Effect of Mg-Modified Waste Straw Biochar on the Chemical and Biological Properties of Acidic Soils
Abstract
:1. Introduction
2. Results
2.1. Effect on Soil pH
2.2. Effect on Soil-Available Potassium Concentration
2.3. Effect on Soil-Available Phosphorus Concentration
2.4. Effect on Soil Alkali-Hydrolysed Nitrogen Concentration
2.5. Effect on Total Soil Nitrogen Concentration
2.6. Effect on Soil Total Phosphorus Concentration
2.7. Effect on Soil Organic Carbon Concentration
2.8. Effect on Soil Exchangeable Calcium Concentration
2.9. Effect on Exchangeable Magnesium Concentration in Soil
2.10. Effect on Soil Cation Exchange Capacity
2.11. Effect on Soil Microbial Biomass Carbon and Microbial Biomass Nitrogen
3. Discussion
4. Materials and Methods
4.1. Preparation of Modified Biochar
4.2. Laboratory Simulated Soil Test
4.2.1. Soil Sampling
4.2.2. Detection of Soil Properties
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Sun, H.; Zhang, T.; Wang, X. Land Degradation and Its Evaluating Methodology. J. Agro-Environ. Sci. 2001, 20, 283–285. [Google Scholar]
- Xu, R.; Li, J.; Zhou, S.; Shen, R. Scientific issues and controlling strategies of soil acidification of croplands in China. Bull. Chin. Acad. Sci. 2018, 33, 160–167. [Google Scholar]
- Zhang, F. Status and effects of soil acidification on agricultural land in China. Democr. Sci. 2016, 28, 26–27. [Google Scholar]
- Zhao, F.; Ma, Y.; Zhu, Y.; Tang, Z.; McGrath, S. Soil contamination in China: Current status and mitigation strategies. Environ. Sci. Technol. 2015, 49, 750–759. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Cao, M.; Jiang, C.; Zheng, Y.; Zhang, C.; Wei, J. Adsorption and coadsorption mechanisms of Hg2+ and methyl orange by branched polyethyleneimine modified magnetic straw. Mater. Lett. 2018, 229, 160–163. [Google Scholar] [CrossRef]
- Nguyen, V.T.; Nguyen, T.B.; Chen, C.W.; Hung, C.M.; Vo, T.D.; Chang, J.H.; Dong, C.D. Influence of pyrolysis temperature on polycyclic aromatic hydrocarbons production and tetracycline adsorption behavior of biochar derived from spent coffee ground. Bioresour. Technol. 2019, 284, 197–203. [Google Scholar] [CrossRef]
- Hasan, Z. A new approach to soil solarization: Addition of biochar to the effect of soil temperature and quality and yield parameters of lettuce, (Lactuca Sativa L. Duna). Sci. Hortic. 2018, 228, 153–161. [Google Scholar]
- He, K.; He, G.; Wang, C.; Zhang, H.; Xu, Y.; Wang, S.; Kong, Y.; Zhou, G.; Hu, R. Biochar amendment ameliorates soil properties and promotes Miscanthus growth in a coastal saline-alkali soil. Appl. Soil Ecol. 2020, 155, 103674. [Google Scholar]
- Šimanský, V.; Horák, J.; Bordoloi, S. Improving the soil physical properties and relationships between soil properties in arable soils of contrasting texture enhancement using biochar substrates: Case study in Slovakia. Geoderma Reg. 2022, 28, e00443. [Google Scholar]
- Qayyum, M.F.; Ashraf, I.; Abid, M.; Steffens, D. Effect of biochar, lime, and compost application on phosphorus adsorption in a Ferralsol. J. Plant Nutr. Soil Sci. 2015, 178, 576–581. [Google Scholar] [CrossRef]
- Zimmerman, A.R.; Ouyang, L. Priming of pyrogenic C (biochar) mineralization bydissolved organic matter and vice versa. Soil Biol. Biochem. 2019, 130, 105–112. [Google Scholar] [CrossRef]
- DeForest, J.L.; Smemo, K.A.; Burke, D.J.; Elliott, H.L.; Becker, J.C. Soil microbial responses to elevated phosphorus and pH in acidic temperate deciduous forests. Biogeochemistry 2012, 109, 189–202. [Google Scholar] [CrossRef]
- Jin, Y.; Liang, X.; He, M.; Liu, Y.; Tian, G.; Shi, J. Manure biochar influence upon soil properties, phosphorus distribution and phosphatase activities: A microcosm incubation study. Chemosphere 2016, 142, 128–135. [Google Scholar] [CrossRef] [PubMed]
- Saifullah Dahlawi, S.; Naeem, A.; Rengel, Z.; Naidu, R. Biochar application for the re-mediation of salt-affected soils: Challenges and opportunities. Sci. Total Environ. 2018, 625, 320–335. [Google Scholar] [CrossRef]
- Angın, D.; Altintig, E.; Köse, T.E. Influence of process parameters on the surface and chemical properties of activated carbon obtained from biochar by chemical activation. Bioresour. Technol. 2013, 148, 542–549. [Google Scholar] [CrossRef]
- Wu, L.; Wei, C.; Zhang, S.; Wang, Y.; Kuzyakov, Y.; Ding, X. MgO-modified biochar increases phosphate retention and rice yields in saline-alkaline soil. J. Clean. Prod. 2019, 235, 901–909. [Google Scholar] [CrossRef]
- Wu, C.; Shi, L.; Xue, S.; Li, W.; Jiang, X.; Rahebdran, M.; Qian, Z. Effect of sulfur-iron modified biochar on the available cadmium and bacterial community structure in contaminated soils. Sci. Total Environ. 2019, 647, 1158–1168. [Google Scholar] [CrossRef]
- Huff, M.D.; Kumar, S.; Lee, J.W. Comparative analysis of pinewood, peanut shell, and bamboo biomass derived biochars produced via hydrothermal conversion and pyrolysis. J. Environ. Manag. 2014, 146, 303–308. [Google Scholar] [CrossRef]
- Gul, S.; Whalen, J.K.; Thomas, B.W.; Deng, H. Physico-chemical properties and microbial responses in biochar-amended soils: Mechanisms and future directions. Agric. Ecosyst. Environ. 2015, 206, 46–59. [Google Scholar] [CrossRef]
- Li, F.; Liang, X.; Niyungeko, C.; Sun, T.; Liu, F.; Arai, Y. Effects of biochar amendments on soil phosphorus transformation in agricultural soils. Adv. Agron. 2019, 158, 131–172. [Google Scholar]
- Wang, Y.; Liang, H.; Wang, S.; Lin, Q.; Chen, A.; Yang, S.; Xia, W.; Qiao, W.; Rong, X.; Xu, X. The charcteristics and relationship between magnesium content in flue-cured tobacco leaves and exchangeable magnesium content in soil in Longnan. Chin. Agric. Sci. Bull. 2015, 31, 50–54. [Google Scholar]
- Bai, Y.; Jin, J.; Yang, L. Study on the content and distribution of soil available magnesium and foreground of magnesium fertilizer in China. Soils Fertil. Sci. China 2004, 2, 3–5. [Google Scholar]
- Qin, X.; Luo, J.; Liu, Z.; Fu, Y. Preparation and characterization of MgO-modified rice straw biochars. Molecules 2020, 25, 5730. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; Zheng, H.; Jiang, Z.; Xing, B. Combined effects of biochar properties and soil conditions on plant growth: A meta-analysis. Sci. Total Environ. 2020, 713, 136635. [Google Scholar] [CrossRef] [PubMed]
- Mokolobate, M.S.; Haynes, R.J. Increases in pH and soluble salts influence the effect that additions of organic residues have on concentrations of exchangeable and soil solution aluminium. Eur. J. Soil Sci. 2010, 53, 481–489. [Google Scholar] [CrossRef]
- Yuan, J.; Xu, R.; Qian, W.; Wang, R. Comparison of the ameliorating effects on an acidic ultisol between four crop straws and their biochars. J. Soil Sediment 2011, 11, 741–750. [Google Scholar] [CrossRef]
- Zuo, H.; Qin, X.; Liu, Z.; Fu, Y. Preparation and Characterization of Modified Corn Stalk Biochar. BioResources 2021, 16, 7428–7443. [Google Scholar] [CrossRef]
- Fidel, R.B.; Thompson, M.L.; Lawrinenko, M.; Laird, D.A. Characterization and quantification of biochar alkalinity. Chemosphere 2017, 167, 367–373. [Google Scholar]
- Shi, R.; Li, J.; Ni, N.; Xu, R. Understanding the biochar’s role in ameliorating soil acidity. J. Integr. Agr. 2019, 18, 1508–1517. [Google Scholar] [CrossRef]
- Novak, J.M.; Lima, I.; Xing, B.; Gaskin, J.W.; Schomberg, H. Characterization of designer biochar produced at different temperatures and their effects on a loamy sand. Ann. Environ. Sci. 2009, 3, 195–206. [Google Scholar]
- Xia, H.; Riaz, M.; Zhang, M.; Liu, B.; Ei-Desouki, Z.; Jiang, C. Biochar increases nitrogen use efficiency of corn by relieving aluminum toxicity and improving soil quality in acidic soil. Ecotoxicol. Environ. Saf. 2020, 196, 110531. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Zhao, Z.; Ali, A.; Guan, W.; Xiao, R.; Wang, J.; Ma, S.; Guo, D.; Zhou, B.; Zhang, Z.; et al. Characterization of phosphorus engineered biochar and its impact on immobilization of Cd and Pb from smelting contaminated soils. J. Soil Sediment 2020, 20, 3041–3052. [Google Scholar] [CrossRef]
- Keri, B.; Patrick, G.; Minori, U.; Jeffrey, M.; Kyoung, S. Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresour. Technol. 2012, 107, 419–428. [Google Scholar]
- Wang, J.; Wang, S. Preparation, modification and environmental application of biochar: A review. J. Clean. Prod. 2019, 227, 1002–1022. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, C.; Gray, E.; Boyd, S.; Yang, H.; Zhang, D. Roles of biochar in improving phosphorus availability in soils: A phosphate adsorbent and a source of available phosphorus. Geoderma 2016, 276, 1–6. [Google Scholar] [CrossRef]
- Chintala, R.; Schumacher, T.; Mcdonald, L.; Mcdonald, L. Phosphorus sorption and availability from biochars and soil/biochar mixtures. Clean-Soil Air Water 2014, 42, 626–634. [Google Scholar] [CrossRef]
- Zhang, H.; Huang, Y.; Liu, G.; Xu, Y.; Liu, J.; Bei, Q.; Ning, X.; Zhu, J.; Xie, Z. Effects of biochar on corn growth, nutrient uptake and soil chemical properties in seeding stage. Eco. Environ. Sci. 2010, 19, 2713–2717. [Google Scholar]
- Mia, S.; van Groenigen, J.W.; van de Voorde, T.F.J.; Oram, N.J.; Bezemer, T.M.; Mommer, L.; Jeffery, S. Biochar application rate affects biological nitrogen fixation in red clover conditional on potassium availability. Agric. Ecosyst. Environ. 2014, 191, 83–91. [Google Scholar] [CrossRef] [Green Version]
- Zavalloni, C.; Alberti, G.; Biasiol, S.; Vedove, G.; Fornasier, F.; Liu, J.; Peressotti, A. Microbial mineralization of biochar and wheat straw mixture in soil: A short-term study. Appl. Soil Ecol. 2011, 50, 45–51. [Google Scholar] [CrossRef]
- Ippolito, J.; Laird, D.; Busscher, W. Enviromental benefits of biochar. J. Environ. Qual. 2012, 41, 967–972. [Google Scholar] [CrossRef] [Green Version]
- Liang, B.; Lehmann, J.; Sohi, S.; Thies, J.; O’neill, B.; Trujillo, L.; Guant, J.; Solomon, D.; Grossman, J.; Neves, E.; et al. Black carbon affects the cycling of non-black carbon in soil. Org. Geochem. 2010, 41, 206–213. [Google Scholar] [CrossRef]
- Ramlow, M.; Foster, E.; Grosso, S.; Cotrufo, M. Broadcast woody biochar provides limited benefits to deficit irrigation corn in Colorado. Agric. Ecosyst. Environ. 2018, 269, 71–81. [Google Scholar] [CrossRef]
- Fang, Y.; Singh, B.; Nazaries, L.; Keith, A.; Tavakkoli, E.; Wilson, N.; Singh, B. Interactive carbon priming, microbial response and biochar persistence in a Vertisol with varied inputs of biochar and labile organic matter. Eur. J. Soil Sci. 2019, 70, 960–974. [Google Scholar] [CrossRef]
- Li, J.; Gao, M.; Tian, D.; Huang, R.; Xu, G. Effects of straw and biochar on soil organic carbon and its active components. Acta Prataculturae Sin. 2018, 27, 42–53. [Google Scholar]
- Houben, D.; Evrard, L.; Sonnet, P. Beneficial effects of biochar application to contaminated soils on the bioavailability of Cd, Pb and Zn and the biomass production of rapeseed (Brassica napus L.). Biomass Bioenergy 2013, 57, 196–204. [Google Scholar] [CrossRef]
- Han, G. Effect of Biochar on Soil Physicochemical Property and Microbial Diversity in Different Soil Types. Ph.D. Thesis, Faculty of Agronomy, Shenyang Agricultural University, Shenyang, China, 17 June 2013. [Google Scholar]
- Mao, H.; Wu, Z.; Qing, X.; Teng, Y.; Tan, J.; Xiang, D.; Zhang, L.; Li, J.; Li, Q. Spatial distribution of exchangeable and magnesium content of tobacco-growing soil in Longshan and its influencing factors. J. Hunan Agric. Univ. 2017, 43, 19–25. [Google Scholar]
- Fan, B.; Fang, F.; You, J.; He, Y.; Qin, M.; Qin, Y. Yield effects of different Mg fertilizer treatments on the uptake of Mg nutrients by sugarcane. Modern Agric. Sci. Technol. 2011, 19, 85–86. [Google Scholar]
- Ge, S.; Zhou, L.; Men, Y.; Li, H.; Wei, S.; Jiang, Y. Effect of carbon application on nitrogen and phosphorus leaching in apple orchard soil. J. Soil Water Conserv. 2013, 27, 31–35. [Google Scholar]
- Han, L.; Sun, K.; Yang, Y.; Xia, X.; Li, F.; Yang, Z.; Xing, B. Biochar’s stability and effect on the content, composition and turnover of soil organic carbon. Geoderma 2020, 364, 114184. [Google Scholar] [CrossRef]
- Yuan, J.; Xu, R.; Hong, Z. The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresour. Technol. 2011, 102, 3488–3497. [Google Scholar] [CrossRef]
- Li, M.; Li, Z.; Liu, M.; Jiang, C.; Wu, M. Effects of Different Straw Biochar on Nutrient and Microbial Community Structure of a Red Paddy Soil. Sci. Agric. Sin. 2015, 48, 1361–1369. [Google Scholar]
- Hu, H.; Zhang, H.; Cao, S.; Yin, D.; Zhou, C.; He, Z. Effects of biochar application on soil bacterial community structure and diversity in Cuninghamia lanceolate plantations. Sci. Silvae Sin. 2019, 55, 184–193. [Google Scholar]
- Li, Q.; Song, X.; Yrjala, K.; Lv, J.; Li, Y.; Wu, J.; Qin, H. Biochar mitigates the effect of nitrogen deposition on soil bacterial community composition and enzyme activities in a Torreya grandis orchard. For. Ecol. Manag. 2020, 457, 117717. [Google Scholar] [CrossRef]
- Chen, J.; Chen, D.; Xu, Q.; Fuhrmann, J.; Li, L.; Pan, G.; Li, Y.; Qin, H.; Liang, C.; Sun, X. Organic carbon quality, composition of main microbial groups, enzyme activities, and temperature sensitivity of soil respiration of an acid paddy soil treated with biochar. Biol. Fertil. Soils 2019, 55, 185–197. [Google Scholar] [CrossRef]
- Quilliam, R.; Marsden, K.; Gertler, C.; Rousk, J.; Deluca, T.; Jones, D. Nutrient dynamics, microbial growth and weed emergence in biochar amended soil are influenced by time since application and reapplication rate. Agric. Ecosyst. Environ. 2012, 158, 192–199. [Google Scholar] [CrossRef]
- Lu, L. Methods of Agrochemical Analysis of Soils; China Agricultural Science and Technology Press: Beijing, China, 2000. [Google Scholar]
Serial Number | The Raw Material | Pyrolysis Temperature (°C) | Continuous Pyrolysis Room (h) | Impregnation Concentration of MgCl2 (mol/L) |
---|---|---|---|---|
MRBC-300 | Rice straw | 300 | 1 | 1 |
MRBC-400 | Rice straw | 400 | 1 | 1 |
MRBC-500 | Rice straw | 500 | 1 | 1 |
MRBC-600 | Rice straw | 600 | 1 | 1 |
MCBC-300 | Corn stover | 300 | 1 | 1 |
MCBC-400 | Corn stover | 400 | 1 | 1 |
MCBC-500 | Corn stover | 500 | 1 | 1 |
MCBC-600 | Corn stover | 600 | 1 | 1 |
Indicators | Methods | Equipment | Types | Manufacturers |
---|---|---|---|---|
pH value | Potential method | pH meter | pHS-25 | Leici Instrument Factory, Shanghai, China |
Available potassium | Ammonium acetate extraction method | UV spectrophotometer | UV-2500 | Shimadzu Instruments Ltd., Suzhou, China |
Available phosphorus | Double acid (HCl-H2SO4) extraction | UV spectrophotometer | UV-2500 | Shimadzu Instruments Ltd., Suzhou, China |
Nitrogen alkali digestion | Alkaline diffusion method | UV spectrophotometer | UV-2500 | Shimadzu Instruments Ltd., Suzhou, China |
Total phosphorus | Sulphuric acid–perchloric acid elimination method | UV spectrophotometer | UV-2500 | Shimadzu Instruments Ltd., Suzhou, China |
Total nitrogen | Sulfuric acid–perchloric acid elimination method–ammonia electrode | Continuous flow analyzer | PROXIMA | AMS Allinace, Paris, France |
Organic matter | High temperature external thermal potassium dichromate oxidation–volumetric method | Enzyme-labeled instrument | INFINITE M200 Pro | Tecan Trading AG, Männedorf, Switzerland |
Exchangeable cation | Extraction of cobalt hexanamine trichloride–spectrophotometric method | UV spectrophotometer | UV-2500 | Shimadzu Instruments Ltd., Suzhou, China |
Exchangeable calcium and magnesium | Atomic absorption spectrophotometry | Flame Atomic Absorption Spectrometer | novAA350 | Analytik Jena AG, Jena, German |
Microbial biomass carbon | Chloroform fumigation method | Automatic Total Organic Carbon Analyzer | TOC-500 | Shimadzu Instruments Ltd., Kyoto, Japan |
Microbial biomass nitrogen | Flow analysis method | Continuous flow analyzer | PROXIMA | AMS Allinace, Paris, France |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Yuan, D.; Qin, X.; He, P.; Fu, Y. Effect of Mg-Modified Waste Straw Biochar on the Chemical and Biological Properties of Acidic Soils. Molecules 2023, 28, 5225. https://doi.org/10.3390/molecules28135225
Liu Z, Yuan D, Qin X, He P, Fu Y. Effect of Mg-Modified Waste Straw Biochar on the Chemical and Biological Properties of Acidic Soils. Molecules. 2023; 28(13):5225. https://doi.org/10.3390/molecules28135225
Chicago/Turabian StyleLiu, Zhigao, Di Yuan, Xianxian Qin, Peng He, and Yunlin Fu. 2023. "Effect of Mg-Modified Waste Straw Biochar on the Chemical and Biological Properties of Acidic Soils" Molecules 28, no. 13: 5225. https://doi.org/10.3390/molecules28135225
APA StyleLiu, Z., Yuan, D., Qin, X., He, P., & Fu, Y. (2023). Effect of Mg-Modified Waste Straw Biochar on the Chemical and Biological Properties of Acidic Soils. Molecules, 28(13), 5225. https://doi.org/10.3390/molecules28135225