coating and Biodegradation Studies of New Rosin Derivative. React. Funct. Polym. 2005, 62, 241–248. [Google Scholar] [CrossRef]
- Merusi, F.; Giuliani, F. Chromatic and Rheological Characteristics of Clear Road Binders. Transp. Res. Rec. 2012, 2293, 114–122. [Google Scholar] [CrossRef]
- Petrukhina, N.N.; Bezrukov, N.P.; Antonov, S.V. Preparation and Use of Materials for Color Road Pavement and Marking. Russ. J. Appl. Chem. 2021, 94, 265–283. [Google Scholar] [CrossRef]
- Southern, M. A Perspective of bituminous binder specifications. In Advances in Asphalt Materials; Huang, S.-C., Di Benedetto, H., Eds.; Elsevier: Oxford, UK, 2015; pp. 1–27. ISBN 978-0-08-100269-8. [Google Scholar]
- Singh, A.K.; Panda, B.P.; Mohanty, S.; Nayak, S.K.; Gupta, M.K. Recent Developments on Epoxy-Based Thermally Conductive Adhesives (TCA): A Review. Polym. Plast. Technol. Eng. 2018, 57, 903–934. [Google Scholar] [CrossRef]
- Sorokin, A.E.; Sagomonova, V.A.; Petrova, A.P.; Solov’yanchik, L.V. Thermoplastic-Based Binders for Polymer-Composite Materials (Literature Review). Polym. Sci. Ser. D 2022, 15, 359–365. [Google Scholar] [CrossRef]
- Babić, D.; Burghardt, T.E.; Babić, D. Application and Characteristics of Waterborne Road Marking Paint. Int. J. Traffic Transp. Eng. 2015, 5, 150–169. [Google Scholar] [CrossRef] [Green Version]
- Asdrubali, F.; Buratti, C.; Moretti, E.; D’Alessandro, F.; Schiavoni, S. Assessment of the Performance of Road Markings in Urban Areas: The Outcomes of the Civitas Renaissance Project. Open Transp. J. 2013, 7, 7–19. [Google Scholar] [CrossRef] [Green Version]
- Prakoso, T.; Kumalasari, I.; Jiwandaru, B.; Soerawidjaja, T.H.; Azis, M.M.; Indarto, A. Synthesis of Maleic-Modified Rosin Ester from Pine Rosin. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1143, 012071. [Google Scholar] [CrossRef]
- Fachrodji, A.; Sumarwan, U.; Suhendang, E.; Harianto, H. Perbandingan Daya Saing Produk Gondorukem Di Pasar Internasional. J. Manaj. Agribisnis 1970, 6, 140–151. [Google Scholar]
- Da Silva Rodrigues-Corrêa, K.C.; de Lima, J.C.; Fett-Neto, A.G. Oleoresins from pine: Production and industrial uses. In Natural Products; Ramawat, K.G., Mérillon, J.-M., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 4037–4060. ISBN 978-3-642-22144-6. [Google Scholar]
- Kanerva, M.; Puolakka, A.; Takala, T.M.; Elert, A.M.; Mylläri, V.; Jönkkäri, I.; Sarlin, E.; Seitsonen, J.; Ruokolainen, J.; Saris, P.; et al. Antibacterial Polymer Fibres by Rosin Compounding and Melt-Spinning. Mater. Today Commun. 2019, 20, 100527. [Google Scholar] [CrossRef]
- Prakoso, T.; Putra, I.A.; Handojo, L.; Soerawidjaja, T.H.; Winoto, H.P.; Indarto, A. A Method to Control Terpineol Production from Turpentine by Acid Catalysts Mixing. Heliyon 2020, 6, e04984. [Google Scholar] [CrossRef]
- Maiti, S.; Ray, S.S.; Kundu, A.K. Rosin: A Renewable Resource for Polymers and Polymer Chemicals. Prog. Polym. Sci. 1989, 14, 297–338. [Google Scholar] [CrossRef]
- Aldas, M.; Ferri, J.M.; Lopez-Martinez, J.; Samper, M.D.; Arrieta, M.P. Effect of Pine Resin Derivatives on the Structural, Thermal, and Mechanical Properties of Mater-Bi Type Bioplastic. J. Appl. Polym. Sci. 2020, 137, 48236. [Google Scholar] [CrossRef]
- Karlberg, A.-T.; Hagvall, L. Colophony: Rosin in unmodified and modified form. In Kanerva’s Occupational Dermatology; John, S.M., Johansen, J.D., Rustemeyer, T., Elsner, P., Maibach, H.I., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 1–18. ISBN 978-3-319-40221-5. [Google Scholar]
- Kugler, S.; Ossowicz, P.; Malarczyk-Matusiak, K.; Wierzbicka, E. Advances in Rosin-Based Chemicals: The Latest Recipes, Applications and Future Trends. Molecules 2019, 24, 1651. [Google Scholar] [CrossRef] [Green Version]
- Mao, S.; Wu, C.; Gao, Y.; Hao, J.; He, X.; Tao, P.; Li, J.; Shang, S.; Song, Z.; Song, J. Pine Rosin as a Valuable Natural Resource in the Synthesis of Fungicide Candidates for Controlling Fusarium Oxysporum on Cucumber. J. Agric. Food Chem. 2021, 69, 6475–6484. [Google Scholar] [CrossRef]
- Aldas, M.; Pavon, C.; López-Martínez, J.; Arrieta, M.P. Pine Resin Derivatives as Sustainable Additives to Improve the Mechanical and Thermal Properties of Injected Moulded Thermoplastic Starch. Appl. Sci. 2020, 10, 2561. [Google Scholar] [CrossRef] [Green Version]
- Buisman, G.J.H.; Lange, J.H.M. Arizona Chemical: Refining and upgrading of bio-based and renewable feedstocks. In Industrial Biorenewables; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2016; pp. 21–62. ISBN 9781118843796. [Google Scholar]
- Cho, G.H.P.; Yeong, S.K.; Ooi, T.L.; Chuah, C.H. Glycerol Esters from the Reaction of Glycerol with Dicarboxylic Acid Esters. J. Surfactants Deterg. 2006, 9, 147–152. [Google Scholar] [CrossRef]
- Mardianti, F.T.; Sukaton, S.; Sampoerno, G. Benefit of Glycerine on Surface Hardness of Hybrid & Nanofill Resin Composite. Conserv. Dent. J. 2021, 11, 28. [Google Scholar] [CrossRef]
- Souto, J.C.; Yustos, P.; Ladero, M.; Garcia-Ochoa, F. Disproportionation of Rosin on an Industrial Pd/C Catalyst: Reaction Pathway and Kinetic Model Discrimination. Bioresour. Technol. 2011, 102, 3504–3511. [Google Scholar] [CrossRef] [PubMed]
- Mirabedini, S.M.; Jamali, S.S.; Haghayegh, M.; Sharifi, M.; Mirabedini, A.S.; Hashemi-Nasab, R. Application of Mixture Experimental Design to Optimize Formulation and Performance of Thermoplastic Road Markings. Prog. Org. Coat. 2012, 75, 549–559. [Google Scholar] [CrossRef]
- Wiyono, B.; Tachibana, S.; Tinambunan, D. Reaction of Abietic Acid with Maleic Anhydride and Fumaric Acid and Attempts to Find the Fundamental Component of Fortified Rosin. Pak. J. Biol. Sci. 2007, 10, 1588–1595. [Google Scholar] [CrossRef] [Green Version]
- Luong, S.; Tocheri, M.W.; Hayes, E.; Sutikna, T.; Fullagar, R.; Saptomo, E.W.; Jatmiko; Roberts, R.G. Combined Organic Biomarker and Use-Wear Analyses of Stone Artefacts from Liang Bua, Flores, Indonesia. Sci. Rep. 2019, 9, 17553. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Xu, X.; Niu, M.; Chen, J.; Wen, J.; Bian, H.; Yu, C.; Liang, M.; Ma, L.; Lai, F.; et al. Thermal Stability of Abietic Acid and Its Oxidation Products. Energy Fuels 2019, 33, 11200–11209. [Google Scholar] [CrossRef]
- Wu, S.; Lu, Y.; Hong, Z.; Zhou, H. Improving the Softening and Melting Properties of Ferrous Burden with High Al2O3 Content for Blast Furnace by Ore Blending. ISIJ Int. 2020, 60, 1504–1511. [Google Scholar] [CrossRef]
- Kök, B.V.; Erkuş, Y.; Yilmaz, M. Evaluation of the Cohesive Properties of SBS-Modified Binders at Low Temperatures. Slovak J. Civ. Eng. 2021, 29, 27–34. [Google Scholar] [CrossRef]
- Yalvac, S.; Karjala, T.; Dubois, R.A.; Murphy, M.W.; Dietrichson, S.; Nossen, B.; Stene, I.J.B. Thermoplastic Marking Compositions. WO1999020701A1, 29 April 1999. pp. 1–36. [Google Scholar]
- Smooth-On Inc. Durometer Shore Hardness Scale. Available online: https://www.smooth-on.com/page/durometer-shore-hardness-scale/ (accessed on 4 February 2023).
- Landscapus Inc. AASHTO M249 Thermoplastic Paint. Available online: http://www.landscapusinc.com/road-marking-glass-beads-EN1423-EN1424-BS6088-AASHTO-M247/AASHTO-M249-Thermoplastic-Road-Marking-Paint.html (accessed on 4 February 2023).
- Wang, S. Synthesis of Light-Colored Rosin Glycerol Ester. Holzforschung 2007, 61, 499–503. [Google Scholar] [CrossRef]
Parameter | Road Marking Parameter | ||
---|---|---|---|
Modified Rosin | Unmodified Rosin | Commercial | |
Softening point (°C) | 197 | 158 | 170 |
Hardness (HD) | 66 | 60 | 71 |
Weight loss (mg) | 1.56 | 8.60 | 1.51 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aqsha, A.; Winoto, H.P.; Adhi, T.P.; Adisasmito, S.; Ramli, Y.; Siddiq, L.; Pratama, F.B.; Ramdani, M.R.; Indarto, A. Sequential Esterification—Diels-Alder Reactions for Improving Pine Rosin Durability within Road Marking Paint. Molecules 2023, 28, 5236. https://doi.org/10.3390/molecules28135236
Aqsha A, Winoto HP, Adhi TP, Adisasmito S, Ramli Y, Siddiq L, Pratama FB, Ramdani MR, Indarto A. Sequential Esterification—Diels-Alder Reactions for Improving Pine Rosin Durability within Road Marking Paint. Molecules. 2023; 28(13):5236. https://doi.org/10.3390/molecules28135236
Chicago/Turabian StyleAqsha, Aqsha, Haryo Pandu Winoto, Tri Partono Adhi, Sanggono Adisasmito, Yusrin Ramli, Lathifuddin Siddiq, Fauzi Bhakti Pratama, Mohammad Reza Ramdani, and Antonius Indarto. 2023. "Sequential Esterification—Diels-Alder Reactions for Improving Pine Rosin Durability within Road Marking Paint" Molecules 28, no. 13: 5236. https://doi.org/10.3390/molecules28135236
APA StyleAqsha, A., Winoto, H. P., Adhi, T. P., Adisasmito, S., Ramli, Y., Siddiq, L., Pratama, F. B., Ramdani, M. R., & Indarto, A. (2023). Sequential Esterification—Diels-Alder Reactions for Improving Pine Rosin Durability within Road Marking Paint. Molecules, 28(13), 5236. https://doi.org/10.3390/molecules28135236