Anti-Aging Constituents from Pinus morrisonicola Leaves
Abstract
:1. Introduction
2. Results
2.1. Bioasasay-Guided Compound Isolated from Pinus morrisonicola Hayata Leaves
2.2. Bioactive Compound Isolated from the Ethyl Acetate Layer (PMLEF) of Pinus morrisonicola Hayata Leaves
2.2.1. Structure Analysis of PML18, PML19
2.2.2. Structure Analysis of PML20
2.3. Anti-Aging Activity Test of Flavonoid Compounds
3. Discussion
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Plant Material
4.3. Extraction and Isolation
4.3.1. Extraction and Partition
4.3.2. Column Chromatography
4.3.3. NMR and LC-MS Analysis
4.4. Cell Line and Culture
4.5. MTT Cell Viability Assay
4.6. Zymography
4.7. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Tobin, D.J. Introduction to skin aging. J. Tissue Viability 2017, 26, 37–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zouboulis, C.C.; Makrantonaki, E. Clinical aspects and molecular diagnostics of skin aging. Clin. Dermatol. 2011, 29, 3–14. [Google Scholar] [CrossRef] [PubMed]
- Gary, J.F.; Sewon, K.; James, V.; Zsuzsanna, B.; Yinsheng, W.; Subhash, D.; John, J.V. Mechanisms of photoaging and chronological skin aging. Arch Dermatol. 2002, 138, 1462–1470. [Google Scholar] [CrossRef]
- Bernhard, D.; Moser, C.; Backovic, A.; Wick, G. Cigarette smoke—An aging accelerator? Exp. Gerontol. 2007, 42, 160–165. [Google Scholar] [CrossRef]
- Gilchrest, B.A. Skin aging and photoaging: An overview. J. Am. Acad. Dermatol. 1989, 21, 610–613. [Google Scholar] [CrossRef]
- Sardy, M. Role of matrix metalloproteinases in skin ageing. Connect Tissue Res. 2009, 50, 132–138. [Google Scholar] [CrossRef]
- Pittayapruek, P.; Meephansan, J.; Prapapan, O.; Komine, M.; Ohtsuki, M. Role of Matrix Metalloproteinases in Photoaging and Photocarcinogenesis. Int. J. Mol. Sci. 2016, 17, 868. [Google Scholar] [CrossRef] [Green Version]
- Hwang, K.A.; Yi, B.R.; Choi, K.C. Molecular mechanisms and in vivo mouse models of skin aging associated with dermal matrix alterations. Lab. Anim. Res. 2011, 27, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Li, H.L.; Keng, H. Pinaceae, Flora of Taiwan, 2nd ed.; Editorial Committee of the Flora of Taiwan: Taipei, Taiwan, 1996; Volume 2, pp. 567–581. Available online: https://tai2.ntu.edu.tw/ebooks/FlTaiwan2nd/6 (accessed on 3 May 2023).
- Fang, J.M.; Chang, C.F.; Cheng, Y.S. Flavonoids from Pinus morrisonicola. Phytochmistry 1987, 26, 2259–2561. [Google Scholar] [CrossRef]
- Fang, J.M.; Su, W.C.; Cheng, Y.S. Flavonoids and stilbenes from armand pine. Phytochemtstry 1987, 27, 1395–1397. [Google Scholar] [CrossRef]
- Zhang, G.-F.; Zheng, Y.-X. Study on the Constituents of the Wood of Pinus morrisoncola Hay. Available online: https://hdl.handle.net/11296/2swcgm (accessed on 3 May 2023).
- Chen, H.-J.; Twu, J.; Don, M.-J. Studies on the Chemical Constituents from Pinus morrisonicola. Available online: https://hdl.handle.net/11296/f5h3wx (accessed on 3 May 2023).
- Liao, C.-L.; Chen, C.-M.; Chang, Y.-Z.; Liu, G.-Y.; Hung, H.-C.; Hsieh, T.-Y.; Lin, C.-L. Pine (Pinus morrisonicola Hayata) Needle Extracts Sensitize GBM8901 Human Glioblastoma Cells to Temozolomide by Downregulating Autophagy and O6-Methylguanine-DNA Methyltransferase Expression. J. Agric. Food Chem. 2014, 62, 10458–10467. [Google Scholar] [CrossRef]
- Chen, G.-H.; Li, Y.-C.; Lin, N.-H.; Kuo, P.-C.; Tzen, J.T.C. Characterization of Vasorelaxant Principles from the Needles of Pinus morrisonicola Hayata. Molecules 2018, 23, 86. [Google Scholar] [CrossRef] [Green Version]
- Hsu, T.-Y.; Sheu, S.-C.; Liaw, E.-T.; Wang, T.-C.; Lin, C.-C. Anti-oxidant activity and effect of Pinus morrisonicola Hay. on the survival of leukemia cell line U937. Phytomedicine 2005, 12, 663–669. [Google Scholar] [CrossRef]
- Chiu, H.-F.; Wang, H.-M.; Shen, Y.-C.; Venkatakrishnan, K.; Wang, C.-K. Anti-inflammatory properties of fermented pine (Pinus morrisonicola Hay.) needle on lipopolysaccharide-induced inflammation in RAW 264.7 macrophage cells. J. Food Biochem. 2019, 43, e12994. [Google Scholar] [CrossRef]
- Tang, W.-Z.; Wang, Y.-A.; Gao, T.-Y.; Wang, X.-J.; Zhao, Y.-X. Identification of C-geranylated flavonoids from Paulownia catalpifolia Gong Tong fruits by HPLC-DAD-ESI-MS/MS and their anti-aging effects on 2BS cells induced by H2O2. Chin. J. Nat. Med. 2017, 15, 384–391. [Google Scholar] [CrossRef]
- Amina, B.; Narimane, S.; Jesus, G.D.; Chawki, B.; Salah, A.S.R. Preliminary analysis of the chemical composition, antioxidant and anticholinesterase activities of Algerian propolis. Nat. Prod. Res. 2020, 34, 3257–3261. [Google Scholar] [CrossRef]
- Adullah, A.; Godwin, U.E.; Roderick, W.; Ibrahim, A.A.; Manal, J.N.; Sameah, A.; Weam, S.; Malik, A.; John, O.I.; James, F.; et al. Activity of Compounds from Temperate Propolis against Trypanosoma brucei and Leishmania mexicana. Molecules 2021, 26, 3912. [Google Scholar] [CrossRef]
- Li, Q.; Gao, W.; Cao, J.; Bi, X.; Chen, G.; Zhang, X.; Xia, X.; Zhao, Y. New cytotoxic compounds from flowers of Lawsonia inermis L. Fitoterapia 2014, 94, 148–154. [Google Scholar] [CrossRef]
- Yang, C.-P.; Shie, P.-H.; Huang, G.-J.; Chien, S.-C.; Kuo, Y.-H. New Anti-inflammatory Flavonol Glycosides from Lindera akoensis Hayata. Molecules 2019, 24, 563. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Yuan, J.-Z.; Wang, Y.-X.; Zhang, B.-K.; Sun, Q.-S. Isolation and identification of flavonoids from pine needle of Pinus koraiensis Sieb. et Zucc. Shenyang Yaoke Daxue Xuebao 2010, 27, 539–543. [Google Scholar]
- Thurdpong, S.; Uraiwan, S.; Yordhathai, T.; Chavi, Y. Chemical constituents from the stems of Alyxia schlechteri. Phytochem. Lett. 2015, 11, 80–88. [Google Scholar]
- Dejan, O.; Sanja, B.; Dušan, Š.; Neda, M.-D. Comprehensive study of Anthriscus sylvestris lignans. Phytochemistry 2021, 192, 112958. [Google Scholar]
- Liu, X.; Li, J.; Li, J.; Liu, Q.; Xun, M. A New Flavonoid Glycoside from Ligularia fischeri. Chem. Nat. Compd. 2019, 55, 638–641. [Google Scholar] [CrossRef]
- Leander, J.V. Loliolide from Salvia divinorum. J. Nat. Prod. 1986, 49, 171. [Google Scholar]
- Haruki, I.; Masatoshi, S.; Yoshihiko, Y. Synthesis of Unprotected 2-Arylglycines by Transamination of Arylglyoxylic Acids with 2-(2-Chlorophenyl)glycine. J. Org. Chem. 2020, 85, 11047–11059. [Google Scholar]
- Nguyen, H.S.; Nguyen, T.T.; Nguyen, T.H.A.; Tran, D.Q.; Dao, D.T.; Dinh, T.P.; Tran, V.S.; Trinh, T.T. Chemical constituents from the leaves of Pinus dalatensis Ferré. Nat. Prod. Res. 2018, 32, 341–345. [Google Scholar]
- Javad, A.; Maja, L.; Hanne, L.Z.; Majid, S.; Matthias, W.; Gholamreza, A.; Ismaiel, S.I.; Jerzy, W.J. Labdanes and isopimaranes from Platycladus orientalis and their effects on erythrocyte membrane and on Plasmodium falciparum growth in the erythrocyte host cells. J. Nat. Prod. 2004, 67, 631–637. [Google Scholar]
- Chu, M.-H.; Hsiao, S.-W.; Kao, Y.-C.; Yin, H.-W.; Kuo, Y.-H.; Lee, C.-K. Cytotoxicity effect of constituents of Pinus taiwanensis hayata twigs on b16-f10 melanoma cells. Molecules 2022, 27, 2731. [Google Scholar] [CrossRef]
- Zhu, L.; Lu, Y.; Yu, W.-G.; Zhao, X.; Lu, Y.-H. Anti-photoageing and anti-melanogenesis activities of chrysin. Pharm. Biol. 2016, 54, 2692–2700. [Google Scholar] [CrossRef] [Green Version]
- Choi, S.; Youn, J.; Kim, K.; Joo, D.H.; Shin, S.; Lee, J.; Lee, H.K.; An, I.-S.; Kwon, S.; Youn, H.J. Apigenin inhibits UVA-induced cytotoxicity in vitro and prevents signs of skin aging in vivo. Int. J. Mol. Med. 2016, 38, 627–634. [Google Scholar] [CrossRef] [Green Version]
- Park, C.-H.; Min, S.-Y.; Yu, H.-W.; Kim, K.; Kim, S.; Lee, H.-J.; Kim, J.-H.; Park, Y.-J. Effects of apigenin on RBL-2H3, RAW264.7, and HaCaT cells: Anti-allergic, anti-inflammatory, and skin-protective activities. Int. J. Mol. Sci. 2020, 21, 4620. [Google Scholar] [CrossRef]
- Hyo, H.-Y.; Kyoung, H.; Ming, S.-Z.; Jung, H.-C.; Jong, K.-S.; Hwa, Y.-K.; Suk, H.-B.; Hyung, C.-C.; So, Y.-P.; Jae-Ryong, K. Inhibitory effects of (−)-loliolide on cellular senescence in human dermal fibroblasts. Arch. Pharm. Res. 2015, 38, 876–884. [Google Scholar]
- Wang, L.; Kim, H.-S.; Je, J.-G.; Fu, X.-T.; Huang, C.-X.; Ahn, G.; Oh, J.-Y.; Sanjeewa, K.K.A.; Xu, J.-C.; Gao, X.; et al. In Vitro and In Vivo Photoprotective Effects of (−)-Loliode Isolated from the Brown Seaweed, Sargassum horneri. Molecules 2021, 26, 6898. [Google Scholar] [CrossRef]
- Lin, M.-S.; Yang, L.-J.; Zhang, H.; Xia, Y.; He, Y.; Lan, W.; Ren, J.-L.; Yue, F.-X.; Lu, F.-C. Revealing the structure-activity relationship between lignin and anti-UV radiation. Ind. Crops Prod. 2021, 174, 114212. [Google Scholar] [CrossRef]
- Tai, Z.-G.; Zhang, F.-M.; Cai, L.; Shi, J.; Cao, Q.; Ding, Z.-T. Flavonol glycosides of Pseudodrynaria coronans and their antioxidant activity. Chem. Nat. Compd. 2012, 48, 221–224. [Google Scholar] [CrossRef]
- Al-Qudah, M.A.; Otoom, N.K.; Al-Jaber, H.I.; Saleh, A.M.; Abu, Z.; Musa, H.; Afifi, F.U.; Abu Orabi, S.T. New flavonol glycoside from Scabiosa prolifera L. aerial parts with in vitro antioxidant and cytotoxic activities. Nat. Prod. Res. 2017, 31, 2865–2874. [Google Scholar] [CrossRef]
- Pag, A.I.; Radu, D.G.; Draganescu, D.; Popa, M.I.; Sirghie, C. Flaxseed cake—A sustainable source of antioxidant and antibacterial extracts. Cellul. Chem. Technol. 2014, 48, 265–273. [Google Scholar]
- Sala, A.; Recio, M.C.; Schinella, G.R.; Máñez, S.; Giner, R.M.; Cerdá-Nicolás, M.; Rosí, J.L. Assessment of the anti-inflammatory activity and free radical scavenger activity of tiliroside. Eur. J. Pharmacol. 2003, 461, 53–61. [Google Scholar] [CrossRef]
PML18 | PML19 | PML20 | ||||
---|---|---|---|---|---|---|
13C-NMR | 1H-NMR | 13C-NMR | 1H-NMR | 13C-NMR | 1H-NMR | |
Position | δC | δH (Multiplet, J in Hz) | δC | δH (Multiplet, J in Hz) | δC | δH (Multiplet, J in Hz) |
1 | 39.2 | 1.07 (1H, m), 1.81 (1H, m) | 39.0 | 1.06 (1H, m), 1.89 (1H, m) | 39.0 | 1.04 (1H, m), 1.08 (1H, m) |
2 | 17.4 | 1.52 (1H, m), 1.78 (1H, m) | 17.2 | 1.35 (1H, m), 1.74 (1H, m) | 20.6 | 1.45 (1H, m), 1.92 (1H, m) |
3 | 38.2 | 1.01 (1H, m), 2.12 (1H, m) | 38.0 | 1.03 (1H, m), 2.13 (1H, m) | 42.4 | 1.94 (1H, m), 1.97 (1H, m) |
4 | 44.4 | - | 44.2 | - | 44.2 | - |
5 | 56.6 | 1.28 (1H, m) | 56.3 | 1.29 (1H, m) | 51.8 | 1.39 (1H, d, J = 4.3 Hz) |
6 | 26.1 | 1.83 (1H, m), 1.96 (1H, m) | 26.0 | 1.86 (1H, m), 1.95 (1H, m) | 25.5 | 2.20 (1H, m), 2.52 (1H, m) |
7 | 38.9 | 1.84 (1H, m), 2.36 (1H, m) | 38.6 | 1.86 (1H, m), 2.37 (1H, m) | 127.8 | 5.68 (1H, d, J = 6.3 Hz) |
8 | 147.9 | - | 147.7 | - | 134.6 | - |
9 | 56.8 | 1.51 (1H, m) | 56.7 | 1.52 (1H, m) | 56.2 | 1.87 (1H, m) |
10 | 40.8 | - | 40.6 | - | 37.7 | - |
11 | 20.1 | 1.47 (1H, m), 1.83 (1H, m) | 19.9 | 1.50 (1H, m), 1.85 (1H, m) | 21.2 | 1.45 (1H, m), 1.75 (1H, m) |
12 | 33.0 | 1.44 (1H, m), 1.75 (1H, m) | 32.7 | 1.31 (1H, m), 1.96 (1H, m) | 36.4 | 1.87 (1H, m), 2.07 (1H, m) |
13 | 81.5 | - | 81.4 | - | 79.2 | - |
14 | 80.5 | 3.91 (1H, d, J = 4 Hz) | 80.5 | 3.94 (1H, d, J = 4 Hz) | 42.5 | 2.35 (1H, d, J = 10.7 Hz), 2.81 (d, J = 10.7 Hz) |
15 | 109.2 | 4.96 (1H, d, J = 4 Hz) | 109.0 | 4.96 (1H, d, J = 4 Hz) | 175.7 | - |
16 | 107.3 | 4.82 (1H, s) | 106.8 | 4.83 (1H, s) | 90.2 | 4.18 (1H, dd, J = 12.2, 2.8 Hz) |
17 | 62.7 | 3.51 (1H, m), 3.77 (1H, m) | 64.5 | 3.52 (1H, m), 3.78 (1H, m) | 41.4 | 2.30 (1H, m), 2.40 (1H, m) |
18 | 15.4 | 1.18 (3H, s) | 14.9 | 1.20 (3H, s) | 178.9 | - |
19 | 63.3 | 3.45 (1H, m), 3.74 (1H, m) | 63.0 | 3.47 (1H, m), 3.77 (1H, m) | 29.5 | 1.20 (3H, s) |
20 | 15.4 | 1.18 (3H, s) | 14.9 | 1.20 (3H, s) | 14.4 | 0.75 (3H, s) |
21 | 107.6 | 4.55 (1H, brs), 4.80 (1H, brs) | 106.9 | 4.64 (1H, brs), 4.81 (1H, brs) | - | - |
22 | 183.3 | - | 182.6 | - | - | - |
23 | 29.2 | 1.20 (3H, s) | 29.0 | 1.22 (3H, s) | - | - |
24 | 13.0 | 0.57 (3H, s) | 12.7 | 0.59 (3H, s) | - | - |
Number | Compound Name | Cosmeceutical Activity | Reference |
---|---|---|---|
PML1 | Chrysin | Anti-photoaging, Anti-melanogenesis | [32] |
PML2 | Apigenin | Anti-UV radiation, Anti-aging, | [33,34] |
Anti-allergic, Anti-inflammatory | |||
PML3 | Kaempferol 3-O-(6″-O-E- coumaroyl)-β-d-glucopyranoside | Antioxidant, Anti-inflammatory | [41] |
PML4 | Kaempferol 3-O-(6″-O-E-feruloyl)-β-d-glucopyranoside | Antioxidant | [38] |
PML5 | Kaempferol 3-O-(3″, 6″-di-O-E-p-coumaroyl)-β-d-glucopyranoside | Antioxidant | [39] |
PML6 | Stenopalustrosides C | - | - |
PML7 | Kaempferol 3-O-(5″-O-Z-p-coumaroyl)-α-l-arabinofuranoside | - | - |
PML8 | Kaempferol 3-O-(5″-O-E-p-coumaroyl)-α-l-arabinofuranoside | - | - |
PML9 | Kaempferol 3- O-(5″-O-E-feruloyl)-α-l-arabinofuranoside | - | - |
PML10 | Pinoresinol | Antioxidant, Anti-UV radiation | [37] |
PML11 | Matairesinol | Antioxidant | [40] |
PML12 | 7-Hydroxycoumarin | - | - |
PML13 | Loliolide | Anti-aging, Photoprotective | [35,36] |
PML14 | Benzeneacetic acid | - | - |
PML15 | 3-Acetoxylabda-8(20),13-diene-15-oic acid | - | - |
PML16 | 3-Hydroxylabda-8(20),13-diene-15-oic acid | - | - |
PML17 | 13-Labdadien-16, 15-olid-18-oic acid | - | - |
PML18 | 15β,16β-Diethoxy,13,14-dihydroxy-labd-8(21)-en-22-oic acid | - | - |
PML19 | 15β,16α-Diethoxy,13,14-dihydroxy-labd-8(21)-en-22-oic acid | - | - |
PML20 | Morrisonicolene | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, T.-W.; Hsiao, S.-W.; Lin, C.-T.; Hsiao, G.; Lee, C.-K. Anti-Aging Constituents from Pinus morrisonicola Leaves. Molecules 2023, 28, 5063. https://doi.org/10.3390/molecules28135063
Liu T-W, Hsiao S-W, Lin C-T, Hsiao G, Lee C-K. Anti-Aging Constituents from Pinus morrisonicola Leaves. Molecules. 2023; 28(13):5063. https://doi.org/10.3390/molecules28135063
Chicago/Turabian StyleLiu, Ta-Wei, Sui-Wen Hsiao, Chi-Ting Lin, George Hsiao, and Ching-Kuo Lee. 2023. "Anti-Aging Constituents from Pinus morrisonicola Leaves" Molecules 28, no. 13: 5063. https://doi.org/10.3390/molecules28135063
APA StyleLiu, T. -W., Hsiao, S. -W., Lin, C. -T., Hsiao, G., & Lee, C. -K. (2023). Anti-Aging Constituents from Pinus morrisonicola Leaves. Molecules, 28(13), 5063. https://doi.org/10.3390/molecules28135063