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Abstract: Automobile driver information as displayed on marked road signs indicates the state of
the road, traffic conditions, proximity to schools, etc. These signs are important to insure the safety
of the driver and pedestrians. They are also important input to the automated advanced driver
assistance system (ADAS), installed in many automobiles. Over time, the arrow-road markings may
be eroded or otherwise damaged by automobile contact, making it difficult for the driver to correctly
identify the marking. Failure to properly identify an arrow-road marker creates a dangerous situation
that may result in traffic accidents or pedestrian injury. Very little research exists that studies the
problem of automated identification of damaged arrow-road marking painted on the road. In this
study, we propose a method that uses a convolutional neural network (CNN) to recognize six types
of arrow-road markings, possibly damaged, by visible light camera sensor. Experimental results with
six databases of Road marking dataset, KITTI dataset, Málaga dataset 2009, Málaga urban dataset,
Naver street view dataset, and Road/Lane detection evaluation 2013 dataset, show that our method
outperforms conventional methods.

Keywords: arrow-road marking recognition; convolutional neural network; damaged arrow-road
marking; visible light camera sensor; advanced driver assistance system (ADAS)

1. Introduction

Within the automotive industry, the advanced driver assistance system (ADAS) technology, in
existence for many years, is now adding enhanced automated function that provides the driver and
passengers with a higher level of safety and comfort relative to current ADASs.

An ADAS includes a variety of functions, e.g., automated cruise control, adaptive light control,
parking assistance, collision avoidance, rear view, blind spot detection, driver drowsiness alert, global
positioning system (GPS) navigation, lane departure warning, and intelligent speed control. Several
of these technologies have been researched and are now implemented and integrated within many
automobiles from a variety of manufacturers. In many cases, the results are an improved driving
experience and better road safety. With an ADAS installed, a driver constantly receives visual images
of the road and surroundings. The primary purpose of the road markings is to alert the driver or
pedestrian relative to potential hazards and provide guidance, rules, or directions to drivers and
pedestrians. In order to integrate the road marking recognition and reaction process within an ADAS,
it is necessary to provide an automated visual recognition system for all road markings and implement
timely responses to these markings, either by providing advice to the driver or, unilaterally, controlling
the car to take the appropriate action.
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Automatic recognition of road markings is a challenging problem to solve and integrate into an
automotive vision system. Unlike traffic signs, road markings exist on road surfaces and they can be
easily damaged. For example, directional arrows, numbers, and word messages are more likely to be
damaged than traffic signs because the paint on the marking is eroded by vehicular traffic over time.
A human brain is quite skilled at analyzing this information and can respond in a timely manner with
an appropriate series of actions. However, in order to recognize damaged or indistinguishable road
markings with a high degree of accuracy, a computer vision system must support very small response
times and a high sensitivity to the field of vision. In the next Section, we provide detailed explanations
of previous work in this research area.

2. Related Works

The problem of automated recognition of road markings has been studied by many researchers.
Previous researchers used various image processing techniques to recognize road markings and
signs [1–4]. For example, Foucher et al. [5] presented a method of detection and recognition of lane,
crosswalks, arrows, and several related road markings, all painted on the road. They propose a road
marking recognition method that consists of two steps: (1) extraction of marking elements; and (2)
identification of connected components based on single pattern or repetitive rectangular patterns.

The template matching method was also used to implement road marking recognition. In [6],
the maximally stable extremal regions (MSERs) were used to detect a region of interest (ROI) of road
marking. In order to classify road markings, a histogram of oriented gradient (HOG) features and
template matching methods was used. This method was proposed to detect and classify text and
symbols; the results show a false positive rate of 0.9% and a true positive rate of 90.1%. Another
template matching-based method was proposed in [7] for the recognition of road markings. Through
the augmented transition network (ATN), the lanes are detected. Next, these lanes are used to
establish the ROI that determines the boundaries in which the road markings, such as arrows, are
located. Detected lanes that are valid are mostly used as a guide to detect markings. Ding et al. [8]
presented a method for detection and identification of road markings. The researchers use HOG
features and a support vector machine (SVM) to identify and classify five road markings. The method
presented by Greenhalgh et al. [9] also used HOG features and a SVM for recognition of symbol-based
road markings.

Text-based road-signs are recognized by an optical character recognition (OCR) method [1,10,11].
The system can recognize any random text word that might appear. In [12], a method was proposed that
uses a Fourier descriptor and k-nearest neighbor (KNN) algorithm for recognition of road markings.
In the fields of speed limit sign recognition, lane detection and traffic-sign detection and recognition,
researchers have proposed techniques using an artificial neural network. One road-sign recognition
algorithm is based on a neural network that uses color and shape information with back propagation,
for the recognition of Japanese road signs [13]. In addition, the researchers used template matching
and neural networks to recognize the road markings. The back propagation method is used as the
learning method in a hierarchical neural network. The results show that the accuracy of the template
matching algorithm remained lower than the accuracy of the neural network algorithm. Another
approach to road-sign recognition is an earlier solution that uses artificial neural networks for the
Bengali textual information box [14]; the results show a recognition accuracy of 91.48%.

While research of road-sign recognition using neural networks has been quite active, few research
studies of road marking recognition using neural networks are available in the literature. One of the
earliest methods for the recognition of arrow-marking was proposed by Baghdassarian et al. [15].
This research generated arrow-marking candidates through image binarization, and used a neural
network with a chain code comparison for arrow classification. Another proposal uses a neural
network to recognize road markings [16]. The researchers used the back propagation method as the
learning method in a hierarchical neural network. They performed their experiments over six types of
white road markings (turn left, turn right, turn left straight, turn right straight, straight, and crosswalk)
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and five orange road markings (30 km, 40 km, 50 km, 60 km, and U-turn ban). The experimental
results showed that the average accuracy of recognition of white road markings was about 71.5%,
while the average accuracy of recognition of orange markings was about 46%. Another research study
proposed a method for detection and recognition of text and road marking [17]; this study extracts
the shape-based feature vector from the candidates of road marking, and a neural network is used for
classification of road marking. This approach shows a successful recognition rate of approximately 85%
for arrows and 81% for the 19 dictionary words/text patterns. In [18], another machine learning-based
method is proposed to detect and classify road markings. In this case, a binarized normed gradient
(BING) and a principal component analysis (PCA) network with a SVM classifier were used for object
detection and classification, respectively. In [19], the researchers used HOG features and a total error
rate (TER)-based classifier for road marking classification; this resulted in an overall classification
accuracy of 99.2%.

The arrow-road markings on a road surface typically become illegible or unidentifiable as the
car tires erode the paint on the marking. Although this makes it difficult to correctly recognize the
arrow-road marking, and represents an important problem but there is little research activity in the
recognition of this type of damage to arrow-road markings. We propose to fill this research void
and introduce a method that uses a convolutional neural network (CNN) to recognize six types of
road markings of arrows, including damaged arrow-markings on the road surface. Recently, deep
learning-based methods such as deep neural networks and CNNs have shown encouraging results
in the field of computer vision and pattern recognition. Convolution can allow image-recognition
networks to function in a manner similar to biological systems and produce more accurate results [20].
In recent works, a CNN has also been used for detection and classification of traffic signs [21], lane
detection [22], and lane position estimation [23]. However, there is no previous research documenting
studies of arrow-road marking recognition based on a CNN.

Hence, we propose a method based on a CNN to recognize damaged arrow-road markings
painted on the road. The CNN-based method is a new CNN application for the recognition of
the painted arrow-road marking. Our system will also provide useful results that are not affected
by partial occlusions, perspective distortion, or shadow or lighting changes. We expect that this
method will provide good results in conditions of poor visibility and other conditions that may inhibit
collecting good-to-excellent images of the environment. Compared to the state of the art, our research
is innovative in the following three ways.

- We propose a CNN-based method to recognize painted arrow-road markings. This method is
new as it is not reported in the state of the art. Our method results in high accuracy of recognition
and it is robust to the image quality of arrow-road marking.

- Our method is capable of recognizing severely damaged arrow-road markings. It also
demonstrates good recognition accuracy in a variety of lighting conditions, such as shadowed,
dark and dim arrow-road marking images that are not easily recognized.

- We used six datasets (Road marking dataset, KITTI dataset, Málaga dataset 2009, Málaga urban
dataset, Naver street view dataset, and Road/Lane detection evaluation 2013 dataset) for CNN
training and testing. These datasets were obtained from different countries, each with a diverse
environment. The arrow-road markings of each dataset have different sizes and different image
qualities. Through the intensive training of a CNN using these datasets, our method demonstrates
robust performance that is independent of the nature of the datasets.

The comparisons of previous and proposed research related to road marking recognition are
presented in Table 1.

The remainder of this paper is organized as follows. In Section 3, our proposed system and
methodology are introduced. The experimental setup and results are presented in Section 4. Section 5
includes both our conclusions and discussions on some ideas for future work.
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Table 1. Comparisons of previous and proposed methods.

Category Methods Advantages Disadvantages Performance Year Ref.

Non-learning-based

Geometric parameter
optimization Fast processing speed The number of thresholds to be set is large True positive rate (TPR) of 90% and 78% for

crosswalks and arrows, respectively 2011 [5]

HOG features and template
matching

A good ability to cope with the
cases of limited occlusions and the
variations of lighting condition

- In bright conditions, system is sensitive
to shadows

- High FPR for simple but important signs
such as forward arrows

TPR of 90.1% and false
positive rate (FPR) 0.9% 2012 [6]

Template matching Fast processing speed
Damaged road marking can cause
misclassification, and the classification accuracy
is affected by the illumination variation

Detection rate of 95.8% and 84% on the
highway and city roads, respectively 2012 [7]

Learning-based

HOG features and total
error rate (TER)-based
classifier

Fast computing time compared to
SVM-based method Damaged or shadowed markings increase FPR Overall classification accuracy of 99.2% 2015 [19]

HOG features and SVM Showing high accuracy with the
trained datasets

Recognition accuracy can be affected by
damaged or shadowed markings

Quantitative accuracies were not reported 2015 [8]

F-measure of 0.91 2015 [9]

Average accuracy of 91.7% 2014 [24]

Fourier descriptor and
KNN classifier Robust to noises on road marking Sensitive to occlusion, dirty markings or poor

visibility Average error of 6% 2004 [12]

Artificial Neural Network
Higher accuracy with trained
datasets compared to
non-learning-based method

Performance of testing data can be affected by
trained dataset

Quantitative accuracies were not reported 1994 [15]

The average accuracy of white markings is
about 71.5%, and for orange markings it
was about 46%

2014 [16]

Accuracy of 85% for arrows 2012 [17]

BING, PCA network, and
SVM classifier

The area of road marking can be
detected by BING method without
lane detection

Performance of testing data can be affected by
trained dataset Accuracy of 96.8% 2015 [18]

Proposed method (CNN)

Arrow-road markings in various
environments including damaged
ones can be correctly recognized
independent of the kinds of datasets
by intensive training of CNN

Time consuming procedure for training is
required for CNN

Average accuracy and F_score are 99.88%
and 99.94%, respectively
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3. Proposed Method for the Recognition of Arrow-Road Markings

3.1. Overall Flowchart of Proposed Method

In Figure 1, we show the overall flowchart of our method. As the 1st step, an arrow-road marking
image is inputted, and its size is normalized into the image of 265 × 137 pixels in height and width,
respectively (Step (2) in Figure 1). This is because the size of input image to CNN should be same.
Then, the normalized image is used as input to pre-trained CNN, and based on the output of CNN, the
input arrow-road marking image is determined as one of six arrow-road markings. In our research, six
types of arrow-road markings are recognized, such as forward arrow (FA), forward-left arrow (FLA),
forward-left-right arrow (FLRA), forward-right arrow (FRA), left arrow (LA), and right arrow (RA).
Detailed explanations of CNN structure are shown in Sections 3.2–3.4.
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Figure 1. Overall flowchart of proposed method.

3.2. Architecture of the CNN

In our research, we introduce an arrow-road marking recognition method based on a CNN [25].
The entire process of our CNN architecture is shown in Table 2 and Figure 2. The network consists
of the following specific layers: (1) three convolutional layers, each with: (2) a rectified linear unit
(ReLU) layer; (3) a cross channel normalization (CCN) layer; and (4) a max pooling layer. A heap of
convolutional layers is followed by four fully connected layers. Each fully connected layer is followed
by a ReLU layer for the first three fully connected layers. A dropout layer is inserted before the fourth
fully connected layer, which is then followed by a softmax layer and a classification layer. In the
following subsections, we describe each of these layers in detail.
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Table 2. The CNN architecture used in our research.

Layer Type Number of
Filters Size of Feature Map Size of

Kernel
Number
of Stride

Image input layer 265 (height) × 137 (width)
× 1 (channel)

1st convolutional layer 180 131 × 67 × 180 [5 5] [2 2]
ReLU layer
CCN layer
Max pooling layer 180 65 × 33 × 180 [3 3] [2 2]

2nd convolutional layer 250 31 × 15 × 250 [5 5] [2 2]
ReLU layer
CCN layer
Max pooling layer 250 15 × 7 × 250 [3 3] [2 2]

3rd convolutional layer 250 7 × 3 × 250 [3 3] [2 2]
ReLU layer
CCN layer
Max pooling layer 250 3 × 1 × 250 [3 3] [2 2]

1st fully connected layer 1920
ReLu layer

2nd fully connected layer 1024
ReLu layer

3rd fully connected layer 512
ReLu layer
Dropout layer

4th fully connected layer 6
Softmax layer
Classification layer (output layer)

3.3. Feature Extraction by Three Convolutional Layers

We use gray-scale images as the input whose height and width are 265 and 137 pixels, respectively.
Therefore, the first convolutional layer requires 265 × 137 × 1, and it is convolved with 180 filters
having size 5 × 5 × 1 at stride two. In this case, the number of weights per filter is 5 × 5 × 1 = 25, and
the total number of parameters in the convolution layer is (25 + 1) × 180 = 4680, such that 1 represents
the bias. The size of the feature map is 131 × 67 × 180 in the first convolutional layer, such that 131 and
67 are the output height and width, respectively, calculated based on (output height (or width) = (input
height (or width) − filter height (or width) + 2 × padding)/stride +1 [26]). The outputs pass through
the ReLU layer and a cross channel normalization layer. After processing by the max pooling layer
with filters of size 3 × 3 applied with a stride of two, every depth slice in the input is down-sampled
by two along height and width. Therefore, the output of the max pooling layer is calculated as 65
((131 − 3 + 2 × 0)/2 + 1) × 33 ((67 − 3 + 2 × 0)/2 + 1) × 180, based on the equation (output height
(or width) = (input height (or width) − filter height (or width) + 2 × padding)/stride +1 [26]). The
depth dimension remains unchanged at 180 after the max pooling operation. The size of the feature
map after the max pooling layer is 65 × 33 × 180, and this is convolved with the second convolutional
layer that uses 250 filters, each having size 5 × 5. This is followed by the max pooling layer with filters
of size 3 × 3, applied with a stride of two that reduces the size of the feature map. Then, the third
convolutional layer also has 250 filters, each having size 3 × 3 at stride two. After applying another
max pooling layer with filters having size 3 × 3 with a stride of two pixels, the output is represented
by 750 (=3 × 250) feature maps, which are used as the inputs to the first fully connected layer.
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3.4. Classification by Four Fully Connected Layers

Our CNN structure consists of four fully connected layers. The first fully-connected layer has
750 and 1920 nodes for input and outputs, respectively. The output values pass through a ReLU layer.
The second fully connected layer has 1920 and 1024 nodes for input and outputs, respectively. The
third fully connected layer has 1024 and 512 nodes for input and outputs, respectively. The dropout
technique is applied before the fourth fully connected layer [20,25,27], which randomly sets to zero
the output of each hidden node based on a predetermined probability. In our research, we used the
optimal probability of 0.65 obtained from experiments. Then, the fourth fully connected layer has 512
and 6 nodes for input and outputs, respectively. Through the softmax function [25], the final output
can be obtained.

4. Experimental Results

4.1. Experimental Data and Environment

As shown in Figures 3–8, we used the Road marking dataset [6,28], KITTI dataset [29,30], the
Málaga dataset 2009 [31], the Málaga urban dataset [32], the Naver street view dataset [33], and the
Road/Lane detection evaluation 2013 dataset [34] to generate our training and testing data. Each
dataset has different image sizes with various illumination and shadow attributes. Six types of
arrow-road markings were obtained from the images of these datasets. They are classified into six
categories: FA, FLA, FLRA, FRA, LA, and RA.
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The datasets were created from different cameras positioned to capture various orientations and
perspectives. Therefore, we first applied an inverse perspective mapping (IPM) transform [35] to
convert the images to IPM, from which the arrow-markings were obtained. Since each dataset requires
different information regarding camera position and orientation, different geometric parameters were
used for each dataset when converting the images to IPM images. The perspective transformation
matrix was calculated for each dataset, and the IPM image was obtained as shown in Figure 9b. Then,
arrow-markings were obtained from the images as shown in Figure 9c.
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We can see the examples of arrow markings in Figure 10. In order to use the training and testing
of our CNN, we set the size of all of the arrow marking images to 194 × 94 pixels in height and width,
respectively, by size normalization and bi-linear interpolation. As shown in Figure 10, the arrow
markings from six datasets including various illumination change, shadow, and severe damage, were
used for training and testing of the CNN.
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Previous CNN research indicated that a large number of training datasets plays a very important
role in enhancing the recognition performance of the CNN [27]. Given this knowledge, we performed
data augmentation from the original arrow marking images by executing shifting and mirroring
operations on the region of the arrow marking in order to obtain a large amount of data. Using these
results, we increased the data size by a factor of 98, and 163,809 arrow-road marking images were
obtained, as shown in Table 3. The numbers of each arrow marking image are also shown in Table 3.

Table 3. Number of data for our experiments.

FA FLA FLRA FRA LA RA Total

Number of data 32,686 17,885 22,344 17,885 36,766 36,243 163,809

Training and testing were performed on a desktop computer configured with an Intel® Core™
i7-6700 CPU @ 3.40 GHz (4 CPUs) [36], memory of 64 GB, and Graphics card of NVIDIA GeForce GTX
TITAN X (3072 CUDA cores) with memory of 12 GB (NVIDIA, Santa Clara, CA, USA) [37].

4.2. Training

We applied a MATLAB implementation [38] to train the CNN model. Through bi-linear
interpolation, the experimental image, with a size of 194 × 94 pixels, was resized to 265 × 137 pixels of
8 bit gray, and then used for the CNN training and testing. For experiments, we performed a 13-fold
cross validation. That is, among the entire dataset of 163,809 images, 92.7% (151,809 images) and 7.3%
(12,000 images) were randomly selected for training and testing, respectively, and thirteen iterations of
this procedure were executed. Using these results, we measured the average accuracy of recognition of
an arrow marking. Our training process iterated over 10 epochs, performing 1200 iterations for each
epoch. The initial learning rate was 0.01 with a learn-rate-drop factor of 0.1 after every 25 epochs. The
classification accuracies of the training data, according to the training epoch when performing the
13-fold cross validation, are shown in Figure 11. Figure 11 also shows that the classification accuracy
of 100% was obtained in each training case of the 13-fold cross validation.
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Figure 11. Classification accuracies of training data over 13-fold cross validation; “classifications”
means “classification accuracy of training data”: (a) Training 1–3; (b) Training 4–6; (c) Training 7–9;
(d) Training 10–13.

In Figure 12, we show the obtained filters from the 1st convolution layer through training.
As shown in the Table 2, the size of each filter is 5 × 5 and the number of filter is 180. For higher
visibility, each filter is increased into 25 × 25 pixels by bi-linear interpolation. Because the number
of filter is 180, the last two (right-bottom) squares among 182 (=14 × 13) squares do not present the
obtained filters and they are shown as black color.
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4.3. Testing: Measuring the Accuracies of Arrow-Road Marking Recognition

With the trained CNN and testing data, we measured the accuracies of recognition of arrow-road
marking. Table 4 shows the summated confusion matrix of tests 1–13. The results showed that the
classification results are consistent and highly accurate for arrow-road marking recognition. In the
case of LA, the recognition failure rate was higher than that of other classes. Most of these failed LA
cases were recognized as a RA.

Table 4. The summated confusion matrix of tests 1–13.

Total of Testing 1–13
Recognized Arrows

FA FLA FLRA FRA LA RA

Actual
arrows

FA 31,447 1 0 1 0 2
FLA 0 18,101 0 1 0 0

FLRA 21 0 22,254 0 0 0
FRA 0 0 0 18,824 24 0
LA 1 0 0 0 33,334 210
RA 0 0 0 0 0 31,779

We then measured the accuracies of the arrow marking recognition using Equations (1)–(4) [39].
#TN, #TP, #FN and #FP represent, respectively, the number of true negatives (TNs), true positives
(TPs), false negatives (FNs) and false positives (FPs). TN represents the case such that the arrow
marking excluded in the input image is correctly unrecognized, whereas TP represents the case such
that the arrow marking in the input image is correctly recognized. FN represents the case such that the
arrow marking in the input image is incorrectly unrecognized, whereas FP is the case where the arrow
marking excluded in the input image is incorrectly recognized. The minimum and maximum values
of PPV, TPR, ACC, and F_score are 0% and 100%, respectively, such that 0% and 100% represent the
lowest and highest accuracies, respectively. As shown in Table 5, our method can correctly recognize
the arrow markings from various datasets including illumination changes, and shadow and damage at
an accuracy rate higher than 99.8%.

Positive predictive value (PPV) =
#TP

#TP + #FP
(1)

True positive rate (TPR) =
#TP

#TP + #FN
(2)

Accuracy (ACC) =
#TP + #TN

#TP + #TN + #FP + #FN
(3)

F_score = 2 × PPV × TPR
PPV + TPR

(4)

Table 5. Accuracies of arrow marking recognition by our method (unit: %).

# of Testing FA FLA FLRA FRA LA RA

Testing 1 ACC 100 100 100 100 99.45 100
F_score 100 100 100 100 99.72 100

Testing 2 ACC 100 100 100 100 99.44 100
F_score 100 100 100 100 99.72 100

Testing 3 ACC 99.91 100 100 100 99.05 100
F_score 99.96 100 100 100 99.52 100

Testing 4 ACC 100 100 100 100 99.02 100
F_score 100 100 100 100 99.51 100
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Table 5. Cont.

# of Testing FA FLA FLRA FRA LA RA

Testing 5 ACC 100 100 100 100 99.12 100
F_score 100 100 100 100 99.56 100

Testing 6 ACC 100 100 100 100 99.41 100
F_score 100 100 100 100 99.70 100

Testing 7 ACC 99.96 100 100 100 99.34 100
F_score 99.98 100 100 100 99.67 100

Testing 8 ACC 100 100 100 99.11 100 100
F_score 100 100 100 99.55 100 100

Testing 9 ACC 100 100 100 100 99.44 100
F_score 100 100 100 100 99.72 100

Testing 10 ACC 99.96 100 100 100 99.48 100
F_score 99.98 100 100 100 99.74 100

Testing 11 ACC 100 100 99.22 100 100 100
F_score 100 100 99.61 100 100 100

Testing 12 ACC 100 100 100 100 99.44 100
F_score 100 100 100 100 99.72 100

Testing 13 ACC 100 99.93 100 100 98.99 100
F_score 100 99.96 100 100 99.49 100

Average ACC 99.99 99.99 99.94 99.93 99.40 100
99.88

Average F_score 99.99 99.997 99.97 99.97 99.70 100
99.94

In the next experiment, we compared the accuracies of our method with those of the previous
method [40]. As shown in Table 6, our method outperforms the previous method.

Table 6. Comparisons of accuracies of recognition of arrow marking by our method with previous
method (unit: %).

Our Method Previous Method [40]

Average ACC 99.88 92.8
Average F_score 99.94 93.9

In Figure 13, we show the examples of correct recognition cases, which show that our method
can correctly recognize the arrow markings even in the case of being severely damaged. In addition,
the examples of incorrect recognition cases are shown in Figure 14. As shown in Figure 14, most
of the incorrect recognition is due to the low image quality by image blurring, severe shadow and
bright sunlight.
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Figure 14. Examples of incorrect recognition cases: (a) FA is incorrectly recognized into FLA;
and (b,c) LA is incorrectly recognized into RA.

Other reason of the confusions is as follows. The largest confusions occur between LA (left arrow)
and RA (right arrow) (210 samples of LA are incorrectly recognized into RA as shown in Table 4).
This is caused by the structure of our CNN of Table 2 and Figure 2. As shown in Table 2, through the
1st–3rd convolutional layer, the size of feature maps is reduced (from 265 (height) × 137 (width) pixels
to 3 (height) × 1 (width) pixels), which means that the height and width of one feature map become 3
and 1 pixels, respectively, in the max pooling layer of the 3rd convolutional layer. Because the width of
feature map is just 1 pixel, the LA and RA show similar patterns each other in this feature map, which
increases the largest confusions between LA and RA. Same cases happen between FLRA and FA in
addition to FRA and LA as shown in Table 4.

To solve this problem, we revised our CNN structure to obtain 3 (height) × 2 (width) pixels in
the max pooling layer of the 3rd convolutional layer of Table 2. Because the width of feature map
is 2 pixels, the LA and RA (FLRA and FA in addition to FRA and LA) can show different patterns
from each other in this feature map. As shown in Table 7, the confusions between LA and RA by our
revised CNN are greatly reduced from 210 to 13. In addition, the confusions between other arrow-road
markings are removed. Consequently, average ACC and F_score by revised CNN are higher than
those by original CNN as shown in Tables 6 and 8.

Table 7. The summated confusion matrix by revised CNN.

Total of Testing 1–13
Recognized Arrows

FA FLA FLRA FRA LA RA

Actual
arrows

FA 31,451 0 0 0 0 0
FLA 0 18,102 0 0 0 0

FLRA 0 0 22,275 0 0 0
FRA 0 0 0 18,848 0 0
LA 0 0 0 0 33,532 13
RA 0 0 0 0 0 31,779

Table 8. Accuracies of recognition of arrow marking by revised CNN (unit: %).

Our Method

Average ACC 99.99
Average F_score 99.99

5. Conclusions

In this research, we proposed a method to recognize damaged arrow markings residing on a
road. We deployed a CNN and collected training and testing data from various types of datasets. We
trained the CNN to recognize arrow markings in the presence of varying illumination, and shadow and
damage conditions. A simple CNN was designed and then trained using various “raw” datasets, i.e.,
the datasets were not preprocessed for noise removal, contrast normalization, or brightness correction.
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The experimental results demonstrate that the accuracy of recognizing arrow markings by the proposed
method was consistently higher and more reliable, relative to the previous method.

In the future, we plan to implement and integrate our method on an actual automobile, and
measure the performance while driving the car. We will then compare the accuracy of our method
with the accuracies of other known CNN implementations.
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