Synthesis of Renewable High-Density Fuel with Vanillin and Cyclopentanone Derived from Hemicellulose
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Material
3.2. Catalyst Preparation
3.3. Activity Test
3.4. Computing Method
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Fang, W.; Liu, S.; Schill, L.; Kubus, M.; Bligaard, T.; Riisager, A. On the role of Zr to facilitate the synthesis of diesel and jet fuel range intermediates from biomass-derived carbonyl compounds over aluminum phosphate. Appl. Catal. B Environ. 2023, 320, 121936. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, C.; Zhang, Z.; Li, Q. Tuning dual active sites of Cu/CoCeOx catalysts for efficient catalytic transfer hydrogenation of 5-hydroxymethylfurfural to biofuel 2,5-dimethylfuran. Fuel 2022, 320, 123996. [Google Scholar] [CrossRef]
- Qiu, B.; Tao, X.; Wang, J.; Liu, Y.; Li, S.; Chu, H. Research progress in the preparation of high-quality liquid fuels and chemicals by catalytic pyrolysis of biomass: A review. Energy Convers. Manag. 2022, 261, 115647. [Google Scholar] [CrossRef]
- Chung, H.S.; Chen, C.S.H.; Kremer, R.A.; Boulton, J.R.; Burdette, G.W. Recent Developments in High-Energy-Density Liquid Hydrocarbon Fuels. Energy Fuels 1999, 13, 641–649. [Google Scholar] [CrossRef]
- Zarezin, D.P.; Rudakova, M.A.; Bykov, V.I.; Bermeshev, M.V. Metal chlorides supported on silica as efficient catalysts for selective isomerization of endo-tetrahydrodicyclopentadiene to exo-tetrahydrodicyclopentadiene for JP-10 producing. Fuel 2021, 288, 119579. [Google Scholar] [CrossRef]
- Luo, X.; Lu, R.; Si, X.; Jiang, H.; Shi, Q.; Ma, H.; Lu, F. Sustainable synthesis of high-density fuel via catalytic cascade cycloaddition reaction. J. Energy Chem. 2022, 69, 231–236. [Google Scholar] [CrossRef]
- Liu, C.; Hu, Y.; Li, G.; Wang, A.; Cong, Y.; Wang, X.; Li, N. Synthesis of renewable alkylated decalins with p-quinone and 2-methyl-2,4-pentanediol. Sustain. Energy Fuels 2022, 6, 834–840. [Google Scholar] [CrossRef]
- Li, G.; Hou, B.; Wang, A.; Xin, X.; Cong, Y.; Wang, X.; Li, N.; Zhang, T. Making JP-10 Superfuel Affordable with Lignocellulosic Platform Component. Angew. Chem. Int. Ed. Engl. 2019, 58, 12154–12158. [Google Scholar] [CrossRef]
- Meylemans, H.A.; Quintana, R.L.; Goldsmith, B.R.; Harvey, B.G. Solvent-free conversion of linalool to methylcyclopentadiene dimers: A route to renewable high-density fuels. ChemSusChem 2011, 4, 465–469. [Google Scholar] [CrossRef]
- Meylemans, H.A.; Quintana, R.L.; Harvey, B.G. Efficient conversion of pure and mixed terpene feedstocks to high density fuels. Fuel 2012, 97, 560–568. [Google Scholar] [CrossRef]
- Nie, G.; Zou, J.J.; Feng, R.; Zhang, X.; Wang, L. HPW/MCM-41 catalyzed isomerization and dimerization of pure pinene and crude turpentine. Catal. Today 2014, 234, 271–277. [Google Scholar] [CrossRef]
- Zou, J.J.; Chang, N.; Zhang, X.; Wang, L. Isomerization and Dimerization of Pinene using Al-Incorporated MCM-41 Mesoporous Materials. ChemCatChem 2012, 4, 1289–1297. [Google Scholar] [CrossRef]
- Harvey, B.G.; Wright, M.E.; Quintana, R.L. High-Density Renewable Fuels Based on the Selective Dimerization of Pinenes. Energy Fuels 2010, 24, 267–273. [Google Scholar] [CrossRef]
- Harvey, B.G.; Merriman, W.W.; Koontz, T.A. High-Density Renewable Diesel and Jet Fuels Prepared from Multicyclic Sesquiterpanes and a 1-Hexene-Derived Synthetic Paraffinic Kerosene. Energy Fuels 2015, 29, 2431–2436. [Google Scholar] [CrossRef] [Green Version]
- Nie, G.; Zhang, X.; Han, P.; Xie, J.; Pan, L.; Wang, L.; Zou, J.J. Lignin-derived multi-cyclic high density biofuel by alkylation and hydrogenated intramolecular cyclization. Chem. Eng. Sci. 2017, 158, 64–69. [Google Scholar] [CrossRef]
- Nie, G.; Zhang, X.; Pan, L.; Wang, M.; Zou, J.J. One-pot production of branched decalins as high-density jet fuel from monocyclic alkanes and alcohols. Chem. Eng. Sci. 2018, 180, 64–69. [Google Scholar] [CrossRef]
- Deng, Q.; Nie, G.; Pan, L.; Zou, J.J.; Zhang, X.; Wang, L. Highly selective self-condensation of cyclic ketones using MOF-encapsulating phosphotungstic acid for renewable high-density fuel. Green Chem. 2015, 17, 4473–4481. [Google Scholar] [CrossRef]
- Chen, F.; Li, N.; Yang, X.; Li, L.; Li, G.; Li, S.; Zhang, T. Synthesis of High-Density Aviation Fuel with Cyclopentanol. ACS Sustain. Chem. Eng. 2016, 4, 6160–6166. [Google Scholar] [CrossRef]
- Sheng, X.; Li, N.; Li, G.; Wang, W.; Yang, J.; Cong, Y.; Zhang, T. Synthesis of high density aviation fuel with cyclopentanol derived from lignocellulose. Sci. Rep. 2015, 5, 9565. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Li, N.; Li, G.; Li, S.; Wang, W.; Wang, A.; Zhang, T. Synthesis of Renewable High-Density Fuel with Cyclopentanone Derived from Hemicellulose. ACS Sustain. Chem. Eng. 2017, 5, 1812–1817. [Google Scholar] [CrossRef]
- Yang, J.; Li, N.; Li, G.; Wang, W.; Wang, A.; Wang, X.; Zhang, T. Synthesis of renewable high-density fuels using cyclopentanone derived from lignocellulose. Chem. Commun. 2014, 50, 2572–2574. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Li, N.; Li, G.; Han, F.; Wang, A.; Cong, Y.; Wang, X.; Zhang, T. Synthesis of high-density aviation fuels with methyl benzaldehyde and cyclohexanone. Green Chem. 2018, 20, 3753–3760. [Google Scholar] [CrossRef]
- Liu, Y.; Li, G.; Hu, Y.; Wang, A.; Lu, F.; Zou, J.J.; Zhang, T. Integrated Conversion of Cellulose to High-Density Aviation Fuel. Joule 2019, 3, 1028–1036. [Google Scholar] [CrossRef]
- Wang, W.; Liu, Y.; Li, N.; Li, G.; Wang, W.; Wang, A.; Zhang, T. Synthesis of renewable high-density fuel with isophorone. Sci. Rep. 2017, 7, 6111. [Google Scholar] [CrossRef]
- Guo, J.; Xu, G.; Han, Z.; Zhang, Y.; Fu, Y.; Guo, Q. Selective Conversion of Furfural to Cyclopentanone with CuZnAl Catalysts. ACS Sustain. Chem. Eng. 2014, 2, 2259–2266. [Google Scholar] [CrossRef]
- Hronec, M.; Fulajtárová, K.; Vávra, I.; Soták, T.; Dobročka, E.; Mičušík, M. Carbon supported Pd–Cu catalysts for highly selective rearrangement of furfural to cyclopentanone. Appl. Catal. B Environ. 2016, 181, 210–219. [Google Scholar] [CrossRef]
- Yang, Y.; Du, Z.; Huang, Y.; Lu, F.; Wang, F.; Gao, J.; Xu, J. Yizheng Huang, Fang Lu, FengWang, Jin Gao and Jie Xu, Conversion of furfural into cyclopentanone over Ni–Cu bimetallic catalysts. Green Chem. 2013, 15, 1932–1940. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, S.; Li, F.; Cao, X.; Sun, R. Production of vanillin from lignin: The relationship between β-O-4 linkages and vanillin yield. Ind. Crops Prod. 2018, 116, 116–121. [Google Scholar] [CrossRef]
- Fache, M.; Boutevin, B.; Caillol, S. Vanillin production from lignin and its use as a renewable chemical. ACS Sustain. Chem. Eng. 2016, 4, 35–46. [Google Scholar] [CrossRef]
- Zhu, Y.; Liao, Y.; Lv, W.; Liu, J.; Song, X.; Chen, L.; Wang, C.; Ma, L. Complementing Vanillin and Cellulose Production by Oxidation of Lignocellulose with Stirring Control. ACS Sustain. Chem. Eng. 2020, 8, 2361–2374. [Google Scholar] [CrossRef]
- Camera-Roda, G.; Parrino, F.; Loddo, V.; Palmisano, L. A Dialysis Photocatalytic Reactor for the Green Production of Vanillin. Catalysts 2020, 10, 326. [Google Scholar] [CrossRef] [Green Version]
- Klaus, T.; Seifert, A.; Häbe, T.; Nestl, B.M.; Hauer, B. An Enzyme Cascade Synthesis of Vanillin. Catalysts 2019, 9, 252. [Google Scholar] [CrossRef] [Green Version]
- Gao, H.; Han, F.; Li, G.; Wang, A.; Cong, Y.; Li, Z.; Wang, W.; Li, N. Synthesis of jet fuel range high-density polycycloalkanes with vanillin and cyclohexanone. Sustain. Energy Fuels 2022, 6, 1616. [Google Scholar] [CrossRef]
- Zhang, X.; Song, M.; Liu, J.; Zhang, Q.; Chen, L.; Ma, L. Synthesis of high density and low freezing point jet fuels range cycloalkanes with cyclopentanone and lignin-derived vanillins. J. Energy Chem. 2023, 79, 22–30. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; An, L.; Qian, C.; Li, Y.; Li, M.; Shao, X.; Ji, X.; Li, Z. Synthesis of Renewable High-Density Fuel with Vanillin and Cyclopentanone Derived from Hemicellulose. Molecules 2023, 28, 5029. https://doi.org/10.3390/molecules28135029
Wang W, An L, Qian C, Li Y, Li M, Shao X, Ji X, Li Z. Synthesis of Renewable High-Density Fuel with Vanillin and Cyclopentanone Derived from Hemicellulose. Molecules. 2023; 28(13):5029. https://doi.org/10.3390/molecules28135029
Chicago/Turabian StyleWang, Wei, Ling An, Chi Qian, Yanqing Li, Meiping Li, Xianzhao Shao, Xiaohui Ji, and Zhizhou Li. 2023. "Synthesis of Renewable High-Density Fuel with Vanillin and Cyclopentanone Derived from Hemicellulose" Molecules 28, no. 13: 5029. https://doi.org/10.3390/molecules28135029
APA StyleWang, W., An, L., Qian, C., Li, Y., Li, M., Shao, X., Ji, X., & Li, Z. (2023). Synthesis of Renewable High-Density Fuel with Vanillin and Cyclopentanone Derived from Hemicellulose. Molecules, 28(13), 5029. https://doi.org/10.3390/molecules28135029