Ag(e)ing and Degradation of Supercapacitors: Causes, Mechanisms, Models and Countermeasures
Abstract
:1. Introduction
2. Causes and Mechanisms
2.1. Causes and Mechanisms on the Material and Component Level
2.1.1. EDLC-Type Materials and Electrodes
2.1.2. Battery-Type Materials and Electrodes
2.2. Causes and Mechanisms at the Device Level
2.2.1. Devices with EDLC-Type Electrodes
2.2.2. Devices with Battery-Type Electrodes
2.2.3. Hybrid Devices
2.2.4. Devices with Organic (Solvent) Electrolyte Solutions
2.2.5. Devices with Solid Electrolytes
2.2.6. Flexible, Stretchable and Bendable Devices
3. Modelling
4. Countermeasures
4.1. EDLC-Type Supercapacitors
4.2. Supercapacitors with Battery-Type Electrodes
4.3. Hybrid Supercapacitors and Other Devices
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mackowiak, A.; Galek, P.; Fic, K. Deep Eutectic Solvents for High-Temperature Electrochemical Capacitors. ChemElectroChem 2021, 8, 4028–4037. [Google Scholar] [CrossRef]
- Gualous, H.; Gallay, R.; Alcicek, G.; Tala-Ighil, B.; Oukaour, A.; Boudart, B.; Makany, P. Supercapacitor ageing at constant temperature and constant voltage and thermal shock. Microelectron. Rel. 2010, 50, 1783–1788. [Google Scholar] [CrossRef]
- Holze, R.; Wu, A. Why do lithium ion batteries age? Chem. Unserer Zeit 2020, 54, 180–187. [Google Scholar] [CrossRef]
- Poonam; Pareek, K.; Jangid, D.K. Analysis of the effect of different factors on the degradation of supercapacitors. Ionics 2022, 28, 4527–4545. [Google Scholar] [CrossRef]
- Kreczanik, P.; Venet, P.; Hijazi, A.; Clerc, G. Study of supercapacitor aging and lifetime estimation according to voltage, temperature, and RMS current. IEEE Trans. Ind. Electron. 2014, 61, 4895–4902. [Google Scholar] [CrossRef]
- Ge, Y.; Xie, X.; Roscher, J.; Holze, R.; Qu, Q. How to measure and report the capacity of electrochemical double layers, supercapacitors, and their electrode materials. J. Solid State Electrochem. 2020, 24, 3215–3230. [Google Scholar] [CrossRef]
- Weingarth, D.; Foelske-Schmitz, A.; Kötz, R. Cycle versus voltage hold—Which is the better stability test for electrochemical double layer capacitors? J. Power Sources 2013, 225, 84–88. [Google Scholar] [CrossRef]
- Ruch, P.W.; Cericola, D.; Foelske-Schmitz, A.; Kötz, R.; Wokaun, A. Aging of electrochemical double layer capacitors with acetonitrile-based electrolyte at elevated voltages. Electrochim. Acta 2010, 55, 4412–4420. [Google Scholar] [CrossRef]
- German, R.; Sari, A.; Briat, O.; Vinassa, J.M.; Venet, P. Impact of Voltage Resets on Supercapacitors Aging. IEEE Trans. Ind. Electron. 2016, 63, 7703–7711. [Google Scholar] [CrossRef]
- He, M.; Fic, K.; Frąckowiak, E.; Novák, P.; Berg, E.J. Towards more Durable Electrochemical Capacitors by Elucidating the Ageing Mechanisms under Different Testing Procedures. ChemElectroChem 2019, 6, 566–573. [Google Scholar] [CrossRef] [Green Version]
- Omar, N.; Gualos, H.; Salminen, J.; Mulder, G.; Samba, A.; Firouz, Y.; Monem, M.A.; van den Bossche, P.; Mierlo, J.V. Electrical double-layer capacitors: Evaluation of ageing phenomena during cycle life testing. J. Appl. Electrochem. 2014, 44, 509–522. [Google Scholar] [CrossRef]
- Marracci, M.; Tellini, B.; Catelani, M.; Ciani, L. Ultracapacitor Degradation State Diagnosis via Electrochemical Impedance Spectroscopy. IEEE Trans. Instrum. Meas. 2015, 64, 1916–1921. [Google Scholar] [CrossRef]
- Adán-Más, A.; Silva, T.M.; Guerlou-Demourgues, L.; Montemor, M.F. Application of the Mott-Schottky model to select potentials for EIS studies on electrodes for electrochemical charge storage. Electrochim. Acta 2018, 289, 47–55. [Google Scholar] [CrossRef]
- El Brouji, E.H.; Briat, O.; Vinassa, J.N.; Bertand, N.; Woirgard, E. Impact of Calendar Life and Cycling Ageing on supercapacitor performance. IEEE Trans. Veh. Technol. 2009, 58, 3917–3929. [Google Scholar] [CrossRef]
- German, R.; Venet, P.; Sari, A.; Briat, O.; Vinassa, J.M. Comparison of EDLC impedance models used for ageing monitoring. In Proceedings of the 2012 First International Conference on Renewable Energies and Vehicular Technology, Nabeul, Tunisia, 26–28 March 2012; pp. 224–229. [Google Scholar]
- Fu, L.; Qu, Q.; Holze, R.; Wu, Y. A comment on the need to distinguish between cell and electrode impedances. J. Solid State Electrochem. 2019, 23, 717–724. [Google Scholar] [CrossRef]
- Poonam Vyas, M.; Jangid, D.K.; Rohan, R.; Pareek, K. Investigation of supercapacitor cyclic degradation through impedance spectroscopy and Randles circuit model. Energy Storage 2022, 4, e355. [Google Scholar] [CrossRef]
- Oz, A.; Gelman, D.; Goren, E.; Shomrat, N.; Baltianski, S.; Tsur, Y. A novel approach for supercapacitors degradation charac-terization. J. Power Sources 2017, 355, 74–82. [Google Scholar] [CrossRef]
- Huang, Y.; Zhao, Y.; Gong, Q.; Weng, M.; Bai, J.; Liu, X.; Jiang, Y.; Wang, J.; Wang, D. Experimental and Correlative Analyses of the Ageing Mechanism of Activated Carbon Based Supercapacitor. Electrochim. Acta 2017, 228, 214–225. [Google Scholar] [CrossRef]
- Szewczyk, A.; Lentka, L.; Smulko, J.; Babuchowska, P.; Béguin, F. Measurements of flicker noise in supercapacitor cells. Int. Conf. Noise Fluct. ICNF 2017, 2017, 7985985. [Google Scholar]
- Michael, H.; Jervis, R.; Brett, D.J.L.; Shearing, P.R. Developments in Dilatometry for Characterisation of Electrochemical Devices. Batter. Supercaps 2021, 4, 1378–1396. [Google Scholar] [CrossRef]
- Bothe, A.; Pourhosseini, S.E.M.; Ratajczak, P.; Beguin, F.; Balducci, A. Analysis of thermal and electrochemical properties of electrical double-layer capacitors by using an in-situ simultaneous thermal analysis cell. Electrochim. Acta 2023, 444, 141974. [Google Scholar] [CrossRef]
- Ge, Y.; Liu, Z.; Wu, Y.; Holze, R. On the utilization of supercapacitor electrode materials. Electrochim. Acta 2021, 366, 137390. [Google Scholar] [CrossRef]
- Ike, I.S.; Sigalas, I.; Iyuke, S.E. Modelling and optimization of electrodes utilization in symmetric electrochemical capacitors for high energy and power. J. Energy Storage 2017, 12, 261–275. [Google Scholar] [CrossRef]
- Li, M.; Xu, W.; Wang, W.; Liu, Y.; Cui, B.; Guo, X. Facile synthesis of specific FeMnO3 hollow sphere/graphene composites and their superior electrochemical energy storage performances for supercapacitor. J. Power Sources 2014, 248, 465–473. [Google Scholar] [CrossRef]
- Chen, H.; Bao, E.; Du, X.; Ren, X.; Liu, X.; Li, Y.; Xu, C. Advanced hybrid supercapacitors assembled with high-performance porous MnCo2O4.5 nanosheets as battery-type cathode materials. Colloids Surf. A 2023, 657, 130663. [Google Scholar] [CrossRef]
- Cheng, J.P.; Liu, L.; Zhang, J.; Liu, F.; Zhang, X.B. Influences of anion exchange and phase transformation on the supercapacitive properties of α-Co(OH)2. J. Electroanal. Chem. 2014, 722–723, 23–31. [Google Scholar] [CrossRef]
- Panić, V.V.; Dekanski, A.B.; Stevanović, R.M. Sol gel processed thin-layer ruthenium oxide/carbon black supercapacitors: A revelation of the energy storage issues. J. Power Sources 2010, 195, 3969–3976. [Google Scholar] [CrossRef]
- Yoon, S.; Oh, S.M.; Lee, C. Direct template synthesis of mesoporous carbon and its application to supercapacitor electrodes. Mater. Res. Bull. 2009, 44, 1663–1669. [Google Scholar] [CrossRef]
- Park, J.; An, G.H. Interface-engineered electrode and electrolyte for the improved energy-storing performance and stable mechanical flexibility of fibrous supercapacitors. Appl. Surf. Sci. 2021, 549, 149326. [Google Scholar] [CrossRef]
- Xu, J.; Zhou, X.; Chen, M.; Shi, S.; Cao, Y. Preparing hierarchical porous carbon aerogels based on enzymatic hydrolysis lignin through ambient drying for supercapacitor electrodes. Micropor. Mesopor. Mater. 2018, 265, 258–265. [Google Scholar] [CrossRef]
- Li, G.; Zhang, X.; Qiu, D.; Liu, Z.; Yang, C.; Cockreham, C.B.; Wang, B.; Fu, L.; Zhang, J.; Sudduth, B.; et al. Tuning Ni/Al Ratio to Enhance Pseudocapacitive Charge Storage Properties of Nickel-Aluminum Layered Double Hydroxide. Adv. Electron. Mater. 2019, 5, 1900215. [Google Scholar] [CrossRef]
- Kartachova, O.; Chen, Y.; Jones, R.; Chen, Y.; Zhang, H.; Glushenkov, A.M. Evolution of the electrochemical capacitance of transition metal oxynitrides with time: The effect of ageing and passivation. J. Mater. Chem. A 2014, 2, 12940–12951. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Song, X.; Zhang, W.; Xu, H.; Guo, T.; Zhang, X.; Gao, J.; Pang, H.; Xue, H. Microporous Carbon Nanofibers Derived from Poly(acrylonitrile-co-acrylic acid) for High-Performance Supercapacitors. Chem. Eur. J. 2020, 26, 3326–3334. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Mou, B.; Liang, Y.; Dong, H.; Zheng, M.; Xiao, Y.; Liu, Y. Component Degradation-Enabled Preparation of Biomass-Based Highly Porous Carbon Materials for Energy Storage. ACS Sustain. Chem. Eng. 2019, 7, 15259–15266. [Google Scholar] [CrossRef]
- Simoes, F.F.; Abou-Hamad, E.; Smajic, J.; Batra, N.M.; Costa, P.M.F.J. Chemical and Structural Analysis of Carbon Materials Subjected to Alkaline Oxidation. ACS Omega 2019, 4, 18725–18733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, L.; Tian, C.; Li, M.; Meng, X.; Wang, L.; Wang, R.; Yin, J.; Fu, H. From coconut shell to porous graphene-like nanosheets for high-power supercapacitors. J. Mater. Chem. A 2013, 1, 6462–6470. [Google Scholar] [CrossRef]
- Zhang, X.; Li, H.; Zhang, K.; Wang, Q.; Qin, B.; Cao, Q.; Jin, L. Strategy for preparing porous graphitic carbon for supercapacitor: Balance on porous structure and graphitization degree. J. Electrochem. Soc. 2018, 165, A2084–A2092. [Google Scholar] [CrossRef]
- Hui, J.; Wei, D.; Chen, J.; Yang, Z. Polyaniline Nanotubes/Carbon Cloth Composite Electrode by Thermal Acid Doping for High-Performance Supercapacitors. Polymers 2019, 11, 2053. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Wang, X.; Zhang, H.J.; You, X.; Yue, O. Self-Healable, High-Strength Hydrogel Electrode for Flexible Sensors and Supercapacitors. ACS Appl. Mater. Interfaces 2021, 13, 36240–36252. [Google Scholar] [CrossRef]
- Yang, Z.; Chen, Z. Thermally doped polypyrrole nanotubes with sulfuric acid for flexible all-solid-state supercapacitors. Nanotechnol. 2019, 30, 245402. [Google Scholar] [CrossRef]
- Jing, S.; Yan, X.; Li, T.; Xiong, Y.; Hu, T.; Wang, Z.; Ge, X. A conjugately configured supercapacitor based on pairs of pre-lithiated Nb2O5/TiO2 with optimized retained energy upon aging enabled by suppressed self-discharge. J. Power Sources 2022, 549, 232141. [Google Scholar] [CrossRef]
- Yan, X.; Jing, S.; Li, T.; Xiong, Y.; Hu, T.; Wang, Z.; Ge, X. Conjugately configured supercapacitors: Mitigating self-discharge based on pairs of pre-lithiated niobium oxides. Chem. Eng. J. 2022, 450, 137977. [Google Scholar] [CrossRef]
- Yan, Z.; Scott, B.; Glazier, S.L.; Obrovac, M.N. Current-Corrected Cycling Strategies for True Electrode Performance Measurement. Batter. Supercaps 2022, 5, e202100345. [Google Scholar] [CrossRef]
- Byun, S.; Yu, J. Direct formation of a current collector layer on a partially reduced graphite oxide film using sputter-assisted metal deposition to fabricate high-power micro-supercapacitor electrodes. J. Power Sources 2016, 307, 849–855. [Google Scholar] [CrossRef]
- Dubal, D.P.; Wu, Y.P.; Holze, R. Supercapacitors: From the Leyden jar to electric busses. Chemtexts 2016, 2, 13. [Google Scholar] [CrossRef] [Green Version]
- Khorate, A.; Kadam, A.V. An overview of patents and recent development in flexible supercapacitors. J. Energy Storage 2022, 52, 104887. [Google Scholar] [CrossRef]
- Zhu, M.; Weber, C.J.; Yang, Y.; Konuma, M.; Starke, U.; Kern, K.; Bittner, A.M. Chemical and electrochemical ageing of carbon materials used in supercapacitor electrodes. Carbon 2008, 46, 1829–1840. [Google Scholar] [CrossRef]
- Bittner, A.M.; Zhu, M.; Yang, Y.; Waibel, H.F.; Konuma, M.; Starke, U.; Weber, C.J. Ageing of electrochemical double layer capacitors. J. Power Sources 2012, 203, 262–273. [Google Scholar] [CrossRef]
- Vaquero, S.; Palma, J.; Anderson, M.; Marcilla, R. Mass-Balancing of Electrodes as a Strategy to Widen the Operating Voltage Window of Carbon/Carbon Supercapacitors in Neutral Aqueous Electrolytes. Int. J. Electrochem. Sci. 2013, 8, 10293–10307. [Google Scholar]
- Lee, S.Y.; Choi, C.H.; Chung, M.W.; Chung, J.H.; Woo, S.I. Dimensional tailoring of nitrogen-doped graphene for high performance supercapacitors. RSC Adv. 2016, 6, 55577–55583. [Google Scholar] [CrossRef]
- Yang, C.H.; Nguyen, Q.D.; Chen, T.H.; Helal, A.S.; Li, J.; Chang, J.K. Functional Group-Dependent Supercapacitive and Aging Properties of Activated Carbon Electrodes in Organic Electrolyte. ACS Sustain. Chem. Eng. 2018, 6, 1208–1214. [Google Scholar] [CrossRef]
- Moyo, B.; Momodu, D.; Fasakin, O.; Bello, A.; Dangbegnon, J.; Manyala, N. Electrochemical analysis of nanoporous carbons derived from activation of polypyrrole for stable supercapacitors. J. Mater. Sci. 2018, 53, 5229–5241. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Chen, R.; Lipka, S.M.; Yang, F. Current-induced strength degradation of activated carbon spheres in carbon supercapacitors. Mater. Res. Express 2016, 3, 055602. [Google Scholar] [CrossRef]
- Salihovic, M.; Schlee, P.; Herou, S.; Titirici, M.M.; Husing, N.; Elsaesser, M.S. Monolithic Carbon Spherogels as Freestanding Electrodes for Supercapacitors. ACS Appl. Energy Mater. 2021, 4, 11183–11193. [Google Scholar]
- Easton, E.B.; Fruehwald, H.M.; Randle, R.; Saleh, F.S.; Ebralidze, I.I. Probing the degradation of carbon black electrodes in the presence of chloride by electrochemical impedance spectroscopy. Carbon 2020, 162, 502–509. [Google Scholar] [CrossRef]
- Tang, R.; Yamamoto, M.; Nomura, K.; Morallon, E.; Cazorla-Amoros, D.; Nishihara, H.; Kyotani, T. Effect of carbon surface on degradation of supercapacitors in a negative potential range. J. Power Sources 2020, 457, 228042. [Google Scholar] [CrossRef]
- Arkhipova, E.A.; Ivanov, A.S.; Maslakov, K.I.; Savilov, S.V. Nitrogen-doped mesoporous graphene nanoflakes for high performance ionic liquid supercapacitors. Electrochim. Acta 2020, 353, 136463. [Google Scholar] [CrossRef]
- Landi, G.; La Notte, L.; Palma, A.L.; Sorrentino, A.; Maglione, M.G.; Puglisi, G. A Comparative Evaluation of Sustainable Binders for Environmentally Friendly Carbon-Based Supercapacitors. Nanomaterials 2022, 12, 46. [Google Scholar] [CrossRef]
- Li, X.; Huang, Z.; Shuck, C.E.; Liang, G.; Gogotsi, Y.; Zhi, C. MXene chemistry, electrochemistry and energy storage applications. Nat. Rev. Chem. 2022, 6, 389–404. [Google Scholar] [CrossRef]
- Wang, G.; Jiang, N.; Zhang, Z.; Wang, G.; Cheng, K. Free-standing 3D porous energy hydrogels enabled by ion-induced gelation strategy for High-performance supercapacitors. Appl. Surf. Sci. 2022, 604, 154636. [Google Scholar] [CrossRef]
- Guo, N.; Lin, Y.; Cui, Y.; Su, S.; Dai, H.; Yang, J.; Zhu, X. Effect of MWCNTs additive on preservation stability of rGO powder. J. Mater. Sci. Mater. Electron. 2022, 33, 6766–6779. [Google Scholar] [CrossRef]
- Li, L.; Niu, H.; Robertson, J.; Jiang, J.; Guo, Y.; Kuai, C. Cyclocrosslinked polyphosphazene modified MXene as aqueous supercapacitor. Electrochim. Acta 2023, 439, 141574. [Google Scholar] [CrossRef]
- Kim, T.; Kim, M.K.; Park, Y.; Kim, E.; Kim, J.; Ryu, W.; Jeong, H.M.; Kim, K. Cutting-Processed Single-Wall Carbon Nanotubes with Additional Edge Sites for Supercapacitor Electrodes. Nanomaterials 2018, 8, 464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nunes, W.G.; Pires, B.M.; De Oliveira, F.E.R.; de Marque, A.M.P.; Cremasco, L.F.; Vicentini, R.; Doubek, G.; Da Silva, L.M.; Zanin, H. Study of the aging process of nanostructured porous carbon-based electrodes in electrochemical capacitors filled with aqueous or organic electrolytes. J. Energy Storage 2020, 28, 101249. [Google Scholar] [CrossRef]
- Wojciechowski, J.; Kolanowski, L.; Gras, M.; Szubert, K.; Bund, A.; Fic, K.; Lota, G. Anti-corrosive siloxane coatings for improved long-term performance of supercapacitors with an aqueous electrolyte. Electrochim. Acta 2021, 372, 137840. [Google Scholar] [CrossRef]
- Ul Hoque, M.I.; Holze, R. Intrinsically Conducting Polymer Composites as Active Masses in Supercapacitors. Polymers 2023, 15, 730. [Google Scholar] [CrossRef]
- Holze, R. Composites of intrinsically conducting polymers with carbonaceous materials for supercapacitors—An update. Univers. J. Electrochem. 2023, 1, 1–35. [Google Scholar]
- Wang, Z.; Qin, Q.; Xu, W.; Yan, J.; Wu, Y. Long Cyclic Life in Manganese Oxide-Based Electrodes. ACS Appl. Mater. Interfaces 2016, 8, 18078–18088. [Google Scholar] [CrossRef]
- Siwek, K.I.; Eugénio, S.; Aldama, I.; Rojo, J.M.; Amarilla, J.M.; Ribeiro, A.P.C.; Silva, T.M.; Montemor, M.F. Tailored 3D Foams Decorated with Nanostructured Manganese Oxide for Asymmetric Electrochemical Capacitors. J. Electrochem. Soc. 2022, 169, 020511. [Google Scholar] [CrossRef]
- Kim, J.H.; Choi, C.; Lee, J.M.; de Andrade, M.J.; Baughman, R.H.; Kim, S.J. Ag/MnO2 Composite Sheath-Core Structured Yarn Supercapacitors. Sci. Rep. 2018, 8, 13309. [Google Scholar] [CrossRef] [Green Version]
- Yun, T.G.; Hwang, B.I.; Kim, D.; Hyun, S.; Han, S.M. Polypyrrole-MnO2-coated textile-based flexible-stretchable supercapacitor with high electrochemical and mechanical reliability. ACS Appl. Mater. Interfaces 2015, 7, 9228–9234. [Google Scholar] [CrossRef] [PubMed]
- Paleo, A.J.; Staiti, P.; Rocha, A.M.; Squadrito, G.; Lufrano, F. Lifetime assessment of solid-state hybrid supercapacitors based on cotton fabric electrodes. J. Power Sources 2019, 434, 226735. [Google Scholar] [CrossRef]
- Cai, X.; Song, Y.; Wang, S.Q.; Sun, X.; Liu, X.X. Extending the cycle life of high mass loading MoOx electrode for supercapacitor applications. Electrochim. Acta 2019, 325, 134877. [Google Scholar] [CrossRef]
- Mu, X.; Zhang, Y.; Wang, H.; Huang, B.; Sun, P.; Chen, T.; Zhou, J.; Xie, E.; Zhang, Z. A high energy density asymmetric supercapacitor from ultrathin manganese molybdate nanosheets. Electrochim. Acta 2016, 211, 217–224. [Google Scholar] [CrossRef]
- Abdelkareem, M.A.; Allagui, A.; Said, Z.; Elwakil, A.S.; Zannerni, R.; Tanveer, W.H.; Elsaid, K. Frequency-Dependent Effective Capacitance of Supercapacitors Using Electrospun Cobalt-Carbon Composite Nanofibers. J. Electrochem. Soc. 2019, 166, A2403–A2408. [Google Scholar] [CrossRef]
- Li, X.; Lu, L.; Shen, J.; Li, Z.; Liu, S. Metal-organic frameworks induced robust layered Co(OH)2 nanostructures for ultra-high stability hybrid supercapacitor electrodes in aqueous electrolyte. J. Power Sources 2020, 477, 228974. [Google Scholar] [CrossRef]
- Silva, D.D.; Sanchez-Montes, I.; Hammer, P.; Aquino, J.M. On the supercapacitor performance of microwave heat treated self organized TiO2 nanotubes: Influence of the cathodic pre-treatment, water aging, and thermal oxide. Electrochim. Acta 2017, 245, 157–164. [Google Scholar] [CrossRef] [Green Version]
- Pinto, T.T.; Núñez-de la Rosa, Y.; Hammer, P.; Aquino, J.M. On the performance of self-organized TiO2 nanotubes@MnOx as supercapacitor: Influence of the heat treatment, cathodic treatment, water aging, and thermal oxides. Electrochim. Acta 2022, 408, 139898. [Google Scholar] [CrossRef]
- Gallastegui, A.; Camara, O.; Minudri, D.; Goujon, N.; Patil, N.; Ruiperez, F.; Marcilla, R.; Mecerreyes, D. Aging Effect of Catechol Redox Polymer Nanoparticles for Hybrid Supercapacitors. Batter. Supercaps 2022, 5, e202200155. [Google Scholar] [CrossRef]
- Wang, H.; Xu, X.; Wang, C.; Neville, A.; Hua, Y. Fundamental Insight into the Degradation Mechanism of an rGO-Fe3O4 Supercapacitor and Improving Its Capacity Behavior via Adding an Electrolyte Additive. Energy Fuels 2021, 35, 8406–8416. [Google Scholar] [CrossRef]
- Xu, P.; Zeng, W.; Luo, S.; Ling, C.; Xiao, J.; Zhou, A.; Sun, Y.; Liao, K. 3D Ni-Co selenide nanorod array grown on carbon fiber paper: Towards high-performance flexible supercapacitor electrode with new energy storage mechanism. Electrochim. Acta 2017, 241, 41–49. [Google Scholar] [CrossRef]
- Jrondi, A.; Buvat, G.; De La Pena, F.; Marinova, M.; Huve, M.; Brousse, T.; Roussel, P.; Lethien, C. Major Improvement in the Cycling Ability of Pseudocapacitive Vanadium Nitride Films for Micro-Supercapacitor. Adv. Energy Mater. 2023, 13, 2203462. [Google Scholar] [CrossRef]
- Holze, R. Spectroelectrochemistry of conducting polymers. In Handbook of Advanced Electronic and Photonic Materials and Devices; Nalwa, H.S., Ed.; Academic Press: San Diego, CA, USA, 2001; Volume 8, pp. 209–301. [Google Scholar]
- Holze, R. Spectroelectrochemistry of intrinsically conducting polymers of aniline and substituted anilines. In Advanced Functional Molecules and Polymers; Nalwa, H.S., Ed.; Gordon and Breach and OPA N.V.: Singapore, 2001; Volume 2, pp. 171–221. [Google Scholar]
- Hou, Y.; Zhang, L.; Chen, L.Y.; Liu, P.; Hirata, A.; Chen, M.W. Raman characterization of pseudocapacitive behavior of polypyrrole on nanoporous gold. Phys. Chem. Chem. Phys. 2014, 16, 3523–3528. [Google Scholar] [CrossRef]
- Hamra, A.A.B.; Lim, H.N.; Hafiz, S.M.; Kamaruzaman, M.; Abdul Rashid, S.; Yunus, R.; Altarawneh, M.; Jiang, Z.T.; Huang, N.M. Performance stability of solid-state polypyrrole-reduced graphene oxide-modified carbon bundle fiber for supercapacitor application. Electrochim. Acta 2018, 285, 9–15. [Google Scholar] [CrossRef]
- Raj, C.J.; Rajesh, M.; Manikandan, R.; Park, S.; Park, J.H.; Yu, K.H.; Kim, B.C. Electrochemical impedance spectroscopic studies on aging-dependent electrochemical degradation of p-toluene sulfonic acid-doped polypyrrole thin film. Ionics 2018, 24, 2335–2342. [Google Scholar] [CrossRef]
- Alcaraz-Espinoza, J.J.; De Melo, C.P.; De Oliveira, P. Fabrication of Highly Flexible Hierarchical Polypyrrole/Carbon Nanotube on Eggshell Membranes for Supercapacitors. ACS Omega 2017, 2, 2866–2877. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Li, Z.; Qi, K.; Qiu, Y.; Guo, X. Insights on the capacitance degradation of polypyrrole nanowires during prolonged cycling. Polym. Degrad. Stabil. 2022, 202, 110034. [Google Scholar] [CrossRef]
- Hryniewiez, B.M.; Lima, R.V.; Marchesi, L.F.; Vidotti, M. Impedimetric studies about the degradation of polypyrrole nanotubes during galvanostatic charge and discharge cycles. J. Electroanal. Chem. 2019, 855, 113636. [Google Scholar] [CrossRef]
- Xu, J.; Zhu, L.; Bai, Z.; Liang, G.; Liu, L.; Fang, D.; Xu, W. Conductive polypyrrole-bacterial cellulose nanocomposite membranes as flexible supercapacitor electrode. Org. Electron. 2013, 14, 3331–3338. [Google Scholar] [CrossRef]
- Samukaite-Bubniene, U.; Valiuniene, A.; Bucinskas, V.; Genys, P.; Ratautaite, V.; Ramanaviciene, A.; Aksun, E.; Tereshchenko, A.; Zeybek, B.; Ramanavicius, A. Towards supercapacitors: Cyclic voltammetry and fast Fourier transform electrochemical impedance spectroscopy based evaluation of polypyrrole electrochemically deposited on the pencil graphite electrode. Colloids Surf. A 2021, 610, 125750. [Google Scholar] [CrossRef]
- Hu, C.C.; Lin, X.X. Ideally capacitive behavior and X-ray photoelectron spectroscopy characterization of polypyrrole effects of polymerization temperatures and thickness/coverage. J. Electrochem. Soc. 2002, 149, A1049–A1057. [Google Scholar] [CrossRef]
- Li, W.; Yuan, F.; Xu, N.; Mei, S.; Chen, Z.; Zhang, C. Triphenylamine-triazine polymer materials obtained by electrochemical polymerization: Electrochemistry stability, anions trapping behavior and electrochromic-supercapacitor application. Electrochim. Acta 2021, 384, 138344. [Google Scholar] [CrossRef]
- Deng, J.; Wang, T.; Guo, J.; Liu, P. Electrochemical capacity fading of polyaniline electrode in supercapacitor: An XPS analysis. Prog. Nat. Sci. Mater. 2017, 27, 257–260. [Google Scholar] [CrossRef]
- Abd-Elwahed, A.; Holze, R. Ion size and size memory effects with electropolymerized polyaniline. Synth. Met. 2002, 131, 61–70. [Google Scholar] [CrossRef]
- Abd-Elwahed, A.; Mahmoud, H.; Holze, R. Anion effects with polyaniline in aqueous solutions. Curr. Trends Polym. Sci. 2003, 8, 211–222. [Google Scholar]
- Lippe, J.; Holze, R. The anion-specific effect in the overoxidation of polyaniline and polyindoline. J. Electroanal. Chem. 1992, 339, 411–422. [Google Scholar] [CrossRef]
- Arsov, L.D.; Plieth, W.; Koßmehl, G. Electrochemical and Raman spectroscopic study of polyaniline; influence of the potential on the degradation of polyaniline. J. Solid State Electrochem. 1998, 2, 355–361. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, J.; Chen, Y.; Wang, Z.; Wang, S. Long-term cycling stability of polyaniline on graphite electrodes used for supercapacitors. Electrochim. Acta 2013, 105, 69–74. [Google Scholar] [CrossRef]
- Bilal, S.; Begum, B.; Gul, S.; Shah, A.u.H.A. PANI/DBSA/H2SO4: A promising and highly efficient electrode material for aqueous supercapacitors. Synth. Met. 2018, 235, 1–15. [Google Scholar] [CrossRef]
- Yang, G.; Takei, T.; Yanagida, S.; Kumada, N. Enhanced Supercapacitor Performance Based on CoAl Layered Double Hydroxide-Polyaniline Hybrid Electrodes Manufactured Using Hydrothermal-Electrodeposition Technology. Molecules 2019, 24, 976. [Google Scholar] [CrossRef] [Green Version]
- Olsson, H.; Nyström, G.; Strømme, M.; Sjödin, M.; Nyholm, L. Cycling stability and self-protective properties of a paper-based polypyrrole energy storage device. Electrochem. Commun. 2011, 13, 869–871. [Google Scholar] [CrossRef]
- Beck, F.; Michaelis, R. Corrosion of synthetic metals. Werkst. Korros. Mater. Corros. 1991, 42, 341–347. [Google Scholar] [CrossRef]
- Beck, F.; Barsch, U. Corrosion of conducting polymers in aqueous electrolytes. Synth. Met. 1993, 55, 1299–1304. [Google Scholar] [CrossRef]
- Holze, R. Overoxidation of Intrinsically Conducting Polymers. Polymers 2022, 14, 1584. [Google Scholar] [CrossRef]
- Posudievsky, O.Y.; Kozarenko, O.A.; Dyadyun, V.S.; Kotenko, I.E.; Koshechko, V.G.; Pokhodenko, V.D. Mechanochemically prepared polyaniline and graphene-based nanocomposites as electrodes of supercapacitors. J. Solid State Electrochem. 2018, 22, 3419–3430. [Google Scholar] [CrossRef]
- Ur Rehman, H.; Shuja, A.; Ali, M.; Murtaza, I.; Meng, H. Evaluation of defects and current kinetics for aging analysis of PEDOT:PSS based supercapacitors. J. Energy Storage 2020, 28, 101243. [Google Scholar] [CrossRef]
- Giuri, A.; Masi, S.; Colella, S.; Listorti, A.; Rizzo, A.; Liscio, A.; Treossi, E.; Palermo, V.; Gigli, G.; Mele, C.; et al. GO/PEDOT: PSS nanocomposites: Effect of different dispersing agents on rheological, thermal, wettability and electrochemical properties. Nanotechnology 2017, 28, 174001. [Google Scholar] [CrossRef]
- Aradilla, D.; Estrany, F.; Alemán, C. Symmetric supercapacitors based on multilayers of conducting polymers. J. Phys. Chem. C 2011, 115, 8430–8438. [Google Scholar] [CrossRef]
- Estrany, F.; Aradilla, D.; Oliver, R.; Alemán, C. Electroactivity, electrochemical stability and electrical conductivity of multilayered films containing poly(3,4-ethylendioxythiophene) and poly(N-methylpyrrole). Eur. Polym. J. 2007, 43, 1876–1882. [Google Scholar] [CrossRef]
- Estrany, F.; Aradilla, D.; Oliver, R.; Armelin, E.; Alemán, C. Properties of nanometric and submicrometric multilayered films of poly(3,4-ethylenedioxythiophene) and poly(N-methylpyrrole). Eur. Polym. J. 2008, 44, 1323–1330. [Google Scholar] [CrossRef]
- Christinelli, W.A.; Goncalves, R.; Pereira, E.C. Optimization of electrochemical capacitor stability of poly(o-methoxyaniline)-poly(3-thiophene acetic acid) self-assembled films. Electrochim. Acta 2016, 196, 741–748. [Google Scholar] [CrossRef]
- Goncalves, R.; Christinelli, W.A.; Trench, A.B.; Cuesta, A.; Pereira, E.C. Properties improvement of poly(o-methoxyaniline) based supercapacitors: Experimental and theoretical behaviour study of self-doping effect. Electrochim. Acta 2017, 228, 57–65. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Zhai, X.; Huang, H.; Zhou, J.; Li, X.; He, Y.; Guo, Z. Capacitance fading mechanism and structural evolution of conductive polyaniline in electrochemical supercapacitor. J. Mater. Sci. Mater. Electron. 2020, 31, 14625–14634. [Google Scholar] [CrossRef]
- Wang, Y.; Wei, H.; Wang, J.; Liu, J.; Guo, J.; Zhang, X.; Weeks, B.L.; Shen, T.D.; Wei, S.; Guo, Z. Electropolymerized polyaniline/manganese iron oxide hybrids with an enhanced color switching response and electrochemical energy storage. J. Mater. Chem. A 2015, 3, 20778–20790. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhou, A.; Wang, J.; Wu, J.; Bai, H. Degradation-induced capacitance: A new insight into the superior capacitive performance of polyaniline/graphene composites. Energy Environ. Sci. 2017, 10, 2372–2382. [Google Scholar] [CrossRef]
- Sumboja, A.; Foo, C.Y.; Yan, J.; Yan, C.; Gupta, R.; Lee, P. Significant electrochemical stability of manganese dioxide/polyaniline coaxial nanowires by self-terminated double surfactant polymerization for pseudocapacitor electrode. J. Mater. Chem. 2012, 22, 23921–23928. [Google Scholar] [CrossRef]
- Wang, Y.; Mayorga-Martinez, C.C.; Pumera, M. Polyaniline/MoSX Supercapacitor by Electrodeposition. Bull. Chem. Soc. Jpn. 2017, 90, 847–853. [Google Scholar] [CrossRef] [Green Version]
- Tompsett, D.; Saiful Islam, M. Electrochemistry of Hollandite α-MnO2: Li-Ion and Na-Ion Insertion and Li2O Incorporation. Chem. Mater. 2013, 25, 2515–2526. [Google Scholar] [CrossRef] [Green Version]
- Jiang, W.; Yu, D.; Zhang, Q.; Goh, K.; Wei, L.; Yong, Y.; Jiang, R.; Wei, J.; Chen, Y. Ternary Hybrids of Amorphous Nickel Hydroxide-Carbon Nanotube-Conducting Polymer for Supercapacitors with High Energy Density, Excellent Rate Capability, and Long Cycle Life. Adv. Funct. Mater. 2015, 25, 1063–1073. [Google Scholar] [CrossRef]
- Pai, R.; Singh, A.; Simotwo, S.; Kalra, V. In Situ Grown Iron Oxides on Carbon Nanofibers as Freestanding Anodes in Aqueous Supercapacitors. Adv. Eng. Mater. 2018, 20, 1701116. [Google Scholar] [CrossRef]
- Siller, V.; Gonzalez-Rosillo, J.C.; Eroles, M.N.; Stchakovsky, M.; Arenal, R.; Morata, A.; Tarancon, A. Safe extended-range cycling of Li4Ti5O12-based anodes for ultra-high capacity thin-film batteries. Mater. Today Energy 2022, 25, 100979. [Google Scholar] [CrossRef]
- Torregrossa, D.; Toghill, K.E.; Amstutz, V.; Girault, H.H.; Paolone, M. Macroscopic indicators of fault diagnosis and ageing in electrochemical double layer capacitors. J. Energy Storage 2015, 2, 8–24. [Google Scholar] [CrossRef]
- Nakhanivej, P.; Rana, H.H.; Kim, H.; Xia, B.Y.; Park, H.S. Transport and Durability of Energy Storage Materials Operating at High Temperatures. ACS Nano 2020, 14, 7696–7703. [Google Scholar] [CrossRef] [PubMed]
- Kötz, R.; Hahn, M.; Gallay, R. Temperature behavior and impedance fundamentals of supercapacitors. J. Power Sources 2006, 154, 550–555. [Google Scholar] [CrossRef]
- Yan, S.; Tang, C.; Zhang, H.; Yang, Z.; Wang, X.; Zhang, C.; Liu, S. Free-standing cross-linked activated carbon nanofibers with nitrogen functionality for high-performance supercapacitors. Nanotechnology 2020, 31, 025402. [Google Scholar] [CrossRef]
- He, M.; Fic, K.; Frackowiak, E.; Novak, P.; Berg, E.J. Ageing phenomena in high-voltage aqueous supercapacitors investigated by in situ gas analysis. Energy Environ. Sci. 2016, 9, 623–633. [Google Scholar] [CrossRef] [Green Version]
- Ratajzak, P.; Jurewicz, K.; Béguin, F. Factors contributing to ageing of high voltage carbon/carbon supercapacitors in salt aqueous electrolyte. J. Appl. Electrochem. 2014, 44, 475–480. [Google Scholar] [CrossRef]
- Piwek, J.; Platek, A.; Frackowiak, E.; Fic, K. Mechanisms of the performance fading of carbon-based electrochemical capacitors operating in a LiNO3 electrolyte. J. Power Sources 2019, 438, 227029. [Google Scholar] [CrossRef]
- Batisse, N.; Raymundo-Piñero, E. Pulsed Electrochemical Mass Spectrometry for Operando Tracking of Interfacial Processes in Small-Time-Constant Electrochemical Devices such as Supercapacitors. ACS Appl. Mater. Interfaces 2017, 9, 41224–41232. [Google Scholar] [CrossRef]
- Kreth, F.A.; Hess, L.H.; Balducci, A. In-operando GC-MS: A new tool for the understanding of degradation processes occurring in electrochemical capacitors. Energy Storage Mater. 2023, 56, 192–204. [Google Scholar] [CrossRef]
- Kim, J.; Kim, E.; Lee, U.; Lee, I.; Han, S.; Son, H.; Yoon, S. Nondisruptive In Situ Raman Analysis for Gas Evolution in Commercial Supercapacitor Cells. Electrochim. Acta 2016, 219, 447–452. [Google Scholar] [CrossRef]
- Liu, Y.; Soucaze-Guillous, B.; Taberna, P.L.; Simon, P. Understanding of carbon-based supercapacitors ageing mechanisms by electrochemical and analytical methods. J. Power Sources 2017, 366, 123–130. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Rety, B.; Ghimbeu, C.M.; Soucaze-Guillous, B.; Taberna, P.L.; Simon, P. Understanding ageing mechanisms of porous carbons in non-aqueous electrolytes for supercapacitors applications. J. Power Sources 2019, 434, 226734. [Google Scholar] [CrossRef] [Green Version]
- Lin, Z.; Taberna, P.L.; Simon, P. Advanced analytical techniques to characterize materials for electrochemical capacitors. Curr. Opin. Electrochem. 2018, 9, 18–25. [Google Scholar] [CrossRef] [Green Version]
- Laheäär, A.; Przygocki, P.; Abbas, Q.; Béguin, F. Appropriate methods for evaluating the efficiency and capacitive behavior of different types of supercapacitors. Electrochem. Commun. 2015, 60, 21–25. [Google Scholar] [CrossRef]
- Isi Keyla, R.H.; Leticia, G.T.L.; Maximiano, S.C.E.; Carlos, T.G.L. Activated carbon from agave wastes (agave tequilana) for supercapacitors via potentiostatic floating test. J. Mater. Sci. Mater. Electron. 2021, 32, 21432–21440. [Google Scholar]
- Vol’fkovich, Y.M.; Rychagov, A.Y.; Kiselev, M.R.; Sosenkin, V.E.; Seliverstov, A.F. Electrochemical, Structural, and Thermogravimetric Studies of Activated Supercapacitor Electrodes Based on Carbonized Cellulose Cloth. Russ. J. Phys. Chem. A 2020, 94, 864–873. [Google Scholar] [CrossRef]
- Kamboj, N.; Purkait, T.; Das, M.; Sarkar, S.; Hazra, K.S.; Dey, R.S. Ultralong cycle life and outstanding capacitive performance of a 10.8 V metal free micro-supercapacitor with highly conducting and robust laser-irradiated graphene for an integrated storage device. Energy Environ. Sci. 2019, 12, 2507–2517. [Google Scholar] [CrossRef]
- Du, J.; Mu, X.; Zhao, Y.; Zhang, Y.; Zhang, S.; Huang, B.; Sheng, Y.; Xie, Y.; Zhang, Z.; Xie, E. Layered coating of ultraflexible graphene-based electrodes for high-performance in-plane quasi-solid-state micro-supercapacitors. Nanoscale 2019, 11, 14392–14399. [Google Scholar] [CrossRef]
- Sekar, P.; Anothumakkool, B.; Vijayakumar, V.; Lohgaonkar, A.; Kurungot, S. Unravelling the Mechanism of Electrochemical Degradation of PANI in Supercapacitors: Achieving a Feasible Solution. ChemElectroChem 2016, 3, 933–942. [Google Scholar] [CrossRef]
- Zhang, H.; Yao, M.; Wei, J.; Zhang, Y.; Zhang, S.; Gao, Y.; Li, J.; Lu, P.; Yang, B.; Ma, Y. Stable p/n-Dopable Conducting Redox Polymers for High-Voltage Pseudocapacitor Electrode Materials: Structure-Performance Relationship and Detailed Investigation into Charge-Trapping Effect. Adv. Energy Mater. 2017, 7, 1701063. [Google Scholar] [CrossRef]
- El Ghossein, N.; Sari, A.; Venet, P.; Genies, S.; Azais, P. Post-Mortem Analysis of Lithium-Ion Capacitors after Accelerated Aging Testes. J. Energy Storage 2021, 33, 102039. [Google Scholar] [CrossRef]
- El Ghossein, N.; Sari, A.; Venet, P. Lifetime Prediction of Lithium-Ion Capacitors Based on Accelerated Aging Tests. Batteries 2019, 5, 28. [Google Scholar] [CrossRef] [Green Version]
- El Ghossein, N.; Sari, A.; Venet, P. Degradation behavior of Lithium-Ion Capacitors during calendar aging. In Proceedings of the 2017 IEEE 6th International Conference on Renewable Energy Research and Applications (ICRERA), San Diego, CA, USA, 5–8 November 2017; pp. 142–146. [Google Scholar]
- Ahn, S.; Haniu, Y.; Nara, H.; Momma, T.; Sugimoto, W.; Osaka, T. Synthesis of Stacked Graphene-Sn Composite as a High-Performance Anode for Lithium-Ion Capacitors. J. Electrochem. Soc. 2020, 167, 040519. [Google Scholar] [CrossRef]
- Lee, B.G.; Lee, S.H. Application of hybrid supercapacitor using granule Li4Ti5O12/activated carbon with variation of current density. J. Power Sources 2017, 343, 545–549. [Google Scholar] [CrossRef]
- Ceraolo, M.; Lutzemberger, G.; Poli, D. Aging evaluation of high power lithium cells subjected to micro-cycles. J. Energy Storage 2016, 6, 116–124. [Google Scholar] [CrossRef]
- Azaïs, P.; Duclaux, L.; Florian, P.; Massiot, D.; Lillo-Rodenas, M.A.; Linares-Solano, A.; Peres, J.P.; Jehoulet, C.; Béguin, F. Causes of supercapacitors ageing in organic electrolyte. J. Power Sources 2007, 171, 1046–1053. [Google Scholar] [CrossRef]
- Nikiforidis, G.; Phadke, S.; Anouti, M. Comparative Internal Pressure Evolution at Interfaces of Activated Carbon for Supercapacitors Containing Electrolytes Based on Linear and Cyclic Ammonium Tetrafluoroborate Salts in Acetonitrile. Adv. Mater. Interfaces 2023, 10, 2202046. [Google Scholar] [CrossRef]
- Kötz, R.; Hahn, M.; Ruch, P.; Gallay, R. Comparison of pressure evolution in supercapacitor devices using different aprotic solvents. Electrochem. Commun. 2008, 10, 359–362. [Google Scholar] [CrossRef]
- He, L.; Li, J.; Gao, F.; Wang, X.; Ye, F.; Yang, J. Pressure evolution and analysis of aged electrodes at high temperature in electrochemical double layer capacitors. Electrochemistry 2011, 79, 934–940. [Google Scholar] [CrossRef] [Green Version]
- Kötz, R.; Ruch, P.W.; Cericola, D. Aging and failure mode of electrochemical double layer capacitors during accelerated constant load tests. J. Power Sources 2010, 195, 923–928. [Google Scholar] [CrossRef]
- Kurzweil, P.; Chwistek, M. Electrochemical stability of organic electrolytes in supercapacitors: Spectroscopy and gas analysis of decomposition products. J. Power Sources 2008, 176, 555–567. [Google Scholar] [CrossRef]
- Kurzweil, P.; Frenzel, B.; Hildebrand, A. Voltage-Dependent Capacitance, Aging Effects, and Failure Indicators of Double-Layer Capacitors during Lifetime Testing. ChemElectroChem 2015, 2, 160–170. [Google Scholar] [CrossRef]
- Kurzweil, P.; Hildebrand, A.; Weiss, M. Accelerated Life Testing of Double-Layer Capacitors: Reliability and Safety under Excess Voltage and Temperature. ChemElectroChem 2015, 2, 150–159. [Google Scholar] [CrossRef]
- Zheng, F.; Li, Y.; Wang, X. Study on effects of applied current and voltage on the ageing of supercapacitors. Electrochim. Acta 2018, 276, 343–351. [Google Scholar] [CrossRef]
- Timperman, L.; Vigeant, A.; Anouti, M. Eutectic mixture of Protic Ionic Liquids as an Electrolyte for Activated Carbon-Based Supercapacitors. Electrochim. Acta 2015, 155, 164–173. [Google Scholar] [CrossRef]
- Platek, A.; Piwek, J.; Fic, K.; Frackowiak, E. Ageing mechanisms in electrochemical capacitors with aqueous redox-active electrolytes. Electrochim. Acta 2019, 311, 211–220. [Google Scholar] [CrossRef]
- Zhang, H.; Li, X.; Zhang, J. (Eds.) Redox Flow Batteries—Fundamentals and Applications; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Roth, C.; Noack, J.; Skyllas-Kazacos, M. (Eds.) Flow Batteries; WILEY-VCH: Weinheim, Germany, 2023; Volume 1. [Google Scholar]
- Lee, J.; Weingarth, D.; Grobelsek, I.; Presser, V. Use of Surfactants for Continuous Operation of Aqueous Electrochemical Flow Capacitors. Energy Technol. 2016, 4, 75–84. [Google Scholar] [CrossRef]
- Phadke, S.; Amara, S.; Anouti, M. Gas Evolution in Activated-Carbon-Based Supercapacitors with Protic Deep Eutectic Solvent as Electrolyte. ChemPhysChem 2017, 18, 2364–2373. [Google Scholar] [CrossRef]
- Abbas, Q.; Béguin, F. High voltage AC/AC electrochemical capacitor operating at low temperature in salt aqueous electrolyte. J. Power Sources 2016, 318, 235–241. [Google Scholar] [CrossRef]
- Qin, B.; Wang, X.; Sui, D.; Zhang, T.; Zhang, M.; Sun, Z.; Ge, Z.; Xie, Y.; Zhou, Y.; Ren, Y.; et al. High-Temperature-Endurable, Flexible Supercapacitors: Performance and Degradation Mechanism. Energy Technol. 2018, 6, 161–170. [Google Scholar] [CrossRef]
- Xu, C.; Yan, J.; Qin, Q.; Deng, Y.; Cheng, J.; Zhang, Y.; Wu, Y. All solid supercapacitors based on an anion conducting polymer electrolyte. RSC Adv. 2016, 6, 19826–19832. [Google Scholar] [CrossRef]
- Chen, D.Z.; Yu, J.; Lu, W.; Zhao, Y.; Yan, Y.; Chou, T.W. Temperature effects on electrochemical performance of carbon nanotube film based flexible all-solid-state supercapacitors. Electrochim. Acta 2017, 233, 181–189. [Google Scholar] [CrossRef]
- Prasadini, K.W.; Perera, K.S.; Vidanapathirana, K.P. Preliminary study on the performance of a redox capacitor with the use of ionic liquid-based gel polymer electrolyte and polypyrrole electrodes. J. Mater. Sci. Mater. Electron. 2021, 32, 17629–17636. [Google Scholar] [CrossRef]
- Huang, Y.; Huang, Y.; Meng, W.; Zhu, M.; Xue, H.; Lee, C.S.; Zhi, C. Enhanced Tolerance to Stretch-Induced Performance Degradation of Stretchable MnO2-Based Supercapacitors. ACS Appl. Mater. Interfaces 2015, 7, 2569–2574. [Google Scholar] [CrossRef]
- Wu, Y.; Holze, R. Electrochemical Energy Conversion and Storage; WILEY-VCH: Weinheim, Germany, 2022. [Google Scholar]
- German, R.; Sari, A.; Venet, P.; Ayadi, M.; Briat, O.; Vinassa, J.M. Prediction of supercapacitors floating ageing with surface electrode interface based ageing law. Microelectron. Reliab. 2014, 54, 1813–1817. [Google Scholar] [CrossRef]
- El Mejdoubi, A.; Oukaour, A.; Chaoui, H.; Gualous, H.; Sabor, J.; Slamani, Y. Prediction Aging Model for Supercapacitor’s Calendar Life in Vehicular Applications. IEEE Trans. Vehic. Technol. 2016, 65, 4253–4263. [Google Scholar] [CrossRef]
- Bohlen, O.; Kowal, J.; Sauer, D.U. Ageing behaviour of electrochemical double layer capacitors—Part I. Experimental study and ageing model. J. Power Sources 2007, 172, 468–475. [Google Scholar] [CrossRef]
- Bohlen, O.; Kowal, J.; Sauer, D.U. Ageing behaviour of electrochemical double layer capacitors—Part II. Lifetime simulation model for dynamic applications. J. Power Sources 2007, 173, 626–632. [Google Scholar] [CrossRef]
- German, R.; Venet, P.; Sari, A.; Briat, O.; Vinassa, J.M. Improved supercapacitor floating ageing interpretation through multipore impedance model parameters evolution. IEEE Trans. Power Electron. 2014, 29, 3669–3678. [Google Scholar] [CrossRef]
- Wu, Y.; Holze, R. Self-discharge in supercapacitors: Causes, effects and therapies: An overview. Electrochem. Energy Technol. 2021, 7, 1–37. [Google Scholar]
- Uno, M.; Tanaka, K. Accelerated ageing testing and cycle life prediction of supercapacitors for alternative battery applications. In Proceedings of the 2011 IEEE 33rd International Telecommunications Energy Conference (INTELEC), Amsterdam, The Netherlands, 9–13 October 2011. [Google Scholar]
- Uno, M.; Tanaka, K. Accelerated charge-discharge cycling test and cycle life prediction model for supercapacitors in alternative battery applications. IEEE Trans. Ind. Electron. 2012, 59, 4704–4712. [Google Scholar] [CrossRef]
- Ayadi, M.; Eddahech, A.; Briat, O.; Vinassa, J.M. Voltage and temperature impacts on leakage current in calendar ageing of supercapacitors. In Proceedings of the 4th International Conference on Power Engineering, Energy and Electrical Drives, Istanbul, Turkey, 13–17 May 2013; pp. 1466–1470. [Google Scholar]
- Zhang, L.; Hu, X.; Wang, Z.; Sun, F.; Dorrell, D.G. A review of supercapacitor modeling, estimation, and applications: A control/management perspective. Renew. Sustain. Energy Rev. 2018, 81, 1868–1878. [Google Scholar] [CrossRef]
- Torregrossa, D.; Paolone, M. Modelling of current and temperature effects on supercapacitors ageing. Part I: Review of driving phenomenology. J. Energy Storage 2016, 5, 85–94. [Google Scholar] [CrossRef]
- Torregrossa, D.; Paolone, M. Modelling of current and temperature effects on supercapacitors ageing. Part II: State-of-Health assessment. J. Energy Storage 2016, 5, 95–101. [Google Scholar] [CrossRef]
- Oukaour, A.; Tala-Ighil, B.; Alsakka, M.; Gualous, H.; Gallay, R.; Boudart, B. Calendar ageing and health diagnosis of supercapacitor. Electrochem. Power Syst. Res. 2013, 95, 330–338. [Google Scholar] [CrossRef]
- Shili, S.; Hijazi, A.; Sari, A.; Lin-Shi, X.; Venet, P. Balancing Circuit New Control for Supercapacitor Storage System Lifetime Maximization. IEEE Trans. Power Electron. 2017, 32, 4939–4948. [Google Scholar] [CrossRef]
- Ahmad, H.; Wan, W.Y.; Isa, D. Modeling the Ageing Effect of Cycling Using a Supercapacitor-Module under High Temperature with Electrochemical Impedance Spectroscopy Test. IEEE Trans. Reliab. 2019, 68, 109–121. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, Y.; Wang, K.; Kang, L.; Peng, F.; Wang, L.; Pang, J. Hybrid genetic algorithm method for efficient and robust evaluation of remaining useful life of supercapacitors. Appl. Energy 2020, 260, 114169. [Google Scholar] [CrossRef]
- Kandidayeni, M.; Trovao, J.P.; Soleymani, M.; Boulon, L. Towards health-aware energy management strategies in fuel cell hybrid electric vehicles: A review. Int. J. Hydrogen Energy 2022, 47, 10021–10043. [Google Scholar] [CrossRef]
- Bahloul, M.; Khadem, S.K. An analytical approach for techno-economic evaluation of hybrid energy storage system for grid services. J. Energy Storage 2020, 31, 101662. [Google Scholar] [CrossRef]
- Zhang, L.; Hu, X.; Wang, Z.; Ruan, J.; Ma, C.; Song, Z.; Dorrell, D.G.; Pecht, M.G. Hybrid electrochemical energy storage systems: An overview for smart grid and electrified vehicle applications. Renew. Sustain. Energy Rev. 2021, 139, 110581. [Google Scholar] [CrossRef]
- Schaeffer, E.; Auger, F.; Shi, Z.; Guillemet, P.; Loron, L. Comparative analysis of some parametric model structures dedicated to EDLC Diagnosis. IEEE Trans. Ind. Electron. 2016, 63, 387–396. [Google Scholar] [CrossRef]
- Mayilvahanan, K.S.; Takeuchi, K.J.; Takeuchi, E.S.; Marschilok, A.C.; West, A.C. Supervised Learning of Synthetic Big Data for Li-Ion Battery Degradation Diagnosis. Batter. Supercaps 2022, 5, e202100166. [Google Scholar] [CrossRef]
- Mundy, A.; Plett, G.L. Reduced-order physics-based modeling and experimental parameter identification for non-Faradaic electrical double-layer capacitors. J. Energy Storage 2016, 7, 167–180. [Google Scholar] [CrossRef]
- Dechent, P.; Greenbank, S.; Hildenbrand, F.; Jbabdi, S.; Sauer, D.U.; Howey, D.A. Estimation of Li-Ion Degradation Test Sample Sizes Required to Understand Cell-to-Cell Variability. Batter. Supercaps 2021, 4, 1821–1829. [Google Scholar] [CrossRef]
- Barcellona, S. A novel lithium ion battery model: A step towards the electrochemical storage systems unification. In Proceedings of the 2017 6th International Conference on Clean Electrical Power (ICCEP), Santa Margherita Ligure, Italy, 27–29 June 2017; pp. 416–421. [Google Scholar]
- Witt, D.; Röder, F.; Krewer, U. Analysis of Lithium-Ion Battery State and Degradation via Physicochemical Cell and SEI Modeling. Batter. Supercaps 2022, 5, e202200067. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, P.; Wang, T.; Su, D.; Wang, C. Development of Small-Scale Monitoring and Modeling Strategies for Safe Lithium-Ion Batteries. Batter. Supercaps 2022, 5, e202100292. [Google Scholar] [CrossRef]
- Shateri, N.; Auger, D.J.; Fotouhi, A.; Brighton, J.; Du, W.; Owen, R.E.; Brett, D.J.L.; Shearing, P.R. Investigation of the Effect of Temperature on Lithium-Sulfur Cell Cycle Life Performance Using System Identification and X-ray Tomography. Batter. Supercaps 2022, 5, e202200035. [Google Scholar] [CrossRef]
- Osara, J.A.; Bryant, M.D. Performance and degradation characterization of electrochemical power sources using thermodynamics. Electrochim. Acta 2021, 365, 137337. [Google Scholar] [CrossRef]
- Ma, N.; Yang, D.; Riaz, S.; Wang, L.; Wang, K. Aging Mechanism and Models of Supercapacitors: A Review. Technologies 2023, 11, 38. [Google Scholar] [CrossRef]
- Tian, S.; Wu, S.; Cui, S.; Tian, Y.; Balkus, K.J.; Zhou, L.; Xiong, G. High-performance solid-state supercapacitors integrated with thermal management systems based on phase change materials: All in one. Chem. Eng. J. 2022, 446, 136787. [Google Scholar] [CrossRef]
- Sutarsis; Patra, J.; Su, C.Y.; Li, J.; Bresser, D.; Passerini, S.; Chang, J.K. Manipulation of Nitrogen-Heteroatom Configuration for Enhanced Charge-Storage Performance and Reliability of Nanoporous Carbon Electrodes. ACS Appl. Mater. Interfaces 2020, 12, 32797–32805. [Google Scholar] [CrossRef] [PubMed]
- Mostazo-López, M.J.; Krummacher, J.; Balducci, A.; Morallón, E.; Cazorla-Amorós, D. Electrochemical performance of N-doped superporous activated carbons in ionic liquid-based electrolytes. Electrochim. Acta 2021, 368, 137590. [Google Scholar] [CrossRef]
- Hong, K.; Cho, M.; Kim, S.O. Atomic layer deposition encapsulated activated carbon electrodes for high voltage stable supercapacitors. ACS Appl. Mater. Interfaces 2015, 7, 1899–1906. [Google Scholar] [CrossRef] [PubMed]
- Lidor-Shalev, O.; Leifer, N.; Ejgenberg, M.; Aviv, H.; Perelshtein, I.; Goobes, G.; Noked, M.; Rosy. Molecular Layer Deposition of Alucone Thin Film on LiCoO2 to Enable High Voltage Operation. Batter. Supercaps 2021, 4, 1739–1748. [Google Scholar] [CrossRef]
- Tyler, J.L.; Sacci, R.L.; Nanda, J. Anion Coordination Improves High-Temperature Performance and Stability of NaPF6-Based Electrolytes for Supercapacitors. Energies 2021, 14, 4409. [Google Scholar] [CrossRef]
- Cericola, D.; Kötz, R.; Wokaun, A. Effect of electrode mass ratio on aging of activated carbon based supercapacitors utilizing organic electrolytes. J. Power Sources 2011, 196, 3114–3118. [Google Scholar] [CrossRef]
- Le Fevre, L.W.; Fields, R.; Redondo, E.; Todd, R.; Forsyth, A.J.; Dryfe, R.A.W. Cell optimisation of supercapacitors using a quasi-reference electrode and potentiostatic analysis. J. Power Sources 2019, 424, 52–60. [Google Scholar] [CrossRef]
- Fic, K.; Platek, A.; Piwek, J.; Menzel, J.; Slesinski, A.; Bujewska, P.; Galek, P.; Frackowiak, E. Revisited insights into charge storage mechanisms in electrochemical capacitors with Li2SO4-based electrolyte. Energy Storage Mater. 2019, 22, 1–14. [Google Scholar] [CrossRef]
- Ionica-Bousquet, C.M.; Casteel, W.J., Jr.; Pearlstein, R.M.; Girish Kumar, G.; Pez, G.P.; Gómez-Romero, P.; Palacín, M.R.; Muñoz-Rojas, D. Polyfluorinated boron cluster—[B12F11H]2−-based electrolytes for supercapacitors: Overcharge protection. Electrochem. Commun. 2010, 12, 636–639. [Google Scholar] [CrossRef]
- Ionica-Bousquet, C.M.; Muñoz-Rojas, D.; Casteel, W.J.; Pearlstein, R.M.; Girish Kumar, G.; Pez, G.P.; Palacín, M.R. Polyfluorinated boron cluster-based salts: A new electrolyte for application in Li4Ti5O12/LiMn2O4 rechargeable lithium-ion batteries. J. Power Sources 2010, 195, 1479–1485. [Google Scholar] [CrossRef]
- Ionica-Bousquet, C.M.; Muñoz-Rojas, D.; Casteel, W.J., Jr.; Pearlstein, R.M.; Kumar, G.G.; Pez, G.P.; Palacín, M.R. Polyfluorinated boron cluster based salts: A new electrolyte for application in nonaqueous asymmetric AC/Li4Ti5O12 supercapacitors. J. Power Sources 2011, 196, 1626–1631. [Google Scholar] [CrossRef]
- Wilson, E.; Islam, M.F. Ultracompressible, high-rate supercapacitors from graphene-coated carbon nanotube aerogels. ACS Appl. Mater. Interfaces 2015, 7, 5612–5618. [Google Scholar] [CrossRef]
- Qin, T.; Xu, Z.; Wang, Z.; Peng, S.; He, D. 2.5 V salt-in-water supercapacitors based on alkali type double salt/carbon composite anode. J. Mater. Chem. A 2019, 7, 26011–26019. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, Y.; Liu, L.; Liu, B.; Zhang, Q.; Wu, D.; Zhang, H.; Yan, X. Towards the understanding of acetonitrile suppressing salt precipitation mechanism in a water-in-salt electrolyte for low-temperature supercapacitors. J. Mater. Chem. A 2020, 8, 17998–18006. [Google Scholar] [CrossRef]
- Skunik-Nuckowska, M.; Dyjak, S.; Grzejszczyk, K.; Wisińska, N.H.; Béguin, F.; Kulesza, P.J. Capacitance characteristics of carbon-based electrochemical capacitors exposed to heteropolytungstic acid electrolyte. Electrochim. Acta 2018, 282, 533–543. [Google Scholar] [CrossRef]
- Huang, Y.; Li, Y.; Gong, Q.; Zhao, G.; Zheng, P.; Bai, J.; Gan, J.; Zhao, M.; Shao, Y.; Wang, D.; et al. Hierarchically Mesostructured Aluminum Current Collector for Enhancing the Performance of Supercapacitors. ACS Appl. Mater. Interfaces 2018, 10, 16572–16580. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Roberts, M.E. Achieving thermally stable supercapacitors with a temperature responsive electrolyte. J. Mater. Sci. Mater. Electron. 2019, 30, 6007–6014. [Google Scholar] [CrossRef]
- Lehtimaki, S.; Railanmaa, A.; Keskinen, J.; Kujala, M.; Tuukkanen, S.; Lupo, D. Performance, stability and operation voltage optimization of screen-printed aqueous supercapacitors. Sci. Rep. 2017, 7, 46001. [Google Scholar] [CrossRef] [Green Version]
- Tabarov, F.S.; Galimzyanov, R.R.; Krechetov, I.S.; Kalashnik, A.T.; Galimzyanov, T.R.; Boboev, I.R.; Lisitsin, A.V.; Stakhanova, S.V. Vinylene carbonate, toluene and diethyl ether as electrolyte additives for a wide-temperature range operating of EDLCs. J. Power Sources 2023, 560, 232658. [Google Scholar] [CrossRef]
- Abubakar, H.A.; Isa, D.; Wan, W.Y. Comparing the degradation effect of a “two-cell” Supercapacitor-module with and without voltage equalization circuit(s) under experimental self-discharge and load cycling tests. Microelectron. Reliab. 2017, 79, 140–148. [Google Scholar] [CrossRef]
- El Mejdoubi, A.; Chaoui, H.; Gualous, H.; Sabor, J. Online Parameter Identification for Supercapacitor State-of-Health Diagnosis for Vehicular Applications. IEEE Trans. Power Electron. 2017, 32, 9355–9363. [Google Scholar] [CrossRef]
- El Mejdoubi, A.; Oukaour, A.; Chaoui, H.; Slamani, Y.; Sabor, J.; Gualous, H. Online supercapacitor diagnosis for electric vehicle applications. IEEE Trans. Veh. Technol. 2016, 65, 4241–4252. [Google Scholar] [CrossRef]
- Shili, S.; Hijazi, A.; Sari, A.; Bevilacqua, P.; Venet, P. Online supercapacitor health monitoring using a balancing circuit. J. Energy Storage 2016, 7, 159–166. [Google Scholar] [CrossRef]
- Dhinesh, S.; Priyadharshini, M.; Pazhanivel, T.; Gobi, R. Biomass-derived N, S self-doped activated carbon embedded MnO2 as cathode for supercapacitor. Mater. Technol. 2022, 37, 1837–1845. [Google Scholar] [CrossRef]
- Yao, S.; Zhang, Z.; Guo, S.; Yu, Z.; Zhang, X.; Zuo, P.; Wang, J.; Yin, G.; Huo, H. Hierarchical NiMn/NiMn-LDH/ppy-C induced by a novel phase-transformation activation process for long-life supercapacitor. J. Colloids Interf. Sci. 2022, 622, 1020–1028. [Google Scholar] [CrossRef] [PubMed]
- Gu, T.; Wei, B. All-Solid-State Stretchable Pseudocapacitors Enabled by Carbon Nanotube Film-Capped Sandwich-like Electrodes. ACS Appl. Mater. Interfaces 2016, 8, 25243–25250. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Sanchez, A.; Izquierdo, M.T.; Mathieu, S.; Ghanbaja, J.; Celzard, A.; Fierro, V. Structure and electrochemical properties of carbon nanostructures derived from nickel(II) and iron(II) phthalocyanines. J. Adv. Res. 2020, 22, 85–97. [Google Scholar] [CrossRef]
- Wan, J.; Ji, P.; Li, B.; Xi, Y.; Gu, X.; Huang, L.; He, M.; Hu, C. Enhanced electrochemical performance in an aluminium doped δ-MnO2 supercapacitor cathode: Experimental and theoretical investigations. Chem. Commun. 2022, 58, 589–592. [Google Scholar] [CrossRef]
- Li, J.; Cao, Z.; Hu, H.; Ho, D. Diameter-optimized PVA@PPy nanofibers: MXene interlayer space expansion without sacrificing electron transport. J. Mater. Chem. C 2022, 10, 13056–13063. [Google Scholar] [CrossRef]
- Wickramaarachchi, K.; Minakshi, M. Status on electrodeposited manganese dioxide and biowaste carbon for hybrid capacitors: The case of high-quality oxide composites, mechanisms, and prospects. J. Energy Storage 2022, 56, 106099. [Google Scholar] [CrossRef]
- Jiang, X.; Chen, T.; Liu, B.; Sun, R.; Fu, J.; Jiang, X.; Cui, P.; Liu, Z.; Han, W. Enhancing energy storage capacity of iron oxide-based anodes by adjusting Fe (II/III) ratio in spinel crystalline. Nanotechnology 2021, 32, 395705. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Zuo, Z.; Li, L.; He, F.; Lu, F.; Li, Y. A Universal Strategy for Constructing Seamless Graphdiyne on Metal Oxides to Stabilize the Electrochemical Structure and Interface. Adv. Mater. 2019, 31, 1806272. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Zhang, J.; Ye, F.; Wang, W.; Wang, G.; Zhang, Z.; Li, S.; Zhou, Y.; Cai, J. Vulcanization treatment: An effective way to improve the electrochemical cycle stability of polyaniline in supercapacitors. J. Power Sources 2019, 443, 227246. [Google Scholar] [CrossRef]
- Zhao, W.; Wang, S.; Wang, C.; Wu, S.; Xu, W.; Zou, M.; Ouyang, A.; Cao, A. Double polymer sheathed carbon nanotube supercapacitors show enhanced cycling stability. Nanoscale 2016, 8, 626–633. [Google Scholar] [CrossRef]
- Khosrozadeh, A.; Darabi, M.A.; Wang, Q.; Xing, M. Polyaniline nanoflowers grown on vibration-isolator-mimetic polyurethane nanofibers for flexible supercapacitors with prolonged cycle life. J. Mater. Chem. A 2017, 5, 7933–7943. [Google Scholar] [CrossRef]
- Singh, G.; Kumar, Y.; Husain, S. Improved electrochemical performance of symmetric polyaniline/activated carbon hybrid for high supercapacitance: Comparison with indirect capacitance. Polym. Adv. Technol. 2021, 32, 4490–4501. [Google Scholar] [CrossRef]
- Olad, A.; Gharekhani, H. Preparation and electrochemical investigation of the polyaniline/activated carbon nanocomposite for supercapacitor applications. Prog. Org. Coat. 2015, 81, 19–26. [Google Scholar] [CrossRef]
- Boota, M.; Paranthaman, M.P.; Naskar, A.K.; Li, Y.; Akato, K.; Gogotsi, Y. Waste tire derived carbon-polymer composite paper as pseudocapacitive electrode with long cycle life. ChemSusChem 2015, 8, 3576–3581. [Google Scholar] [CrossRef]
- Bolagam, R.; Boddula, R.; Srinivasan, P. One-step preparation of sulfonated carbon and subsequent preparation of hybrid material with polyaniline salt: A promising supercapacitor electrode material. J. Solid State Electrochim. 2017, 21, 1313–1322. [Google Scholar] [CrossRef]
- Malinauskas, A.; Holze, R. Suppression of the “first cycle effect” in self-doped polyaniline. Electrochim. Acta 1997, 43, 515–520. [Google Scholar] [CrossRef]
- Malinauskas, A.; Holze, R. Deposition and characterisation of self-doped sulphoalkylated polyanilines. Electrochim. Acta 1998, 43, 521–531. [Google Scholar] [CrossRef]
- Liu, P.; Wang, Q.; Wang, D.; Kang, X.; Niu, J. Tetraaniline microcrystals: Promising electrode for long-life supercapacitors. Polymer 2021, 215, 123350. [Google Scholar] [CrossRef]
- Wang, B.; Liu, X.; Liu, Q.; Chen, J.; Jiang, H.; Wang, Y.; Liu, K.; Li, M.; Wang, D. Three-dimensional non-woven poly(vinyl alcohol-co-ethylene) nanofiber based polyaniline flexible electrode for high performance supercapacitor. J. Alloys Compd. 2017, 715, 137–145. [Google Scholar] [CrossRef]
- Wang, W.; Yan, J.; Liu, J.; Ou, D.; Qin, Q.; Lan, B.; Ning, Y.; Zhou, D.; Wu, Y. Self-healing polyaniline-graphene oxides based electrodes with enhanced cycling stability. Electrochim. Acta 2018, 282, 835–844. [Google Scholar] [CrossRef]
- Choudhary, R.B.; Ansari, S.; Purty, B. Robust electrochemical performance of polypyrrole (PPy) and polyindole (PIn) based hybrid electrode materials for supercapacitor application: A review. J. Energy Storage 2020, 29, 101302. [Google Scholar] [CrossRef]
- Mudila, H.; Prasher, P.; Kumar, M.; Kumar, A.; Zaidi, M.G.H.; Kumar, A. Critical analysis of polyindole and its composites in supercapacitor application. Mater. Renew. Sustain. Energy 2019, 8, 9. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Zheng, R.; Chen, Y.; Bai, H.; Zhang, T.Y. Superacid-doped polyaniline as a soluble polymeric active electrolyte for supercapacitors. Soft Matter 2020, 16, 7305–7311. [Google Scholar] [CrossRef]
- Holze, R. Conjugated Molecules and Polymers in Secondary Batteries: A Perspective. Molecules 2022, 27, 546. [Google Scholar] [CrossRef]
- Schubert, U.S.; Winter, A.; Newkome, G.R. An Introduction to Redox Polymers for Energy-Storage Applications; WILEY-VCH: Weinheim, Germany, 2023. [Google Scholar]
- Zhao, Y.; Zhang, S.; Xu, S.; Li, X.; Zhang, Y.; Xu, Y.; Zhou, J.; Bi, H.; Huang, F. A π-Conjugated Polyimide-Based High-Performance Aqueous Potassium-Ion Asymmetric Supercapacitor. Macromol. Rapid Commun. 2022, 43, 2200040. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Liu, Y.; Zhao, Y.; Tsang, Y.H.; Lau, S.P.; Huang, H.; Chai, Y. Stretchable all-solid-state supercapacitor with wavy shaped polyaniline/graphene electrode. J. Mater. Chem. A 2014, 2, 9142–9149. [Google Scholar] [CrossRef]
- Yu, N.; Zhu, M.Q.; Chen, D. Flexible all-solid-state asymmetric supercapacitors with three-dimensional CoSe2/carbon cloth electrodes. J. Mater. Chem. A 2015, 3, 7910–7918. [Google Scholar] [CrossRef]
- Yu, F.; Chang, Z.; Yuan, X.; Wang, F.; Zhu, Y.; Fu, L.; Chen, Y.; Wang, H.; Wu, Y. Ultrathin NiCo2S4@graphene with a core-shell structure as a high performance positive electrode for hybrid supercapacitors. J. Mater. Chem. A 2018, 6, 5856–5861. [Google Scholar] [CrossRef]
- Chen, Y.; Ouyang, T.; Xiang, K.; Chen, J.; Zhang, Q.; Yi, Q.; Zhou, X.; Chen, H.; Zhang, X. Ni2CoS4 nanocubes anchored on nitrogen-doped ultra-thin hollow carbon spheres to achieve high-performance supercapacitor. Ionics 2022, 28, 415–422. [Google Scholar] [CrossRef]
- Hossain, M.F.; Yin, J.; Park, J.Y. Fabrication and characterization of reduced graphene oxide modified nickel hydroxide electrode for energy storage applications. Jpn. J. Appl. Phys. 2014, 53, 08NC02. [Google Scholar] [CrossRef]
- Priyadharshini, M.; Pazhanivel, T.; Bharathi, G. Carbon Quantum Dot Incorporated Nickel Pyrophosphate as Alternate Cathode for Supercapacitors. ChemistrySelect 2020, 5, 2643–2652. [Google Scholar] [CrossRef]
- Tiruneh, S.N.; Kang, B.K.; Choi, H.W.; Kwon, S.B.; Kim, M.S.; Yoon, D.H. Millerite Core-Nitrogen-Doped Carbon Hollow Shell Structure for Electrochemical Energy Storage. Small 2018, 14, 1802933. [Google Scholar] [CrossRef]
- Wang, S.; Wang, Z.; Wang, Y.; Chen, J.; Chen, Z.; Chen, Y.; Fu, J. Environmentally friendly room temperature synthesis of hierarchical porous alpha-Ni(OH)2 nanosheets for supercapacitor and catalysis applications. Green Chem. 2019, 21, 5960–5968. [Google Scholar] [CrossRef]
- Duan, B.R.; Cao, Q. Hierarchically porous Co3O4 film prepared by hydrothermal synthesis method based on colloidal crystal template for supercapacitor application. Electrochim. Acta 2012, 64, 154–161. [Google Scholar] [CrossRef]
- Xu, H.; Zhuang, J.X.; Li, J.-L.; Zhang, J.L.; Lu, H.L. Liquid precipitation synthesis of Co3O4 for high-performance electrochemical capacitors. Ionics 2014, 20, 489–494. [Google Scholar] [CrossRef] [Green Version]
- Zardkhoshoui, A.M.; Ameri, B.; Davarani, S.H. Fabrication of hollow MnFe2O4 nanocubes assembled by CoS2 nanosheets for hybrid supercapacitors. Chem. Eng. J. 2022, 435, 135170. [Google Scholar] [CrossRef]
- Salunkhe, R.R.; Kaneti, Y.V.; Amauchi, Y. Metal-Organic Framework-Derived Nanoporous Metal Oxides toward Supercapacitor Applications: Progress and Prospects. ACS Nano 2017, 11, 5293–5308. [Google Scholar] [CrossRef] [PubMed]
- Javed, M.S.; Khan, A.J.; Hanif, M.; Nazir, M.T.; Hussain, S.; Saleem, M.; Raza, R.; Yun, S.; Liu, Z. Engineering the performance of negative electrode for supercapacitor by polyaniline coated Fe3O4 nanoparticles enables high stability up to 25,000 cycles. Int. J. Hydrogen Energy 2021, 46, 9976–9987. [Google Scholar] [CrossRef]
- Wei, H.; Yan, X.; Wu, S.; Luo, Z.; Wei, S.; Guo, Z. Electropolymerized polyaniline stabilized tungsten oxide nanocomposite films: Electrochromic behavior and electrochemical energy storage. J. Phys. Chem. C 2012, 116, 25052–25064. [Google Scholar] [CrossRef]
- Yuksel, R.; Ekber, A.; Turan, J.; Alpugan, E.; Hacioglu, S.O.; Toppare, L.; Cirpan, A.; Gunbas, G.; Unalan, H.E. A Novel Blue to Transparent Polymer for Electrochromic Supercapacitor Electrodes. Electroanalysis 2018, 30, 266–273. [Google Scholar] [CrossRef]
- Wang, X.; Shao, Q.; Shao, M.; Yang, Y.; Liao, F.; Pan, Y. A variational method guided confining tip discharge for MOF-derived supercapacitors. Chem. Eng. J. 2022, 443, 136452. [Google Scholar]
- Lee, W.S.V.; Peng, E.; Li, M.; Huang, X.; Xue, J.M. Rational design of stable 4 V lithium ion capacitor. Nano Energy 2016, 27, 202–212. [Google Scholar] [CrossRef]
- Tong, X.; Tian, Z.; Sun, J.; Tung, V.; Kaner, R.B.; Shao, Y. Self-healing flexible/stretchable energy storage devices. Mater. Today 2021, 44, 78–104. [Google Scholar] [CrossRef]
- Jia, R.; Li, L.; Ai, Y.; Du, H.; Zhang, X.; Chen, Z.; Shen, G. Self-healable wire-shaped supercapacitors with two twisted NiCo2O4 coated polyvinyl alcohol hydrogel fibers. Sci. China Mater. 2018, 61, 254–262. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharjya, D.; Arnaiz, M.; Canal-Rodriguez, M.; Martin, S.; Panja, T.; Carriazo, D.; Villaverde, A.; Ajuria, J. Development of a Li-Ion Capacitor Pouch Cell Prototype by Means of a Low-Cost, Air-Stable, Solution Processable Fabrication Method. J. Electrochem. Soc. 2021, 168, 110544. [Google Scholar] [CrossRef]
- Xu, L.; Pan, G.; Yu, C.; Li, J.; Gong, Z.; Lu, T.; Pan, L. Co-doped MnO2 with abundant oxygen vacancies as a cathode for superior aqueous magnesium ion storage. Inorg. Chem. Front. 2023, 10, 1748–1757. [Google Scholar] [CrossRef]
- Bhattacharjee, U.; Bhar, M.; Bhowmik, S.; Martha, S.K. Upcycling of spent lithium-ion battery graphite anodes for a dual carbon lithium-ion capacitor. Sustain. Energy Fuels 2023, 7, 2104–2116. [Google Scholar] [CrossRef]
- Gao, L.; Wang, W.; Wang, G. Integrated Interlocking architecture improving cycle stability of supercapacitors based on Self-Supporting electrodes. Chem. Eng. J. 2022, 450, 137918. [Google Scholar] [CrossRef]
- Azizighannad, S.; Wang, Z.; Siddiqui, Z.; Kumar, V.; Mitra, S. Nano Carbon Doped Polyacrylamide Gel Electrolytes for High Performance Supercapacitors. Molecules 2021, 26, 2631. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, R.; Dipalo, V.A.; Bell, M.; Ebralidze, I.I.; Zenkina, O.V.; Bradley Easton, E. Surface-Enhanced Counter Electrode Materials for the Fabrication of Ultradurable Electrochromic Devices. ACS Appl. Energy Mater. 2022, 5, 3905–3914. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Wu, Y.; Holze, R. Ag(e)ing and Degradation of Supercapacitors: Causes, Mechanisms, Models and Countermeasures. Molecules 2023, 28, 5028. https://doi.org/10.3390/molecules28135028
Chen X, Wu Y, Holze R. Ag(e)ing and Degradation of Supercapacitors: Causes, Mechanisms, Models and Countermeasures. Molecules. 2023; 28(13):5028. https://doi.org/10.3390/molecules28135028
Chicago/Turabian StyleChen, Xuecheng, Yuping Wu, and Rudolf Holze. 2023. "Ag(e)ing and Degradation of Supercapacitors: Causes, Mechanisms, Models and Countermeasures" Molecules 28, no. 13: 5028. https://doi.org/10.3390/molecules28135028
APA StyleChen, X., Wu, Y., & Holze, R. (2023). Ag(e)ing and Degradation of Supercapacitors: Causes, Mechanisms, Models and Countermeasures. Molecules, 28(13), 5028. https://doi.org/10.3390/molecules28135028