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Abstract: Medi-MOF-1 is a highly porous Metal-Organic framework (MOF) constructed from Zn(II)
and curcumin. The obtained crystal was characterized using powder X-ray diffraction (PXRD) and
scanning electron microscopy (SEM). A micrometer-sized crystal with similar morphology was
successfully obtained using the solvothermal method. Thanks to its high surface area, good stability,
and abound pores, the as-synthesized medi-MOF-1 could be used as a functional porous material to
adsorb different gases (Hp, CO,, CHy, and N») and iodine (I). The activated sample exhibited a high
I, adsorption ability of 1.936 g g! at room temperature via vapor diffusion. Meanwhile, the adsorbed
I, could be released slowly in ethanol, confirming the potential application for I, adsorption.

Keywords: Metal-Organic framework; gas sorption; iodine uptake

1. Introduction

With the rapid growth of global energy demand, the pursuit of energy storage tech-
nology has drawn special attention from scientists in recent years [1,2]. Compared to
coal and petroleum, gaseous fuels are more friendly to the environment. However, the
transportation and storage of gaseous fuels is a major challenge for researchers. Therefore,
functional porous materials to capture or separate gas have been investigated, such as
zeolite [3-5], Metal-Organic frameworks [6-8], and porous organic polymers [9,10]. Among
these materials, Metal-Organic frameworks (MOFs), constructed from secondary building
units (SBUs) and organic linkers, have been widely researched in the past decades. Due
to their high porosities, tunable pore sizes, etc., the unique structural advantage of MOFs
has been widely pursued for gas storage and separation [11-14], catalysis [15], chemical
sensing [16-18], and so on. Hydrogen is considered as one of the alternative energy sources
for fossil fuels. With a large surface area and tunable pore structure, MOFs can also provide
unsaturated metal sites for hydrogen sorption [19-21]. At present, growing efforts to
develop MOFs that efficiently capture or separate CO, is desired [22-25]. Compared to
traditional methods, MOFs based on adsorption to capture or separate CO, can reduce
energy consumption, showing great advantages in these technologies. Thus, constructing
an economical and preferable tunable pore structure and pores is highly desirable.

Moreover, MOFs also exhibit potential applications for toxic waste elimination, such
as heavy metal [26], uranium [27], iodine [28-31], and so on. Radioactive iodine 1297 and
31T have a long half-life (1.57 x 107 years), which compounds damage the environment
and human beings. How to dispose the nuclear waste timely and effectively has become
an important issue that needs to be addressed. Although zerovalent iron [32], zeolite [33],
and functionalized clays [34] have been used for radioiodine capture, their low absorption
capacity and less interactive sites with iodine have limited the applications. Thus, MOFs
with designable architecture and excellent properties have been synthesized for iodine
capture. There are two kinds of MOFs for iodine adsorption, including non-iodine MOFs
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and iodine-templated MOFs [35-37]. The presence of iodide groups in the framework can
affect the iodine uptake [38,39]. For example, [(Znl,)3(tpt)z] was constructed with Znl,
nodes with tpt (2,4,6-tris(4-pyridyl)-1,3,5-triazine), which has a good I, loading amount
of 173 wt.% at room temperature, which is similar to reported for Cu-BTC (175 wt.%) [40].
In addition, non-iodine MOFs have been developed and utilized in the field to capture
Ir. [Zr¢O4(OH)4(edb)g]n can uptake iodine by means of chemi- and physisorption [41].
Although the presence of the iodide group in the framework can affect the iodine uptake,
the structure of the organic ligands is too complex, which can make it difficult to obtain in
the synthetic reaction. Hence, choosing a simple ligand and reaction process to construct
porous MOFs for gas and I, sorption is highly needed.

In our previous work [42], medi-MOEF-1 was successfully synthesized using struc-
turally symmetric ligand curcumin with the Zn(Il) ion. In this study, we report on
micrometer-sized porous medi-MOF-1 via large-scale reactions (Scheme 1). Subsequently,
we studied the adsorption properties of medi-MOF-1 for Hp, CO,, CHy, and Ny. It is
revealed that medi-MOF-1 can adsorb 1.57 wt.% H; at 77 K and 1 bar, and displayed
commendable CO, adsorption and selectivity for CO, over CH4 and N; at 273 K. Further-
more, it is worth noting that medi-MOF-1 exhibits an outstanding I, adsorption capacity of
1.936 g g~ 1. It is also revealed that the I, sorption process of medi-MOF-1 is reversible.

(CH;C00),Zn-2H,0 _

Curcumin medi-MOF-1

Scheme 1. The synthetic process of medi-MOF-1.

2. Results
2.1. Physicochemical Properties of Medi-MOF-1

As reported previously by us, medi-MOF-1 crystallizes in the trigonal chiral space
group P3,21. It is constructed by trinuclear clusters and curcumin ligands, leading to
a three-dimensional (3D) porous coordination framework (Scheme 1). In this work, we
synthesized medi-MOF-1 by expanding the reaction by 10 times. Powder X-ray diffraction
(PXRD) of medi-MOF-1 confirmed the phase purity of the bulk crystalline materials due to
the same PXRD pattern with the simulated data (Figure 1b). The pore structure properties
of medi-MOF-1 were characterized at 77 K. The N; adsorption-desorption isotherm of
type-I adsorption curves with a capillary in the low P/Pg region. It confirms that the as-
synthesized medi-MOF-1 is microporous. The adsorption isotherm data were fitted to the
Langmuir equation and gave a surface area of 563 m? g~ (BET surface area: 475 m? g~ 1).
This surface area is similar to nanosized medi-MOF-1 particles but far below the value of
2675 m? g~! reported large size of the crystal [42]. The decreased size and crystallinity
may be the main reason for reducing the BET of medi-MOF-1 [43]. Subsequently, scanning
electron microscopy (SEM) technologies have been widely used to study the morphology
of nanoparticles. Herein, SEM images were recorded for inspecting the morphology and
structure of as-synthesized medi-MOEF-1. As seen in Figure 1c,d, SEM images show that
the prepared solid samples are agglomerated with small nanocrystals which have good
uniformity and dimensional consistency. SEM images showed rod-like crystals of medi-
MOF-1 with a diameter of 0.2 um and length of 1 um which had a similar morphology to
that of larger crystals [42]. According to these results, the as-synthesized medi-MOF-1 can
be successfully synthesized as crystalline powder materials.



Molecules 2023, 28, 5237

30f10

(@) (b)

_J‘.,J.M_—«-»-M*-—A-M_..._

Y PR

~E

T T
10 15 20 25 30 35 40
2 theta (degree)

(d

Figure 1. (a) Trinuclear Zn(II) clusters of medi-MOEF-1 (Zn, green; C, gray; O, red; H are omitted
for clarity.); (b) PXRD patterns of medi-MOF-1 (black, simulated; red, as-synthesized medi-MOF-1);
(c,d) SEM images of the as-synthesized medi-MOF-1.

2.2. Gas Sorption Properties

Much effort has been devoted to hydrogen storage since hydrogen is considered to be
an excellent alternative energy source. In order to test the hydrogen uptake of medi-MOF-1,
the as-synthesized medi-MOF-1 was activated after soaking in the solvent of CH,Cl, for
2 days [44] and heating at 100 °C under vacuum for 8 h. The H, sorption experiments
of activated samples were measured, which showed that the H; uptake of medi-MOEF-1
is as high as 1.57 wt.% at 77 K and 1 atm (Figure 2a), which is similar to bio-MOF-11
constructed from biomolecules solely [45]. We calculated the isosteric heats of adsorption
(Qst) of Hy using the Clausius equation following the fitting of the isotherm data at 77 and
87 K using a virial equation. The initial Qg value for H, of medi-MOF-1 is calculated to
be —6.25 k] mol~! at zero coverage (Figure 2b). Furthermore, the initial Qs value for Hp
of medi-MOF-1 is smaller than that of bio-MOF-11 (—13 k] mol~!) [46,47]. These results
may be attributed to the more metal clusters of bio-MOF-11, for the force of metal clusters
on hydrogen is greater than that of the benzene ring on hydrogen. Additionally, the
Mj;(olz) materials are bioactive frameworks with similar frameworks exhibiting potential
H, storage capacities [48]. The relevant BET data and H, adsorption capacities of the
selected MOFs constructed with biomolecules or drug molecules are summarized and
tabulated in Table S1. The isosteric heat of Znjy(olz) adsorption is similar to medi-MOF-1,
which is lower than other My (olz) frameworks in the series due to fewer open metal sites
in the activated materials.

As we know, the separation of CO; to CH, and N, by porous materials is favorable
in the environment. In this text, we measured the adsorption ability of different gases in
medi-MOF-1. At 273 K and 1 bar, medi-MOF-1 exhibits higher uptake of CO, than CHy4
and Np—which is 34.7 cm3 g=! (1.55 mmol g~!). The datapoint is lower than those of
bio-MOFs constructed with biomolecules [49]. The reason for this phenomenon may be the
fewer adsorption sites in the framework of medi-MOEF-1. The relevant BET data and CO,
adsorption capacities of the selected bio-MOFs are summarized and tabulated in Table 1.
The maximum uptakes of CHy and N, are 13.9 cm® g~ ! and 5.95 cm® g~! at 273 K and
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1 bar, respectively (Figure 3a), which are lower than that of CO, in the same conditions.
Especially, the uptake of CO, for medi-MOF-1 is 2.5 times as large as CHy and 5.8 times as
large as that of N. The adsorption selectivity of CO, relative to CHy and N; was calculated
using Henry’s law before 0.1 bar. Based on Henry’s law, the material shows CO; over N or
CHy adsorption selectivity (Figure 3b), ranking medi-MOEF-1 as better porous adsorbents
constructed from biomolecules for separating CO, from N; [50-52].
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Figure 2. (a) Hydrogen adsorption and desorption isotherms of medi-MOF-1 (red circle at 77 K, blue
triangle at 87 K); (b) the calculated Qs plots for H, uptake in the medi-MOF-1.

Table 1. CO, adsorption data of MOFs for some reported bio-MOFs at 77 K, 1 bar.

BET Pore Volume CO, @273 K

Materials (m2g1) cg ) (cm® g1 Ref.
bio-MOF-1 1680 0.75 76 [49]
bio-MOF-11 1148 0.45 147 [53]
bio-MOEF-12 1008 0.42 100 [53]
bio-MOEF-13 412 0.20 60 [53]
bio-MOF-14 17 0.035 45 [53]
medi-MOF-1 475 - 34.7 This work
40
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Figure 3. (a) CO,, CHy, and N, adsorption isotherms at 273 K for medi-MOEF-1; (b) CO,/CH4 /N,
selectivity for medi-MOF-1 (273 K) calculated using the Henry’s law constants in the linear low
pressure (<0.1 bar) range.

2.3. lodine Uptake and Release

To prevent the presence of radioactive toxic gases in the environment, researchers have
focused on the preparation of selective porous materials. As medi-MOF-1 has developed
porosity and a stable crystalline structure, the I, uptake experiment was carried out in the
vapor phase. Before the adsorption experiments were started, the sample was activated
at 60 °C for 6 h under a vacuum. lodine uptake was measured using the gravimetric
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method. In the vapor phase, 30 mg of medi-MOEF-1 [39] was placed in an I, chamber at
298 K. After 12 h, the color of medi-MOEF-1 changed from orange-red to dark brown. No
further change was observed after 10 h, and the maximum adsorbed amount of I, was as
high as 1.936 g g~ ! (Figure 4a). Compared to other typically porous MOFs usually used
for I, adsorption via vapor diffusion, medi-MOF-1 also exhibits higher I, adsorption. The
relevant BET data and iodine adsorption capacities of the selected MOFs are summarized
and tabulated in Table 2. This result may be attributed to the frameworks with conjugated
mi-electrons, which could produce multiple interactions for iodine [54,55]. Iodine templates
are introduced into the assembly process of MOFs such as (Znl;)s(tpt), at room temperature
in order to affect the uptake capacities of iodine [56]. Owing to medi-MOF-1 can keep
its crystal structure unchanged in ethanol, we soaked 100 mg of medi-MOF-1 crystals in
3 mL of a dry ethanol solution of I, in a sealed glass vial at room temperature. After 48 h,
I, molecules were mostly adsorbed by the free active sites in medi-MOF-1, and no more
free sites were left. There is almost no N; sorption in the low-pressure region after the
incorporation of iodine, indicating that I, completely fills the pores (Figure 4b). A PXRD
study was carried out before and after the I, absorption experiment and proved that the
framework of medi-MOF-1 retained the host framework crystallinity after loading the I,
molecules (Figure 4c). Thermogravimetric analysis (TGA) was performed to check the I,
loading amount. The [, @MOF showed a weight loss of ~52% from 100 to 500 °C (Figure 4d).
Combined with the thermogravimetric curve and the molecular formula of medi-MOF-1,
it can be calculated as 500 mg of iodine per gram of MOF. Compared to other porous
MOFs usually used for I, adsorption via solution-based processes in ethanol, medi-MOF-1
also exhibits higher iodine adsorption than JLU-Liu14 [57,58]. The high loading of I, for
medi-MOF-1 can be attributed to the different pore sizes of these MOFs and the possible
interaction between the porous skeleton and I.
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Figure 4. (a) Iodine vapor adsorption curves at 298 K under ambient pressure for medi-MOF-1;
(b) N, adsorption and desorption isotherms of activated medi-MOF-1 (red), [;@medi-MOEF-1 (blue).;
(c) PXRD patterns of activated medi-MOEF-1(black), and [ @medi-MOF-1 (red); (d) the TGA curve of
I,@medi-MOF-1.
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Table 2. Iodine adsorption capacities in MOFs via vapor diffusion.
. BET Pore Volume Iodine Uptake

Materials m2g1) (cm® g1) (Wt%) Ref.
Cu-BTC 1850 0.74 175 [40]
ZIF-8 1630 0.66 125 [54]
(Znly)3(tpt)2 - - 173 [56]
ZI‘604(OH)4(SdC)6 2900 1.33 107 [59]
Z1604(OH)4(peb)g 2650 1.16 279 [59]

medi-MOF-1 475 - 193 This work

From the point of view of recyclability, the I, desorption from the porous framework
is also essential. The I, release process was detected by UV-visible (UV-vis) spectra. The
captured I, could be easily separated from the frameworks upon immersion in I-loaded
medi-MOF-1 in ethanol. A UV-vis spectrophotometer recorded the release of I, from the
medi-MOF-1 framework at different times at room temperature. When the I,@medi-MOF-1
was soaked in dry ethanol, the color of the iodine-loaded sample changed gradually from
dark brown to orange-red. Afterwards, the release slows down and subsequently, the color
of the ethanol solution changes from colorless to yellow. As illustrated in Figure 5, UV-vis
spectra show absorption bands at Amax = 218 and 263 nm, which can be attributed to I,.
And the band observed at 263 nm may be assigned to polyiodide ions (I3 ™), established
due to the reaction of I, with decomposed iodide. The release of iodine increased with time,
suggesting that this desorption behavior of iodine is based on host-guest interactions. This
adsorption and release of I by medi-MOF-1 reveals that the I, sorption process of the MOF
is reversible.
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Figure 5. Up: Photographs of the time-dependent I, desorption process by medi-MOEF-1 in ethanol;
below: UV-vis spectra for I, release from medi-MOF-1 in ethanol.

3. Materials and Methods
3.1. Materials and General Methods

All reagents were obtained from commercial sources and used as received. All the
other chemical reagents used were of AR grade. PXRD was collected on a Rigaku D/Max
2550 X-ray diffractometer with Cu-K« radiation (A = 1.5418 A). FT-IR spectra were obtained
by a Nicolet Impact 410 Fourier-transform infrared spectrometer in the 400-4000 cm ! range
with KBr pellets. TGA was performed under an air atmosphere in the range of 30-800 °C
at a heating rate of 10 °C min~! using a Perkin-Elmer TGA 7 thermogravimetric analyzer.
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Gas adsorption and desorption isotherms were measured on Quantachrom Autosorb-iQ
after degassing the sample for 8 h at 100 °C. H;, adsorption tests were performed at 77 and
87 K. CO,, CHy4, and N, adsorption tests were performed at 273 K. The morphologies of the
powder materials were recorded using a JEOL-JSM-6700F field-emission scanning electron
microscope (SEM).

3.2. Synthesis of Medi-MOF-1 and lodine-Loaded Medi-MOF-1

Medi-MOF-1 have been produced on a large scale. A mixture of Zn(OAc),-2H,O
(200 mg, 0.9112 mmol), curcumin (600 mg, 1.6287 mmol), N,N-dimethylformamide (40 mL),
and ethanol (10 mL) was sealed into a 100 mL capped vessel. The vessel was heated at
75 °C. The crystals were obtained after 5 days and washed with DME. Yield: 55% (based
on curcumin). Iodine uptake experiment was carried out via vapor diffusion and solution
phase. A 100 mg sample was immersed in an ethanol solution of iodine. The complete
absorption experiment was done at room temperature for 48 h.

4. Conclusions

In summary, we report on large-scale reactions to synthesize medi-MOEF-1 toward the
capture of I and gas sorption. We utilized medi-MOEF-1 based on curcumin, which displays
an interesting and important ability to capture I, (1.936 g g !) at room temperature. The
medi-MOF-1 microcrystals have lower Langmuir specific surface areas than previously
published medi-MOF-1. In particular, it is amongst the more efficient porous materials for
I, adsorption. Furthermore, medi-MOF-1 also exhibits hydrogen adsorption capacities of
1.57 wt.% at 77 K and 1 bar. The adsorption capacity of CO, by activated medi-MOF-1 is
greater than that of CH4 and N; at 273 K, and the selectivities of CO, /Nj and CO,/CHy are
5.8 and 2.5, respectively. This study aims to provide material for the potential application
of I adsorption as well as gas adsorption and separations.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390 /molecules28135237/s1, Figure S1: The fitting data for calculating
the H2 Qst value for medi-MOF-1; Figure S2: FI-IR of medi-MOF-1 and medi-MOF-1@I2; Figure S3:
Up: visual color change of iodine solution in ethanol 12 adsorption progress of medi-MOF-1, Below:
Photographs showing the color change iodine capture for medi-MOF-1; Table S1: Summary of H2
uptake and Qg value for some reported MOFs at 77K, 1bar.
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