Pharmacological Activity of Cepharanthine
Abstract
:1. Introduction
2. Activity and Use of Cepharanthine
2.1. Antipathogenic Activity
2.1.1. Antiviral Effect
- SARS-CoV-2;
- The remaining human coronaviruses;
- Porcine coronavirus;
- Human immunodeficiency virus type 1 (HIV-1);
- Ebola and Zika Viruses;
- Herpes Simplex Virus type 1 (HSV-1);
- Porcine Reproductive and Respiratory Syndrome Virus (PRRSV);
- Porcine Circovirus type 2 (PCV2);
- Human T-lymphotropic Lymphotropic Virus type 1 (HTLV-1);
- Coxsackie virus B3 (CV-B3).
2.1.2. Anti Parasitic Activity
2.1.3. Antibacterial Activity
2.2. Antitumor Activity
2.2.1. Inhibitors of Apoptosis and Autophagy
- Induction of apoptosis;
- Induction of autophagy;
2.2.2. Cell Cycle Arrest and Inhibition of Angiogenesis
- Leading to cell cycle arrest;
- Inhibition of angiogenesis;
2.2.3. Overcoming Multidrug Resistance and Increasing Tumor Cell Sensitivity
2.2.4. Inhibition of Cell Migration
2.2.5. Reduction in Chemoradiotherapy Damage
2.2.6. Enhancement of Immune Activity
2.3. Anti-Inflammatory to Prevent Shock
2.3.1. Reduces the Levels of Proinflammatory Cytokines
2.3.2. Antioxidation Effect
2.3.3. Treatment of Inflammation and Shock
2.4. Immunomodulatory Effects
2.4.1. Vasodilatory Effect
2.4.2. Treating Allergic Reactions
- Regulates multiple signaling pathways of abnormally activated T cells;
- Treating allergic reactions;
2.4.3. Platelet-Related Diseases
- Chronic immune thrombocytopenia;
- Inhibition of platelet aggregation, and platelet activation;
2.4.4. Other Autoimmune Diseases
2.5. Inhibition of Bone Resorption
2.6. Cell Proliferation—Treatment of Hair Loss
2.7. Treatment of Poisonous Snake Bites
2.8. Other Roles
2.8.1. Non-Covalent Interaction with Telomeric RNA G-Quadruplexes
2.8.2. Anti-Atherosclerotic
2.8.3. Inhibition of Intimal Hyperplasia
2.8.4. Ion Channel Inhibitor
2.8.5. Inhibition of Neurodegenerative Diseases (NDDs)
2.8.6. Sickle-Cell Anemia
2.8.7. Treatment of Amyloidosis and Alzheimer’s Disease
3. Safety and Bioavailability of Cepharanthine
3.1. Bioavailability
3.2. Safety
4. Conclusions and Prospectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Keseru, G.M.; Nógrádi, M. The biological activity of cyclic bis(bibenzyls): A rational approach. Bioorg. Med. Chem. 1995, 3, 1511–1517. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, X.; Guo, Y.; Liu, X.; Zhao, X.; Teka, T.; Lv, C.; Han, L.; Huang, Y.; Pan, G. Thirteen bisbenzylisoquinoline alkaloids in five Chinese medicinal plants: Botany, traditional uses, phytochemistry, pharmacokinetic and toxicity studies. J. Ethnopharmacol. 2021, 268, 113566. [Google Scholar] [CrossRef]
- Sogawa, N.; Sogawa, C.A.; Abuku, E.I.; Inoue, T.; Oda, N.; Kishi, K.; Furuta, H. Opposing pharmacological actions of cepharanthin on lipopolysaccharide-induced histidine decarboxylase activity in mice spleens. Life Sci. 2001, 68, 1395–1403. [Google Scholar] [CrossRef] [PubMed]
- Fujii, T. Phospholipid dynamics and function in cell membrane of blood cells. With reference to mode of action of certain amphiphilic drugs. Yakugaku Zasshi J. Pharm. Soc. Jpn. 1994, 114, 374–387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rogosnitzky, M.; Danks, R. Therapeutic potential of the biscoclaurine alkaloid, cepharanthine, for a range of clinical conditions. Pharmacol. Rep. 2011, 63, 337–347. [Google Scholar] [CrossRef]
- Seubwai, W.; Vaeteewoottacharn, K.; Hiyoshi, M.; Suzu, S.; Puapairoj, A.; Wongkham, C.; Okada, S.; Wongkham, S. Cepharanthine exerts antitumor activity on cholangiocarcinoma by inhibiting NF-kappaB. Cancer Sci. 2010, 101, 1590–1595. [Google Scholar] [CrossRef]
- Bailly, C. Cepharanthine: An update of its mode of action, pharmacological properties and medical applications. Phytomedicine 2019, 62, 152956. [Google Scholar] [CrossRef]
- Tang, Z.H.; Cao, W.X.; Guo, X.; Dai, X.Y.; Lu, J.H.; Chen, X.; Zhu, H.; Lu, J.J. Identification of a novel autophagic inhibitor cepharanthine to enhance the anti-cancer property of dacomitinib in non-small cell lung cancer. Cancer Lett. 2018, 412, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Huang, C.; Yang, Y.L.; Ding, Y.; Ou-Yang, H.Q.; Zhang, Y.Y.; Xu, M. Inhibition of the STAT3 signaling pathway is involved in the antitumor activity of cepharanthine in SaOS2 cells. Acta Pharmacol. Sin. 2012, 33, 101–108. [Google Scholar] [CrossRef]
- Halicka, D.; Ita, M.; Tanaka, T.; Kurose, A.; Darzynkiewicz, Z. Biscoclaurine alkaloid cepharanthine protects DNA in TK6 lymphoblastoid cells from constitutive oxidative damage. Pharmacol. Rep. 2008, 60, 93–100. [Google Scholar]
- Haginaka, J.; Kitabatake, T.; Hirose, I.; Matsunaga, H.; Moaddel, R. Interaction of cepharanthine with immobilized heat shock protein 90α (Hsp90α) and screening of Hsp90α inhibitors. Anal. Biochem. 2013, 434, 202–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takahashi-Makise, N.; Suzu, S.; Hiyoshi, M.; Ohsugi, T.; Katano, H.; Umezawa, K.; Okada, S. Biscoclaurine alkaloid cepharanthine inhibits the growth of primary effusion lymphoma in vitro and in vivo and induces apoptosis via suppression of the NF-kappaB pathway. Int. J. Cancer 2009, 125, 1464–1472. [Google Scholar] [CrossRef] [PubMed]
- Feng, F.; Pan, L.; Wu, J.; Li, L.; Xu, H.; Yang, L.; Xu, K.; Wang, C. Cepharanthine inhibits hepatocellular carcinoma cell growth and proliferation by regulating amino acid metabolism and suppresses tumorigenesis in vivo. Int. J. Biol. Sci. 2021, 17, 4340–4352. [Google Scholar] [CrossRef] [PubMed]
- Nakaoji, K.; Nayeshiro, H.; Tanahashi, T.; Su, Y.; Nagakura, N. Bisbenzylisoquinoline alkaloids from Stephania cepharantha and their effects on proliferation of cultured cells from the murine hair apparatus. Planta Med. 1997, 63, 425–428. [Google Scholar] [CrossRef]
- Tanigaki-Obana, N.; Ito, M. Effects of cepharanthine and minoxidil on proliferation, differentiation and keratinization of cultured cells from the murine hair apparatus. Arch. Dermatol. Res. 1992, 284, 290–296. [Google Scholar] [CrossRef]
- Wang, J.Q.; Wu, Z.X.; Yang, Y.; Li, J.S.; Yang, D.H.; Fan, Y.F.; Chen, Z.S. Establishment and Characterization of a Novel Multidrug Resistant Human Ovarian Cancer Cell Line with Heterogenous MRP7 Overexpression. Front Oncol. 2021, 11, 731260. [Google Scholar] [CrossRef]
- Kikukawa, Y.; Okuno, Y.; Tatetsu, H.; Nakamura, M.; Harada, N.; Ueno, S.; Kamizaki, Y.; Mitsuya, H.; Hata, H. Induction of cell cycle arrest and apoptosis in myeloma cells by cepharanthine, a biscoclaurine alkaloid. Int. J. Oncol. 2008, 33, 807–814. [Google Scholar]
- Rattanawong, A.; Payon, V.; Limpanasittikul, W.; Boonkrai, C.; Mutirangura, A.; Wonganan, P. Cepharanthine exhibits a potent anticancer activity in p53-mutated colorectal cancer cells through upregulation of p21Waf1/Cip1. Oncol. Rep. 2018, 39, 227–238. [Google Scholar] [CrossRef] [Green Version]
- Payon, V.; Kongsaden, C.; Ketchart, W.; Mutirangura, A.; Wonganan, P. Mechanism of Cepharanthine Cytotoxicity in Human Ovarian Cancer Cells. Planta Med. 2019, 85, 41–47. [Google Scholar] [CrossRef]
- Zhang, S.; Huang, W.; Ren, L.; Ju, X.; Gong, M.; Rao, J.; Sun, L.; Li, P.; Ding, Q.; Wang, J.; et al. Comparison of viral RNA-host protein interactomes across pathogenic RNA viruses informs rapid antiviral drug discovery for SARS-CoV-2. Cell Res. 2022, 32, 9–23. [Google Scholar] [CrossRef]
- Li, S.; Liu, W.; Chen, Y.; Wang, L.; An, W.; An, X.; Song, L.; Tong, Y.; Fan, H.; Lu, C. Transcriptome analysis of cepharanthine against a SARS-CoV-2-related coronavirus. Brief. Bioinform. 2021, 22, 1378–1386. [Google Scholar] [CrossRef] [PubMed]
- Li, C.W.; Osman, R.; Menconi, F.; Faustino, L.C.; Kim, K.; Clarke, O.B.; Hou, H.; Tomer, Y. Cepharanthine Blocks Presentation of Thyroid and Islet Peptides in a Novel Humanized Autoimmune Diabetes and Thyroiditis Mouse Model. Front. Immunol. 2021, 12, 796552. [Google Scholar] [CrossRef] [PubMed]
- Min, J.S.; Kwon, S.; Jin, Y.H. SARS-CoV-2 RdRp Inhibitors Selected from a Cell-Based SARS-CoV-2 RdRp Activity Assay System. Biomedicines 2021, 9, 996. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Wang, Z. Natural Products, Alone or in Combination with FDA-Approved Drugs, to Treat COVID-19 and Lung Cancer. Biomedicines 2021, 9, 689. [Google Scholar] [CrossRef]
- Liu, Y.; Tang, Q.; Rao, Z.; Fang, Y.; Jiang, X.; Liu, W.; Luan, F.; Zeng, N. Inhibition of herpes simplex virus 1 by cepharanthine via promoting cellular autophagy through up-regulation of STING/TBK1/P62 pathway. Antivir. Res. 2021, 193, 105143. [Google Scholar] [CrossRef]
- Okamoto, M.; Ono, M.; Baba, M. Suppression of cytokine production and neural cell death by the anti-inflammatory alkaloid cepharanthine: A potential agent against HIV-1 encephalopathy. Biochem. Pharmacol. 2001, 62, 747–753. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, L. Turning the Tide: Natural Products and Natural-Product-Inspired Chemicals as Potential Counters to SARS-CoV-2 Infection. Front. Pharmacol. 2020, 11, 1013. [Google Scholar] [CrossRef]
- Bory, S.; Bun, S.S.; Baghdikian, B.; Dumètre, A.; Hutter, S.; Mabrouki, F.; Bun, H.; Elias, R.; Azas, N.; Ollivier, E. HPLC analysis of Stephania rotunda extracts and correlation with antiplasmodial activity. Phytother. Res. 2013, 27, 278–284. [Google Scholar] [CrossRef]
- Fournet, A.; Rojas de Arias, A.; Ferreira, M.E.; Nakayama, H.; Torres de Ortiz, S.; Schinini, A.; Samudio, M.; Vera de Bilbao, N.; Lavault, M.; Bonté, F. Efficacy of the bisbenzylisoquinoline alkaloids in acute and chronic Trypanosoma cruzi murine model. Int. J. Antimicrob. Agents 2000, 13, 189–195. [Google Scholar] [CrossRef]
- Haruki, K.; Bray, P.G.; Ono, M.; Ward, S.A. Potent enhancement of the sensitivity of Plasmodium falciparum to chloroquine by the bisbenzylisoquinoline alkaloid cepharanthin. Antimicrob. Agents. Chemother. 2000, 44, 2706–2708. [Google Scholar] [CrossRef] [Green Version]
- Baghdikian, B.; Mahiou-Leddet, V.; Bory, S.; Bun, S.S.; Dumetre, A.; Mabrouki, F.; Hutter, S.; Azas, N.; Ollivier, E. New antiplasmodial alkaloids from Stephania rotunda. J. Ethnopharmacol. 2013, 145, 381–385. [Google Scholar] [CrossRef] [PubMed]
- Tamez, P.A.; Lantvit, D.; Lim, E.; Pezzuto, J.M. Chemosensitizing action of cepharanthine against drug-resistant human malaria, Plasmodium falciparum. J. Ethnopharmacol. 2005, 98, 137–142. [Google Scholar] [CrossRef]
- Chea, A.; Hout, S.; Bun, S.S.; Tabatadze, N.; Gasquet, M.; Azas, N.; Elias, R.; Balansard, G. Antimalarial activity of alkaloids isolated from Stephania rotunda. J. Ethnopharmacol. 2007, 112, 132–137. [Google Scholar] [CrossRef] [PubMed]
- Likhitwitayawuid, K.; Angerhofer, C.K.; Cordell, G.A.; Pezzuto, J.M.; Ruangrungsi, N. Cytotoxic and antimalarial bisbenzylisoquinoline alkaloids from Stephania erecta. J. Nat. Prod. 1993, 56, 30–38. [Google Scholar] [CrossRef]
- Desgrouas, C.; Chapus, C.; Desplans, J.; Travaille, C.; Pascual, A.; Baghdikian, B.; Ollivier, E.; Parzy, D.; Taudon, N. In vitro antiplasmodial activity of cepharanthine. Malar. J. 2014, 13, 327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hibasami, H.; Midorikawa, Y.; Takaji, S.; Nakashima, K. An alkaloid, cepharanthine, potentiates the bactericidal effect of methylglyoxal bis (cyclopentylamidinohydrazone) on Staphylococcus aureus. Chemotherapy 1992, 38, 107–111. [Google Scholar] [CrossRef]
- SIRSI, M.; DE, N.N. Cepharanthine in experimental tuberculosis. Indian Med. Gaz. 1952, 87, 91–94. [Google Scholar]
- SATO, S. Studies on the chemotherapy of leprosy. I. Cepharanthin. Tohoku J. Exp. Med. 1952, 55, 341–347. [Google Scholar] [CrossRef] [Green Version]
- Zhou, C.H.; Meng, J.H.; Yang, Y.T.; Hu, B.; Hong, J.Q.; Lv, Z.T.; Chen, K.; Heng, B.C.; Jiang, G.Y.; Zhu, J.; et al. Cepharanthine Prevents Estrogen Deficiency-Induced Bone Loss by Inhibiting Bone Resorption. Front. Pharmacol. 2018, 9, 210. [Google Scholar] [CrossRef] [Green Version]
- Lin, X.; Song, F.; Zhou, L.; Wang, Z.; Wei, C.; Xu, J.; Zhao, J.; Liu, Q. Cepharanthine suppresses osteoclast formation by modulating the nuclear factor-κB and nuclear factor of activated T-cell signaling pathways. J. Cell. Biochem. 2018, 120, 1990–1996. [Google Scholar] [CrossRef]
- Liao, L.; Lin, Y.; Liu, Q.; Zhang, Z.; Hong, Y.; Ni, J.; Yu, S.; Zhong, Y. Cepharanthine ameliorates titanium particle-induced osteolysis by inhibiting osteoclastogenesis and modulating OPG/RANKL ratio in a murine model. Biochem. Biophys. Res. Commun. 2019, 517, 407–412. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Jiang, X.; Deng, Q.; Gao, Z.; Tang, X.; Fu, R.; Hu, J.; Li, Y.; Li, L.; Gao, N. Downregulation of MYO1C mediated by cepharanthine inhibits autophagosome-lysosome fusion through blockade of the F-actin network. J. Exp. Clin. Cancer Res. 2019, 38, 457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ikeda, R.; Che, X.F.; Yamaguchi, T.; Ushiyama, M.; Zheng, C.L.; Okumura, H.; Takeda, Y.; Shibayama, Y.; Nakamura, K.; Jeung, H.C.; et al. Cepharanthine potently enhances the sensitivity of anticancer agents in K562 cells. Cancer Sci. 2005, 96, 372–376. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Piao, X.; Wu, Y.; Liang, S.; Han, F.; Liang, Q.; Shao, S.; Zhao, D. Cepharanthine attenuates cerebral ischemia/reperfusion injury by reducing NLRP3 inflammasome-induced inflammation and oxidative stress via inhibiting 12/15-LOX signaling. Biomed. Pharmacother. Biomed. Pharmacother. 2020, 127, 110151. [Google Scholar] [CrossRef]
- Kondo, Y.; Takano, F.; Hojo, H. Inhibitory effect of bisbenzylisoquinoline alkaloids on nitric oxide production in activated macrophages. Biochem. Pharmacol. 1993, 46, 1887–1892. [Google Scholar] [CrossRef]
- Samra, Y.A.; Said, H.S.; Elsherbiny, N.M.; Liou, G.I.; El-Shishtawy, M.M.; Eissa, L.A. Cepharanthine and Piperine ameliorate diabetic nephropathy in rats: Role of NF-κB and NLRP3 inflammasome. Life Sci. 2016, 157, 187–199. [Google Scholar] [CrossRef]
- Azuma, M.; Ashida, Y.; Tamatani, T.; Motegi, K.; Takamaru, N.; Ishimaru, N.; Hayashi, Y.; Sato, M. Cepharanthin, a biscoclaurine alkaloid, prevents destruction of acinar tissues in murine Sjögren’s syndrome. J. Rheumatol. 2006, 33, 912–920. [Google Scholar]
- Huang, H.; Hu, G.; Wang, C.; Xu, H.; Chen, X.; Qian, A. Cepharanthine, an alkaloid from Stephania cepharantha Hayata, inhibits the inflammatory response in the RAW264.7 cell and mouse models. Inflammation 2014, 37, 235–246. [Google Scholar] [CrossRef]
- Ershun, Z.; Yunhe, F.; Zhengkai, W.; Yongguo, C.; Naisheng, Z.; Zhengtao, Y. Cepharanthine attenuates lipopolysaccharide-induced mice mastitis by suppressing the NF-κB signaling pathway. Inflammation 2014, 37, 331–337. [Google Scholar] [CrossRef]
- Xu, W.; Chen, S.; Wang, X.; Tanaka, S.; Onda, K.; Sugiyama, K.; Yamada, H.; Hirano, T. Molecular mechanisms and therapeutic implications of tetrandrine and cepharanthine in T cell acute lymphoblastic leukemia and autoimmune diseases. Pharmacol. Ther. 2021, 217, 107659. [Google Scholar] [CrossRef]
- Li, C.W.; Osman, R.; Menconi, F.; Concepcion, E.; Tomer, Y. Cepharanthine blocks TSH receptor peptide presentation by HLA-DR3: Therapeutic implications to Graves’ disease. J. Autoimmun. 2020, 108, 102402. [Google Scholar] [CrossRef]
- Li, C.W.; Menconi, F.; Osman, R.; Mezei, M.; Jacobson, E.M.; Concepcion, E.; David, C.S.; Kastrinsky, D.B.; Ohlmeyer, M.; Tomer, Y. Identifying a Small Molecule Blocking Antigen Presentation in Autoimmune Thyroiditis. J. Biol. Chem. 2016, 291, 4079–4090. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uto, T.; Nishi, Y.; Toyama, M.; Yoshinaga, K.; Baba, M. Inhibitory effect of cepharanthine on dendritic cell activation and function. Int. Immunopharmacol. 2011, 11, 1932–1938. [Google Scholar] [CrossRef] [PubMed]
- Furusawa, S.; Wu, J. The effects of biscoclaurine alkaloid cepharanthine on mammalian cells: Implications for cancer, shock, and inflammatory diseases. Life Sci. 2007, 80, 1073–1079. [Google Scholar] [CrossRef] [PubMed]
- Nasu, K.; Ueda, T.; Miyakawa, I. Intrauterine fetal death caused by pit viper venom poisoning in early pregnancy. Gynecol. Obstet. Investig. 2004, 57, 114–116. [Google Scholar] [CrossRef] [PubMed]
- Hifumi, T.; Yamamoto, A.; Morokuma, K.; Okada, I.; Kiriu, N.; Ogasawara, T.; Hasegawa, E.; Kato, H.; Inoue, J.; Koido, Y.; et al. Clinical efficacy of antivenom and cepharanthine for the treatment of Mamushi (Gloydius blomhoffii) bites in tertiary care centers in Japan. Jpn. J. Infect. Dis. 2013, 66, 26–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abe, T.; Inamura, S.; Akasu, M. Effect of cepharanthin on the lethality and cardiovascular disorder by Mamushi, Agkistrodon halys blomhoffi, snake venom. Nihon Yakurigaku Zasshi. Folia Pharmacol. Jpn. 1991, 98, 327–336. [Google Scholar] [CrossRef]
- Igari, R.; Iseki, K.; Abe, S.; Syoji, M.; Sato, M.; Shimomura, K.; Hayashida, A.; Sugiura, A.; Iwashita, Y.; Midorikawa, S. Binocular diplopia and ptosis due to snakebite (Agkistrodon blomhoffi “mamushi”)—A case report. Brain Nerve = Shinkei Kenkyu No Shinpo 2010, 62, 273–277. [Google Scholar]
- Kimoto, T.; Suemitsu, K.; Nakayama, H.; Komori, E.; Ohtani, M.; Ando, S. Therapeutic experience of venomous snakebites by the Japanese viper (Agkistrodon halys Blomhoffii) with low dose of antivenin: Report of 43 consecutive cases. Nihon Geka Hokan. Arch. Fur Jpn. Chir. 1997, 66, 71–77. [Google Scholar]
- Wu, J.; Suzuki, H.; Zhou, Y.W.; Liu, W.; Yoshihara, M.; Kato, M.; Akhand, A.A.; Hayakawa, A.; Takeuchi, K.; Hossain, K.; et al. Cepharanthine activates caspases and induces apoptosis in Jurkat and K562 human leukemia cell lines. J. Cell. Biochem. 2001, 82, 200–214. [Google Scholar] [CrossRef]
- Makidono, R.; Makidono, Y. Hematopoietic and lymphoid cell recovery from radiation damage by cytokines. Nihon Igaku Hoshasen Gakkai Zasshi. Nippon. Acta Radiol. 1994, 54, 1294–1305. [Google Scholar] [PubMed]
- Suzuki, S.; Abe, R.; Nihei, M.; Kimijima, I.; Tsuchiya, A.; Nomizu, T. Efficacy of Cepharanthin for preventing leukopenia and thrombocytopenia induced by chemotherapy in breast cancer patient—Prospective randomized study. Gan Kagaku Ryoho. Cancer Chemother. 1990, 17, 1195–1200. [Google Scholar]
- Asukai, K.; Kimura, A.; Gorai, I.; Uemura, T.; Minaguchi, H. Effects of massive administration of cepharanthin on chemotherapy-induced leukopenia. Gan Kagaku Ryoho. Cancer Chemother. 1989, 16, 2583–2587. [Google Scholar]
- Suzuki, R.; Hara, M.; Shindoh, J.; Matsumoto, S.; Noda, Y.; Gonda, H.; Tanaka, H.; Taki, F.; Takagi, K. Effects of cepharanthin on leukopenia and thrombocytopenia induced by chemotherapy in lung cancer patients. Gan Kagaku Ryoho. Cancer Chemother. 1992, 19, 647–652. [Google Scholar]
- Ushiki, N.; Jobo, T.; Shimoda, T.; Kuramoto, H.; Arai, M. Effects of cepharanthin on leukopenia and thrombocytopenia caused by CDDP-ACR-CPA therapy of ovarian cancer. Gan Kagaku Ryoho. Cancer Chemother. 1988, 15, 2701–2706. [Google Scholar]
- Ohta, T.; Morita, K. Effect of cepharanthin on radiotherapy induced leukopenia. Rinsho Hoshasen. Clin. Radiogr. 1990, 35, 471–474. [Google Scholar]
- Kasajima, T.; Yamakawa, M.; Maeda, K.; Matsuda, M.; Dobashi, M.; Imai, Y. Effect of cepharanthin on peripheral leukocytopenia caused by antineoplastic agents. Gan Kagaku Ryoho. Cancer Chemother. 1983, 10, 1188–1196. [Google Scholar]
- Kanamori, S.; Hiraoka, M.; Fukuhara, N.; Oizumi, Y.; Danjo, A.; Nakata, K.; Owaki, K.; Nishimura, Y. Clinical Efficacy of Cepharanthin(R)for Radiotherapy-Induced Leukopenia-A Nationwide, Multicenter, and Observational Study. Gan Kagaku Ryoho. Cancer Chemother. 2016, 43, 1075–1079. [Google Scholar]
- Morita, K.; Nakamura, M.; Nagamachi, M.; Kishi, T.; Miyachi, Y. Seventeen cases of alopecia areata: Combination of SADBE topical immunotherapy with other therapies. J. Dermatol. 2002, 29, 661–664. [Google Scholar] [CrossRef]
- Inui, S.; Itami, S. Induction of insulin-like growth factor-I by cepharanthine from dermal papilla cells: A novel potential pathway for hair growth stimulation. J. Dermatol. 2013, 40, 1054–1055. [Google Scholar] [CrossRef]
- Iwabuchi, T.; Ogura, K.; Tamba, K.; Tsunekawa, Y.; Sugano, M.; Hagiwara, K.; Kiso, A. Cepharanthine induces the proliferation of human dermal papilla cells and stimulates vascular endothelial growth factor expression through increased intracellular calcium mobilization and hypoxia-inducible factor activation. Clin. Exp. Dermatol. 2021, 46, 694–703. [Google Scholar] [CrossRef] [PubMed]
- Ohashi, H.; Watashi, K.; Saso, W.; Shionoya, K.; Iwanami, S.; Hirokawa, T.; Shirai, T.; Kanaya, S.; Ito, Y.; Kim, K.S.; et al. Potential anti-COVID-19 agents, cepharanthine and nelfinavir, and their usage for combination treatment. iScience 2021, 24, 102367. [Google Scholar] [CrossRef] [PubMed]
- Ruan, Z.; Liu, C.; Guo, Y.; He, Z.; Huang, X.; Jia, X.; Yang, T. SARS-CoV-2 and SARS-CoV: Virtual screening of potential inhibitors targeting RNA-dependent RNA polymerase activity (NSP12). J. Med. Virol. 2021, 93, 389–400. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, K.; Hattori, S.; Komizu, Y.; Kariya, R.; Ueoka, R.; Okada, S. Cepharanthine inhibited HIV-1 cell-cell transmission and cell-free infection via modification of cell membrane fluidity. Bioorg. Med. Chem. Lett. 2014, 24, 2115–2117. [Google Scholar] [CrossRef]
- Okamoto, M.; Ono, M.; Baba, M. Potent inhibition of HIV type 1 replication by an antiinflammatory alkaloid, cepharanthine, in chronically infected monocytic cells. AIDS Res. Hum. Retrovir. 1998, 14, 1239–1245. [Google Scholar] [CrossRef]
- Baba, M.; Okamoto, M.; Kashiwaba, N.; Ono, M. Anti-HIV-1 activity and structure-activity relationship of cepharanoline derivatives in chronically infected cells. Antivir. Chem. Chemother. 2001, 12, 307–312. [Google Scholar] [CrossRef]
- Kim, D.E.; Min, J.S.; Jang, M.S.; Lee, J.Y.; Shin, Y.S.; Song, J.H.; Kim, H.R.; Kim, S.; Jin, Y.H.; Kwon, S. Natural Bis-Benzylisoquinoline Alkaloids-Tetrandrine, Fangchinoline, and Cepharanthine, Inhibit Human Coronavirus OC43 Infection of MRC-5 Human Lung Cells. Biomolecules 2019, 9, 696. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.; Zuo, Q.; Liu, X.; Zhao, Q.; Pu, H.; Gao, L.; Zhao, L.; Guo, Z.; Lin, Y.; Liu, J.; et al. Small molecule screening identified cepharanthine as an inhibitor of porcine reproductive and respiratory syndrome virus infection in vitro by suppressing integrins/ILK/RACK1/PKCα/NF-κB signalling axis. Vet. Microbiol. 2021, 255, 109016. [Google Scholar] [CrossRef]
- Toyama, M.; Hamasaki, T.; Uto, T.; Aoyama, H.; Okamoto, M.; Hashmoto, Y.; Baba, M. Synergistic inhibition of HTLV-1-infected cell proliferation by combination of cepharanthine and a tetramethylnaphthalene derivative. Anticancer Res. 2012, 32, 2639–2645. [Google Scholar]
- Harada, K.; Ferdous, T.; Itashiki, Y.; Takii, M.; Mano, T.; Mori, Y.; Ueyama, Y. Cepharanthine inhibits angiogenesis and tumorigenicity of human oral squamous cell carcinoma cells by suppressing expression of vascular endothelial growth factor and interleukin-8. Int. J. Oncol. 2009, 35, 1025–1035. [Google Scholar] [CrossRef] [Green Version]
- Gao, S.; Li, X.; Ding, X.; Qi, W.; Yang, Q. Cepharanthine Induces Autophagy, Apoptosis and Cell Cycle Arrest in Breast Cancer Cells. Cell. Physiol. Biochem. Int. J. Exp. Cell. Physiol. Biochem. Pharmacol. 2017, 41, 1633–1648. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Chen, L.; Liu, W.; Li, D.; Zeng, J.; Tang, Q.; Zhang, Y.; Luan, F.; Zeng, N. Cepharanthine Suppresses Herpes Simplex Virus Type 1 Replication Through the Downregulation of the PI3K/Akt and p38 MAPK Signaling Pathways. Front. Microbiol. 2021, 12, 795756. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.Z.; Wang, Y.F.; Zhang, Y.; Peng, Y.M.; Liu, Y.X.; Ma, F.; Jiang, J.H.; Wang, Q.D. Cepharanthine hydrochloride reverses P-glycoprotein-mediated multidrug resistance in human ovarian carcinoma A2780/Taxol cells by inhibiting the PI3K/Akt signaling pathway. Oncol. Rep. 2017, 38, 2558–2564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ballout, R.A.; Sviridov, D.; Bukrinsky, M.I.; Remaley, A.T. The lysosome: A potential juncture between SARS-CoV-2 infectivity and Niemann-Pick disease type C, with therapeutic implications. FASEB J. 2020, 34, 7253–7264. [Google Scholar] [CrossRef]
- Sixto-López, Y.; Correa-Basurto, J.; Bello, M.; Landeros-Rivera, B.; Garzón-Tiznado, J.A.; Montaño, S. Structural insights into SARS-CoV-2 spike protein and its natural mutants found in Mexican population. Sci. Rep. 2021, 11, 4659. [Google Scholar] [CrossRef]
- Biswas, P.; Hasan, M.M.; Dey, D.; Dos Santos Costa, A.C.; Polash, S.A.; Bibi, S.; Ferdous, N.; Kaium, M.A.; Rahman, M.; Jeet, F.K.; et al. Candidate antiviral drugs for COVID-19 and their environmental implications: A comprehensive analysis. Environ. Sci. Pollut. Res. Int. 2021, 28, 59570–59593. [Google Scholar] [CrossRef]
- Rogosnitzky, M.; Okediji, P.; Koman, I. Cepharanthine: A review of the antiviral potential of a Japanese-approved alopecia drug in COVID-19. Pharm. Rep. 2020, 72, 1509–1516. [Google Scholar] [CrossRef]
- Hijikata, A.; Shionyu-Mitsuyama, C.; Nakae, S.; Shionyu, M.; Ota, M.; Kanaya, S.; Hirokawa, T.; Nakajima, S.; Watashi, K.; Shirai, T. Evaluating cepharanthine analogues as natural drugs against SARS-CoV-2. FEBS Open Bio. 2022, 12, 285–294. [Google Scholar] [CrossRef]
- Chitsike, L.; Krstenansky, J.; Duerksen-Hughes, P.J. ACE2: S1 RBD Interaction-Targeted Peptides and Small Molecules as Potential COVID-19 Therapeutics. Adv. Pharmacol. Pharm. Sci. 2021, 2021, 1828792. [Google Scholar] [CrossRef]
- Noor, R. Antiviral drugs against severe acute respiratory syndrome coronavirus 2 infection triggering the coronavirus disease-19 pandemic. Tzu Chi Med. J. 2021, 33, 7–12. [Google Scholar] [CrossRef]
- Fan, H.; He, S.T.; Han, P.; Hong, B.; Liu, K.; Li, M.; Wang, S.; Tong, Y. Cepharanthine: A Promising Old Drug against SARS-CoV-2. Adv. Biol. 2022, 6, e2200148. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.Z.; Xu, M.; Pradhan, M.; Gorshkov, K.; Petersen, J.D.; Straus, M.R.; Zhu, W.; Shinn, P.; Guo, H.; Shen, M.; et al. Identifying SARS-CoV-2 Entry Inhibitors through Drug Repurposing Screens of SARS-S and MERS-S Pseudotyped Particles. ACS Pharmacol. Transl. Sci. 2020, 3, 1165–1175. [Google Scholar] [CrossRef] [PubMed]
- Fan, H.H.; Wang, L.Q.; Liu, W.L.; An, X.P.; Liu, Z.D.; He, X.Q.; Song, L.H.; Tong, Y.G. Repurposing of clinically approved drugs for treatment of coronavirus disease 2019 in a 2019-novel coronavirus-related coronavirus model. Chin. Med. J. 2020, 133, 1051–1056. [Google Scholar] [CrossRef]
- Dong, S.; Yu, R.; Wang, X.; Chen, B.; Si, F.; Zhou, J.; Xie, C.; Li, Z.; Zhang, D. Bis-Benzylisoquinoline Alkaloids Inhibit Porcine Epidemic Diarrhea Virus In Vitro and In Vivo. Viruses 2022, 14, 1231. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; You, Y.; Wang, S.; Jiang, L.; Tian, L.; Zhu, S.; An, X.; Song, L.; Tong, Y.; Fan, H. Antiviral Drugs Screening for Swine Acute Diarrhea Syndrome Coronavirus. Int. J. Mol. Sci. 2022, 23, 11250. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, M.; Okamoto, T.; Baba, M. Inhibition of human immunodeficiency virus type 1 replication by combination of transcription inhibitor K-12 and other antiretroviral agents in acutely and chronically infected cells. Antimicrob. Agents Chemother. 1999, 43, 492–497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.; Wang, Y.; Zhang, M.; Li, G.; Cen, Y. Study on the inhibitory effect of cepharanthine on herpes simplex type-1 virus (HSV-1) in vitro. Zhong Yao Cai = Zhongyaocai = J. Chin. Med. Mater. 2004, 27, 107–110. [Google Scholar]
- Xu, Y.; Zheng, J.; Sun, P.; Guo, J.; Zheng, X.; Sun, Y.; Fan, K.; Yin, W.; Li, H.; Sun, N. Cepharanthine and Curcumin inhibited mitochondrial apoptosis induced by PCV2. BMC Vet. Res. 2020, 16, 345. [Google Scholar] [CrossRef]
- Zhang, C.H.; Wang, Y.F.; Liu, X.J.; Lu, J.H.; Qian, C.W.; Wan, Z.Y.; Yan, X.G.; Zheng, H.Y.; Zhang, M.Y.; Xiong, S.; et al. Antiviral activity of cepharanthine against severe acute respiratory syndrome coronavirus in vitro. Chin. Med. J. 2005, 118, 493–496. [Google Scholar]
- Drayman, N.; DeMarco, J.K.; Jones, K.A.; Azizi, S.A.; Froggatt, H.M.; Tan, K.; Maltseva, N.I.; Chen, S.; Nicolaescu, V.; Dvorkin, S.; et al. Masitinib is a broad coronavirus 3CL inhibitor that blocks replication of SARS-CoV-2. Science 2021, 373, 931–936. [Google Scholar] [CrossRef]
- He, C.L.; Huang, L.Y.; Wang, K.; Gu, C.J.; Hu, J.; Zhang, G.J.; Xu, W.; Xie, Y.H.; Tang, N.; Huang, A.L. Identification of bis-benzylisoquinoline alkaloids as SARS-CoV-2 entry inhibitors from a library of natural products. Signal Transduct. Target. 2021, 6, 131. [Google Scholar] [CrossRef] [PubMed]
- Lyu, J.; Yang, E.J.; Head, S.A.; Ai, N.; Zhang, B.; Wu, C.; Li, R.J.; Liu, Y.; Yang, C.; Dang, Y.; et al. Pharmacological blockade of cholesterol trafficking by cepharanthine in endothelial cells suppresses angiogenesis and tumor growth. Cancer Lett. 2017, 409, 91–103. [Google Scholar] [CrossRef] [PubMed]
- Fournet, A.; Inchausti, A.; Yaluff, G.; Rojas De Arias, A.; Guinaudeau, H.; Bruneton, J.; Breidenbach, M.A.; Karplus, P.A.; Faerman, C.H. Trypanocidal bisbenzylisoquinoline alkaloids are inhibitors of trypanothione reductase. J. Enzym. Inhib. 1998, 13, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Desgrouas, C.; Dormoi, J.; Chapus, C.; Ollivier, E.; Parzy, D.; Taudon, N. In vitro and in vivo combination of cepharanthine with anti-malarial drugs. Malar. J. 2014, 13, 90. [Google Scholar] [CrossRef] [Green Version]
- Battistoni, M.V.; Catacchio, L.; Zubiani, M. Cepharanthine action on Mycobacterium tuberculosis in vitro and in experimental tuberculosis of the cavy. Ann. Dell’istituto “Carlo” 1956, 16, 198–205. [Google Scholar]
- Asaumi, J.; Nishikawa, K.; Matsuoka, H.; Iwata, M.; Kawasaki, S.; Hiraki, Y.; Nishijima, K. Direct antitumor effect of cepharanthin and combined effect with adriamycin against Ehrlich ascites tumor in mice. Anticancer Res. 1995, 15, 67–70. [Google Scholar]
- Xiao, J.; Pan, Y.; Zhang, L.; Wang, X.; Han, Y.; Sun, L.; Chen, G.; Li, N. High Performance Liquid Chromatography Determination and Optimization of the Extraction Process for the Total Alkaloids from Traditional Herb Stephania cepharantha Hayata. Molecules 2019, 24, 388. [Google Scholar] [CrossRef] [Green Version]
- Koizumi, S.; Konishi, M.; Ichihara, T.; Wada, H.; Matsukawa, H.; Goi, K.; Mizutani, S. Flow cytometric functional analysis of multidrug resistance by Fluo-3: A comparison with rhodamine-123. Eur. J. Cancer 1995, 31A, 1682–1688. [Google Scholar] [CrossRef]
- Eliason, J.F.; Ramuz, H.; Yoshikubo, T.; Ishikawa, T.; Yamamoto, T.; Tsuruo, T. Novel dithiane analogues of tiapamil with high activity to overcome multidrug resistance in vitro. Biochem. Pharmacol. 1995, 50, 187–196. [Google Scholar] [CrossRef]
- Ono, M.; Urabe, T.; Okamoto, Y.; Murakami, H.; Tatemoto, A.; Ohno, S.; Yamamoto, H.; Watanabe, R.; Hizuta, A.; Tanaka, N.; et al. Augmentation of murine organ-associated natural immune responses by cepharanthin. Gan Kagaku Ryoho. Cancer Chemother. 1988, 15, 127–133. [Google Scholar]
- Ono, M.; Tanaka, N.; Orita, K. Positive interactions between human interferon and cepharanthin against human cancer cells in vitro and in vivo. Cancer Chemother. Pharmacol. 1994, 35, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Okada, K.; Sakusabe, N.; Kobayashi, A.; Hoshi, N.; Sato, K. Prevention of lung metastasis by intra-tumoral injection of Cepharanthin and staphylococcal enterotoxin B in transplantable rat osteosarcoma. Jpn. J. Cancer Res. Gann 1999, 90, 928–933. [Google Scholar] [CrossRef] [PubMed]
- Uthaisar, K.; Seubwai, W.; Srikoon, P.; Vaeteewoottacharn, K.; Sawanyawisuth, K.; Okada, S.; Wongkham, S. Cepharanthine suppresses metastatic potential of human cholangiocarcinoma cell lines. Asian Pac. J. Cancer Prev. APJCP 2012, 13, 149–154. [Google Scholar]
- Nomoto, S.; Imada, H.; Ohguri, T.; Yahara, K.; Kato, F.; Morioka, T.; Korogi, Y. Effect of Cepharanthin in preventing radiation induced normal tissue damage in prostate cancer. Gan Kagaku Ryoho. Cancer Chemother. 2004, 31, 1063–1066. [Google Scholar]
- Sogawa, N.; Hirai, K.; Sogawa, C.; Ohyama, K.; Miyazaki, I.; Tsukamoto, G.; Asanuma, M.; Sasaki, A.; Kitayama, S. Protective effect of cepharanthin on cisplatin-induced renal toxicity through metallothionein expression. Life Sci. 2013, 92, 727–732. [Google Scholar] [CrossRef]
- Das, S.; Shukla, N.; Singh, S.S.; Kushwaha, S.; Shrivastava, R. Mechanism of interaction between autophagy and apoptosis in cancer. Apoptosis 2021, 26, 512–533. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, G.; Zhao, Z.; Xiu, R.; Jia, J.; Chen, P.; Liu, Y.; Wang, Y.; Yi, J. Cepharanthine, a novel selective ANO1 inhibitor with potential for lung adenocarcinoma therapy. Biochim. Biophys. Acta Mol. Cell Res. 2021, 1868, 119132. [Google Scholar] [CrossRef]
- Harada, T.; Harada, K.; Ueyama, Y. The enhancement of tumor radioresponse by combined treatment with cepharanthine is accompanied by the inhibition of DNA damage repair and the induction of apoptosis in oral squamous cell carcinoma. Int. J. Oncol. 2012, 41, 565–572. [Google Scholar] [CrossRef] [Green Version]
- Harada, K.; Bando, T.; Yoshida, H.; Sato, M. Characteristics of antitumour activity of cepharanthin against a human adenosquamous cell carcinoma cell line. Oral. Oncol. 2001, 37, 643–651. [Google Scholar] [CrossRef]
- Hua, P.; Sun, M.; Zhang, G.; Zhang, Y.; Tian, X.; Li, X.; Cui, R.; Zhang, X. Cepharanthine induces apoptosis through reactive oxygen species and mitochondrial dysfunction in human non-small-cell lung cancer cells. Biochem. Biophys. Res. Commun. 2015, 460, 136–142. [Google Scholar] [CrossRef]
- Furusawa, S.; Wu, J.; Fujimura, T.; Nakano, S.; Nemoto, S.; Takayanagi, M.; Sasaki, K.; Takayanagi, Y. Cepharanthine inhibits proliferation of cancer cells by inducing apoptosis. Methods Find. Exp. Clin. Pharmacol. 1998, 20, 87–97. [Google Scholar] [CrossRef]
- Ita, M.; Halicka, H.D.; Tanaka, T.; Kurose, A.; Ardelt, B.; Shogen, K.; Darzynkiewicz, Z. Remarkable enhancement of cytotoxicity of onconase and cepharanthine when used in combination on various tumor cell lines. Cancer Biol. Ther. 2008, 7, 1104–1108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kono, K.; Takahashi, J.A.; Ueba, T.; Mori, H.; Hashimoto, N.; Fukumoto, M. Effects of combination chemotherapy with biscoclaurine-derived alkaloid (Cepharanthine) and nimustine hydrochloride on malignant glioma cell lines. J. Neurooncol. 2002, 56, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Law, B.Y.; Chan, W.K.; Xu, S.W.; Wang, J.R.; Bai, L.P.; Liu, L.; Wong, V.K. Natural small-molecule enhancers of autophagy induce autophagic cell death in apoptosis-defective cells. Sci. Rep. 2014, 4, 5510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Law, B.Y.; Mok, S.W.; Chan, W.K.; Xu, S.W.; Wu, A.G.; Yao, X.J.; Wang, J.R.; Liu, L.; Wong, V.K. Hernandezine, a novel AMPK activator induces autophagic cell death in drug-resistant cancers. Oncotarget 2016, 7, 8090–8104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, G.; Qiao, K.; Xu, X.; Wang, C. Cepharanthine Regulates Autophagy via Activating the p38 Signaling Pathway in Lung Adenocarcinoma Cells. Anticancer Agents. Med. Chem. 2021, 22, 1523–1529. [Google Scholar]
- Shen, L.W.; Jiang, X.X.; Li, Z.Q.; Li, J.; Wang, M.; Jia, G.F.; Ding, X.; Lei, L.; Gong, Q.H.; Gao, N. Cepharanthine sensitizes human triple negative breast cancer cells to chemotherapeutic agent epirubicin via inducing cofilin oxidation-mediated mitochondrial fission and apoptosis. Acta Pharmacol. Sin. 2022, 43, 177–193. [Google Scholar] [CrossRef]
- Morikawa, K.; Oseko, F.; Morikawa, S. Inhibition of proliferation and differentiation of human B-lymphocytes by a biscoclaurine alkaloid. Int. J. Immunopharmacol. 1992, 14, 941–949. [Google Scholar] [CrossRef]
- Rimini, M.; Casadei-Gardini, A. Angiogenesis in biliary tract cancer: Targeting and therapeutic potential. Expert Opin. Investig. Drugs 2021, 30, 411–418. [Google Scholar] [CrossRef]
- Ebina, T.; Ono, M. Antitumor effect of the plant alkaloid preparation, cepharanthin. Gan Kagaku Ryoho. Cancer Chemother. 2001, 28, 211–215. [Google Scholar]
- Wada, H.; Saikawa, Y.; Niida, Y.; Nishimura, R.; Noguchi, T.; Matsukawa, H.; Ichihara, T.; Koizumi, S. Selectively induced high MRP gene expression in multidrug-resistant human HL60 leukemia cells. Exp. Hematol. 1999, 27, 99–109. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Chen, S.; Wang, X.; Wu, H.; Yamada, H.; Hirano, T. Bisbenzylisoquinoline alkaloids and P-glycoprotein function: A structure activity relationship study. Bioorg. Med. Chem. 2020, 28, 115553. [Google Scholar] [CrossRef] [PubMed]
- Saito, T.; Hikita, M.; Kohno, K.; Tanimura, H.; Miyahara, M.; Kobayashi, M. Enhanced expression of the multidrug resistance gene in vindesine-resistant human esophageal cancer cells. Oncology 1994, 51, 440–445. [Google Scholar] [CrossRef] [PubMed]
- Saito, T.; Hikita, M.; Kohno, K.; Sato, S.; Takano, H.; Kobayashi, M. Different sensitivities of human esophageal cancer cells to multiple anti-cancer agents and related mechanisms. Cancer 1992, 70, 2402–2409. [Google Scholar] [CrossRef]
- Kisara, S.; Furusawa, S.; Murata, R.; Ogata, M.; Hikichi, N.; Takayanagi, Y.; Sasaki, K. Combined effects of buthionine sulfoximine and cepharanthine on cytotoxic activity of doxorubicin to multidrug-resistant cells. Oncol. Res. 1995, 7, 191–200. [Google Scholar]
- Hirai, M.; Tanaka, K.; Shimizu, T.; Tanigawara, Y.; Yasuhara, M.; Hori, R.; Kakehi, Y.; Yoshida, O.; Ueda, K.; Komano, T.; et al. Cepharanthin, a multidrug resistant modifier, is a substrate for P-glycoprotein. J. Pharmacol. Exp. Ther. 1995, 275, 73–78. [Google Scholar]
- Sumizawa, T.; Chen, Z.S.; Chuman, Y.; Seto, K.; Furukawa, T.; Haraguchi, M.; Tani, A.; Shudo, N.; Akiyama, S.I. Reversal of multidrug resistance-associated protein-mediated drug resistance by the pyridine analog PAK-104P. Mol. Pharmacol. 1997, 51, 399–405. [Google Scholar]
- Akiyama, S.; Cornwell, M.M.; Kuwano, M.; Pastan, I.; Gottesman, M.M. Most drugs that reverse multidrug resistance also inhibit photoaffinity labeling of P-glycoprotein by a vinblastine analog. Mol. Pharmacol. 1988, 33, 144–147. [Google Scholar]
- Ichikawa, M.; Yoshimura, A.; Furukawa, T.; Sumizawa, T.; Akiyama, S. Modulators of the multidrug-transporter, P-glycoprotein, exist in the human plasma. Biochem. Biophys. Res. Commun. 1990, 166, 74–80. [Google Scholar] [CrossRef]
- Katsui, K.; Kuroda, M.; Wang, Y.; Komatsu, M.; Himei, K.; Takemoto, M.; Akaki, S.; Asaumi, J.; Kanazawa, S.; Hiraki, Y. Cepharanthin enhances adriamycin sensitivity by synergistically accelerating apoptosis for adriamycin-resistant osteosarcoma cell lines, SaOS2-AR and SaOS2 F-AR. Int. J. Oncol. 2004, 25, 47–56. [Google Scholar] [CrossRef] [Green Version]
- Asaumi, J.; Kawasaki, S.; Nishikawa, K.; Kuroda, M.; Hiraki, Y. Effects of hyperthermia and cepharanthin on adriamycin accumulation with changes in extracellular pH. Int. J. Hyperth. 1995, 11, 27–35. [Google Scholar] [CrossRef]
- Nagaoka, S.; Kawasaki, S.; Karino, Y.; Sasaki, K.; Nakanishi, T. Modification of cellular efflux and cytotoxicity of adriamycin by biscoclaulin alkaloid in vitro. Eur. J. Cancer Clin. Oncol. 1987, 23, 1297–1302. [Google Scholar] [CrossRef] [PubMed]
- Fujimura, T.; Shibata, H.; Maekawa, I.; Furusawa, S.; Kawauchi, H.; Sasaki, K.; Takayanagi, Y. Reversal of resistance to doxorubicin with cepharanthine in murine P388 leukemia cells. Jpn. J. Pharmacol. 1990, 54, 464–467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kisara, S.; Hayashi, A.; Maekawa, I.; Furusawa, S.; Takayanagi, Y.; Sasaki, K. Assay of flow cytometry for the effect of cepharanthine on resistance to doxorubicin. Yakugaku Zasshi 1992, 112, 837–845. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hashizume, T.; Yamaguchi, H.; Sato, T.; Fujii, T. Suppressive effect of biscoclaurine alkaloids on agonist-induced activation of phospholipase A2 in rabbit platelets. Biochem. Pharmacol. 1991, 41, 419–423. [Google Scholar] [CrossRef]
- Nishikawa, K.; Asaumi, J.; Kawasaki, S.; Shibuya, K.; Kuroda, M.; Takeda, Y.; Hiraki, Y. Influence of cepharanthin and hyperthermia on the intracellular accumulation of adriamycin and Fluo3, an indicator of Ca2+. Anticancer. Res. 1998, 18, 1649–1654. [Google Scholar]
- Shiraishi, N.; Akiyama, S.; Nakagawa, M.; Kobayashi, M.; Kuwano, M. Effect of bisbenzylisoquinoline (biscoclaurine) alkaloids on multidrug resistance in KB human cancer cells. Cancer Res. 1987, 47, 2413–2416. [Google Scholar] [CrossRef]
- Ikeda, R.; Vermeulen, L.C.; Lau, E.; Jiang, Z.; Sachidanandam, K.; Yamada, K.; Kolesar, J.M. Isolation and characterization of gemcitabine-resistant human non-small cell lung cancer A549 cells. Int. J. Oncol. 2011, 38, 513–519. [Google Scholar]
- Enokida, H.; Gotanda, T.; Oku, S.; Imazono, Y.; Kubo, H.; Hanada, T.; Suzuki, S.; Inomata, K.; Kishiye, T.; Tahara, Y.; et al. Reversal of P-glycoprotein-mediated paclitaxel resistance by new synthetic isoprenoids in human bladder cancer cell line. Jpn. J. Cancer Res. Gann 2002, 93, 1037–1046. [Google Scholar] [CrossRef]
- Komiyama, S.; Matsui, K.; Kudoh, S.; Nogae, I.; Kuratomi, Y.; Saburi, Y.; Asoh, K.; Kohno, K.; Kuwano, M. Establishment of tumor cell lines from a patient with head and neck cancer and their different sensitivities to anti-cancer agents. Cancer 1989, 63, 675–681. [Google Scholar] [CrossRef]
- Zahedi, P.; De Souza, R.; Huynh, L.; Piquette-Miller, M.; Allen, C. Combination drug delivery strategy for the treatment of multidrug resistant ovarian cancer. Mol. Pharm. 2011, 8, 260–269. [Google Scholar] [CrossRef] [PubMed]
- Tamatani, T.; Azuma, M.; Motegi, K.; Takamaru, N.; Kawashima, Y.; Bando, T. Cepharanthin-enhanced radiosensitivity through the inhibition of radiation-induced nuclear factor-kappaB activity in human oral squamous cell carcinoma cells. Int. J. Oncol. 2007, 31, 761–768. [Google Scholar]
- Fang, Z.H.; Li, Y.J.; Chen, Z.; Wang, J.J.; Zhu, L.H. Inhibition of signal transducer and activator of transcription 3 and cyclooxygenase-2 is involved in radiosensitization of cepharanthine in HeLa cells. Int. J. Gynecol. Cancer 2013, 23, 608–614. [Google Scholar] [CrossRef] [PubMed]
- Yano, T.; Nakatani, K.; Watanabe, A.; Sawada, H.; Yamada, Y.; Nakano, H.; Ohnishi, T. Additive effects of cepharanthin in CDDP/hyperthermia combination therapy against transplantable human esophageal cancer in nude mice. Int. J. Radiat. Oncol. Biol. Phys. 1994, 29, 525–528. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Kuroda, M.; Gao, X.S.; Akaki, S.; Asaumi, J.; Okumura, Y.; Shibuya, K.; Kawasaki, S.; Joja, I.; Kato, H.; et al. Cepharanthine enhances in vitro and in vivo thermosensitivity of a mouse fibrosarcoma, FSa-II, based on increased apoptosis. Int. J. Mol. Med. 2004, 13, 405–411. [Google Scholar] [CrossRef] [Green Version]
- Pitarresi, J.R.; Norgard, R.J.; Chiarella, A.M.; Suzuki, K.; Bakir, B.; Sahu, V.; Li, J.; Zhao, J.; Marchand, B.; Wengyn, M.D.; et al. PTHrP Drives Pancreatic Cancer Growth and Metastasis and Reveals a New Therapeutic Vulnerability. Cancer Discov. 2021, 11, 1774–1791. [Google Scholar] [CrossRef]
- Ono, M. Antitumor effect of cepharanthin—Mechanism of the antimetastatic effect on Lewis lung carcinoma (3LL). Gan Kagaku Ryoho. Cancer Chemother. 1988, 15, 249–255. [Google Scholar]
- Morioka, S.; Ono, M.; Tanaka, N.; Orita, K. Synergistic activation of rat alveolar macrophages by cepharanthine and OK-432. Gan Kagaku Ryoho. Cancer Chemother. 1985, 12, 1470–1475. [Google Scholar]
- Ito, H.; Ito, H.; Amano, H.; Noda, H. Inhibitory effect of a biscoclaurine alkaloid, cepharanthin, on lung metastasis of Lewis lung carcinoma. Jpn. J. Pharmacol. 1991, 56, 195–202. [Google Scholar] [CrossRef]
- Zhou, P.; Li, Z.; Xu, D.; Wang, Y.; Bai, Q.; Feng, Y.; Su, G.; Chen, P.; Wang, Y.; Liu, H.; et al. Cepharanthine Hydrochloride Improves Cisplatin Chemotherapy and Enhances Immunity by Regulating Intestinal Microbes in Mice. Front. Cell Infect. Microbiol. 2019, 9, 225. [Google Scholar] [CrossRef]
- Tsukikawa, S.; Oikawa, H.; Satoh, T.; Morikubo, M.; Komoriyama, H.; Hagiwara, M.; Kanasugi, K.; Yamaguchi, S. The effect of cepharanthin on adjuvant chemotherapy induced bone marrow suppression in patients with breast cancer. Gan Kagaku Ryoho. Cancer Chemother. 1990, 17, 645–648. [Google Scholar]
- Imada, H.; Nomoto, S.; Ohguri, T.; Yahara, K.; Kato, F.; Morioka, T.; Korogi, Y. Effect of Cepharanthin to prevent radiation induced xerostomia in head and neck cancer. Gan Kagaku Ryoho. Cancer Chemother. 2004, 31, 1041–1045. [Google Scholar]
- Shimazu, R.; Tanaka, G.; Tomiyama, R.; Kuratomi, Y.; Inokuchi, A. Cepharanthin effect on radiation-induced xerostomia and taste disorder in patients with head and neck cancer. Nihon Jibiinkoka Gakkai Kaiho 2009, 112, 648–655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nemoto, K.; Yoshida, K.; Nisimura, M.; Seki, M. The effects of Cepharanthin on the recovery of hematopoietic stem cells after X-ray irradiation. Gan Kagaku Ryoho. Cancer Chemother. 1991, 18, 81–84. [Google Scholar]
- Mori, M.; Kawasaki, S.; Sacho, M.; Awai, M.; Sadahira, Y.; Ono, M. The effect of cepharanthine on the hemopoietic suppression by X-ray irradiation--hematological and histological studies. Nihon Igaku Hoshasen Gakkai Zasshi. Nippon. Acta Radiol. 1989, 49, 667–674. [Google Scholar]
- Ebina, T.; Ishikawa, K.; Murata, K. Antitumor effect of Cepharanthin in the double grafted tumor system. Gan Kagaku Ryoho. Cancer Chemother. 1990, 17, 1165–1171. [Google Scholar]
- Kudo, K.; Hagiwara, S.; Hasegawa, A.; Kusaka, J.; Koga, H.; Noguchi, T. Cepharanthine exerts anti-inflammatory effects via NF-κB inhibition in a LPS-induced rat model of systemic inflammation. J. Surg. Res. 2011, 171, 199–204. [Google Scholar] [CrossRef]
- Nakatsu, T. A study on the effect of cepharanthin, a biscoclaurine alkaloid, on enhancement of mitogen-induced histidine decarboxylase activity in mice spleens and the effect of histamine on the production of cytokines. Nihon Yakurigaku Zasshi. Folia Pharmacol. Jpn. 1995, 105, 209–219. [Google Scholar] [CrossRef]
- Paudel, K.R.; Karki, R.; Kim, D.W. Cepharanthine inhibits in vitro VSMC proliferation and migration and vascular inflammatory responses mediated by RAW264.7. Toxicol. Vitr. 2016, 34, 16–25. [Google Scholar] [CrossRef]
- Pazyar, N.; Jamshydian, N. Cepharanthine: A therapeutic potential candidate for psoriasis. J. Altern. Complement. Med. 2012, 18, 639–640. [Google Scholar] [CrossRef]
- Akamatsu, H.; Komura, J.; Asada, Y.; Niwa, Y. Effects of cepharanthin on neutrophil chemotaxis, phagocytosis, and reactive oxygen species generation. J. Dermatol. 1991, 18, 643–648. [Google Scholar] [CrossRef]
- Aota, K.; Yamanoi, T.; Kani, K.; Azuma, M. Cepharanthine Inhibits IFN-γ-Induced CXCL10 by Suppressing the JAK2/STAT1 Signal Pathway in Human Salivary Gland Ductal Cells. Inflammation 2018, 41, 50–58. [Google Scholar] [CrossRef] [PubMed]
- Ara, T.; Nakatani, S.; Kobata, K.; Sogawa, N.; Sogawa, C. The Biological Efficacy of Natural Products against Acute and Chronic Inflammatory Diseases in the Oral Region. Medicines 2018, 5, 122. [Google Scholar] [CrossRef] [Green Version]
- Gülçin, I.; Elias, R.; Gepdiremen, A.; Chea, A.; Topal, F. Antioxidant activity of bisbenzylisoquinoline alkaloids from Stephania rotunda: Cepharanthine and fangchinoline. J. Enzym. Inhib. Med. Chem. 2010, 25, 44–53. [Google Scholar] [CrossRef] [PubMed]
- Kogure, K.; Goto, S.; Abe, K.; Ohiwa, C.; Akasu, M.; Terada, H. Potent antiperoxidation activity of the bisbenzylisoquinoline alkaloid cepharanthine: The amine moiety is responsible for its pH-dependent radical scavenge activity. Biochim. Biophys. Acta 1999, 1426, 133–142. [Google Scholar] [CrossRef] [PubMed]
- Matsuno, T.; Orita, K.; Edashige, K.; Kobuchi, H.; Sato, E.F.; Inouye, B.; Inoue, M.; Utsumi, K. Inhibition of active oxygen generation in guinea-pig neutrophils by biscoclaurine alkaloids. Biochem. Pharmacol. 1990, 39, 1255–1259. [Google Scholar] [PubMed]
- Sato, E.; Takehara, Y.; Sasaki, J.; Matsuno, T.; Utsumi, K. Selective inhibition of stimulation responses of neutrophils by membrane modulators. Cell Struct. Funct. 1986, 11, 125–134. [Google Scholar] [CrossRef] [Green Version]
- Terasaka, H.; Machino, M.; Saito, M.; Fujisawa, S.; Satoh, K.; Jiang, Y.; Sakagami, H. Re-evaluation of antitumor activity of Cepharanthin. Anticancer. Res. 2002, 22, 165–170. [Google Scholar]
- Sakaguchi, S.; Furusawa, S.; Wu, J.; Nagata, K. Preventive effects of a biscoclaurine alkaloid, cepharanthine, on endotoxin or tumor necrosis factor-alpha-induced septic shock symptoms: Involvement of from cell death in L929 cells and nitric oxide production in raw 264.7 cells. Int. Immunopharmacol. 2007, 7, 191–197. [Google Scholar] [CrossRef]
- Kogure, K.; Tsuchiya, K.; Abe, K.; Akasu, M.; Tamaki, T.; Fukuzawa, K.; Terada, H. Direct radical scavenging by the bisbenzylisoquinoline alkaloid cepharanthine. Biochim. Biophys. Acta 2003, 1622, 1–5. [Google Scholar] [CrossRef]
- Goto, M.; Zeller, W.P.; Hurley, R.M. Cepharanthine (biscoclaurine alkaloid) treatment in endotoxic shock of suckling rats. J. Pharm. Pharmacol. 1991, 43, 589–591. [Google Scholar] [CrossRef] [PubMed]
- Sawamura, D.; Sato, S.; Suzuki, M.; Nomura, K.; Hanada, K.; Hashimoto, I. Effect of cepharanthin on superoxide anion (O2-) production by macrophages. J. Dermatol. 1988, 15, 304–307. [Google Scholar] [CrossRef] [PubMed]
- Matsuno, T.; Orita, K.; Sato, E.; Nobori, K.; Inoue, B.; Utsumi, K. Inhibition of metabolic response of polymorphonuclear leukocyte by biscoclaurine alkaloids. Biochem. Pharmacol. 1987, 36, 1613–1616. [Google Scholar] [CrossRef] [PubMed]
- Kobuchi, H.; Li, M.J.; Matsuno, T.; Yasuda, T.; Utsumi, K. Inhibition of neutrophil priming and tyrosyl phosphorylation by cepharanthine, a nonsteroidal antiinflammatory drug. Cell Struct. Funct. 1992, 17, 385–393. [Google Scholar] [CrossRef] [Green Version]
- Murakami, K.; Cox, R.A.; Hawkins, H.K.; Schmalstieg, F.C.; McGuire, R.W.; Jodoin, J.M.; Traber, L.D.; Traber, D.L. Cepharanthin, an alkaloid from Stephania cepharantha, inhibits increased pulmonary vascular permeability in an ovine model of sepsis. Shock 2003, 20, 46–51. [Google Scholar] [CrossRef]
- Kao, M.C.; Yang, C.H.; Sheu, J.R.; Huang, C.J. Cepharanthine mitigates pro-inflammatory cytokine response in lung injury induced by hemorrhagic shock/resuscitation in rats. Cytokine 2015, 76, 442–448. [Google Scholar] [CrossRef]
- Maruyama, H.; Kikuchi, S.; Kawaguchi, K.; Hasunuma, R.; Ono, M.; Ohbu, M.; Kumazawa, Y. Suppression of lethal toxicity of endotoxin by biscoclaurine alkaloid cepharanthin. Shock 2000, 13, 160–165. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.W.; Han, W.B.; Wan, Y.G.; Tu, Y.; Liu, B.H.; Liu, Y.L.; Wu, W.; Yee, H.Y.; Fang, Q.J.; Yao, J. Molecular regulative mechanisms of NLRP3 inflammasome activation in diabetic nephropathy and interventional effects of Chinese herbal medicine. Zhongguo Zhong Yao Za Zhi = Zhongguo Zhongyao Zazhi = China J. Chin. Mater. Med. 2020, 45, 7–13. [Google Scholar]
- Hori, F.; Kawauchi, H.; Mogi, G. Therapeutic effects of cepharanthine on the experimental otitis media with effusion. Nihon Jibiinkoka Gakkai Kaiho 1989, 92, 936–942. [Google Scholar] [CrossRef] [Green Version]
- Kao, M.C.; Chung, C.Y.; Chang, Y.Y.; Lin, C.K.; Sheu, J.R.; Huang, C.J. Salutary Effects of Cepharanthine against Skeletal Muscle and Kidney Injuries following Limb Ischemia/Reperfusion. Evid. Based Complement Altern. Med. 2015, 2015, 504061. [Google Scholar] [CrossRef] [Green Version]
- Asano, M.; Ohkubo, C.; Sasaki, A.; Sawanobori, K.; Nagano, H. Vasodilator effects of cepharanthine, a biscoclaurine alkaloid, on cutaneous microcirculation in the rabbit. J. Ethnopharmacol. 1987, 20, 107–120. [Google Scholar] [PubMed]
- Sato, T.; Ohnishi, S.T. In vitro anti-sickling effect on cepharanthine. Eur. J. Pharmacol. 1982, 83, 91–95. [Google Scholar] [CrossRef]
- Kohno, H.; Inoue, H.; Seyama, Y.; Yamashita, S.; Akasu, M. Mode of the anti-allergic action of cepharanthine on an experimental model of allergic rhinitis. Nihon Yakurigaku Zasshi. Folia Pharmacol. Jpn. 1987, 90, 205–211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshikawa, N.; Seyama, Y.; Yamashita, S.; Akasu, M.; Inoue, H. Stimulation of pituitary-adrenocortical system by cepharanthine. Nihon Yakurigaku Zasshi. Folia Pharmacol. Jpn. 1986, 87, 99–104. [Google Scholar] [CrossRef] [PubMed]
- Kohno, H.; Seyama, Y.; Yamashita, S.; Aramaki, H.; Inoue, H.; Yamada, T.; Yamada, K.; Ishikawa, T. Effects of iodine-enriched egg (IE-egg) on nasal allergy: Basic and clinical investigations. Nihon Yakurigaku Zasshi. Folia Pharmacol. Jpn. 1986, 88, 223–228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kohno, H.; Seyama, Y.; Yamashita, S.; Akasu, M.; Inoue, H. Effects of cepharanthine on experimental nasal allergy. Nihon Yakurigaku Zasshi. Folia Pharmacol. Jpn. 1986, 88, 71–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fujii, K.; Takasugi, S.; Toki, N. Effect of cepharanthine on neuro-humoral excitatory responses of gastric movement in dog. Jpn. J. Physiol. 1981, 31, 613–623. [Google Scholar] [CrossRef]
- Nakamura, K.; Tsuchiya, S.; Sugimoto, Y.; Sugimura, Y.; Yamada, Y. Histamine release inhibition activity of bisbenzylisoquinoline alkaloids. Planta Med. 1992, 58, 505–508. [Google Scholar] [CrossRef]
- Uto, T.; Toyama, M.; Yoshinaga, K.; Baba, M. Cepharanthine induces apoptosis through the mitochondria/caspase pathway in murine dendritic cells. Immunopharmacol. Immunotoxicol. 2016, 38, 238–243. [Google Scholar] [CrossRef]
- Nomura, S.; Matsuzaki, T.; Yamaoka, M.; Ozaki, Y.; Nagahama, M.; Yoshimura, C.; Kagawa, H.; Nakayama, S.; Fukuhara, S. Genetic analysis of HLA- and HPA-typing in idiopathic (autoimmune) thrombocytopenic purpura patients treated with cepharanthin. Autoimmunity 1999, 30, 99–105. [Google Scholar] [CrossRef]
- Nakayama, S.; Matsushita, A.; Ichiba, S.; Nagai, K. Clinical evaluation of cepharanthin for chronic idiopathic thrombocytopenic purpura. [Rinsho Ketsueki] Jpn. J. Clin. Hematol. 1992, 33, 408–409. [Google Scholar]
- Saito, N.; Takemori, N.; Hirai, K.; Onodera, R.; Watanabe, S.; Kohgo, Y. High-dose biscoclaurine alkaloids together with prednisolone raise platelet counts in chronic idiopathic thrombocytopenic purpura. Am. J. Hematol. 1996, 51, 173–174. [Google Scholar] [PubMed]
- Takahata, M.; Hashino, S.; Fujimoto, K.; Endo, T.; Kobayashi, N.; Kurosawa, M.; Iwasaki, H.; Miyake, T.; Kohda, K.; Maekawa, I.; et al. Clinical efficacy of high-dose cepharanthine for idiopathic thrombocytopenic purpura: Retrospective multicenter analysis. [Rinsho Ketsueki] Jpn. J. Clin. Hematol. 2012, 53, 1983–1990. [Google Scholar]
- Konishi, H.; Kanemoto, K.; Ikuno, Y.; Minouchi, T.; Inoue, T.; Hodohara, K.; Fujiyama, Y.; Yamaji, A. Fluctuation in therapeutic control associated with interchange of prednisolone tablet formulations: Assessment of bioequivalence by dissolution test. Yakugaku Zasshi 2002, 122, 813–817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamazaki, T.; Shibuya, A.; Ishii, S.; Miura, N.; Ohtake, A.; Sasaki, N.; Araki, R.; Ota, Y.; Fujiwara, M.; Miyajima, Y.; et al. High-dose Cepharanthin for pediatric chronic immune thrombocytopenia in Japan. Pediatr. Int. 2017, 59, 303–308. [Google Scholar] [CrossRef] [PubMed]
- Sato, T.; Morita, I.; Fujita, H.; Ono, M.; Kimishima, A.; Tomiyama, J.; Murota, S. Pharmacological characterization of cepharanthin in chronic idiopathic thrombocytopenic purpura. Platelets 2001, 12, 156–162. [Google Scholar] [CrossRef]
- Furuyama, H.; Koga, Y.; Hamasaki, K.; Kuroki, F.; Itami, N.; Ishikawa, Y. Effective treatment of cyclic thrombocytopenia with cepharanthin. Pediatr. Int. 1999, 41, 584–585. [Google Scholar] [CrossRef]
- Tabata, R.; Tabata, C.; Tazoh, A.; Nagai, T. Low dose cepharanthine ameliorates immune thrombocytopenic purpura associated with multiple myeloma. Int. Immunopharmacol. 2012, 13, 242–244. [Google Scholar] [CrossRef]
- Kometani, M.; Sato, T.; Fujii, T. Effect of membrane-interacting amphiphiles on association of membrane glycoproteins with assembled cytoskeletal proteins in concanavalin A-activated rabbit platelets. Thromb. Res. 1986, 42, 567–577. [Google Scholar] [CrossRef]
- Akiba, S.; Kato, E.; Sato, T.; Fujii, T. Biscoclaurine alkaloids inhibit receptor-mediated phospholipase A2 activation probably through uncoupling of a GTP-binding protein from the enzyme in rat peritoneal mast cells. Biochem. Pharmacol. 1992, 44, 45–50. [Google Scholar] [CrossRef]
- Kometani, M.; Kanaho, Y.; Sato, T.; Fujii, T. Inhibitory effect of cepharanthine on collagen-induced activation in rabbit platelets. Eur. J. Pharmacol. 1985, 111, 97–105. [Google Scholar] [CrossRef]
- Watanabe, S. Inhibition of platelet aggregation by cepharanthine is accomplished during the early, membrane-related activation process. Acta Med. Okayama 1984, 38, 101–115. [Google Scholar] [PubMed]
- Kutlu Kaya, C.; Gümrükçü, S.; Saraç, A.S.; Kök, F.N. A multifunctional long-term release system for treatment of hypothyroidism. J. Biomed. Mater. Res. A 2020, 108, 759–760. [Google Scholar] [CrossRef] [PubMed]
- Azuma, M.; Aota, K.; Tamatani, T.; Motegi, K.; Yamashita, T.; Ashida, Y.; Hayashi, Y.; Sato, M. Suppression of tumor necrosis factor alpha-induced matrix metalloproteinase 9 production in human salivary gland acinar cells by cepharanthine occurs via down-regulation of nuclear factor kappaB: A possible therapeutic agent for preventing the destruction of the acinar structure in the salivary glands of Sjögren’s syndrome patients. Arthritis Rheum. 2002, 46, 1585–1594. [Google Scholar]
- Cui, X.; Lin, S.; Zhou, J.; Yuan, G. Investigation of non-covalent interaction of natural flexible cyclic molecules with telomeric RNA G-quadruplexes by electrospray ionization mass spectrometry. Rapid Commun. Mass Spectrom. 2012, 26, 1803–1809. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, T.; Hasegawa, S.; Fukushima, K.; Watanabe, N.; Yokoyama, H. Prosthetic replacement of the superior vena cava treated with antiplatelet agents. Surgery 1987, 102, 498–506. [Google Scholar]
- Hasegawa, T.; Fukushima, K.; Hasegawa, S.; Hata, E.; Kimura, S.; Ohara, T. Venous reconstruction using prosthetic grafts. J. Cardiovasc. Surg. 1989, 30, 833–837. [Google Scholar]
- Satoh, K.; Nagai, F.; Ono, M.; Aoki, N. Inhibition of Na(+), K(+)-ATPase by the extract of Stephania cephararantha HAYATA and bisbenzylisoquinoline alkaloid cycleanine, a major constituent. Biochem. Pharmacol. 2003, 66, 379–385. [Google Scholar] [CrossRef]
- Goto, K.; Tanaka, R. Cepharanthine protection of Na+, K+-activated adenosinetriphosphatase of plasma membranes from rat cerebral synaptosomes against inhibition by ascorbate. Biochem. Pharmacol. 1984, 33, 3912–3914. [Google Scholar] [CrossRef]
- Nagano, M.; Kanno, T.; Fujita, H.; Muranaka, S.; Fujiwara, T.; Utsumi, K. Cepharanthine, an anti-inflammatory drug, suppresses mitochondrial membrane permeability transition. Physiol. Chem. Phys. Med. NMR 2003, 35, 131–143. [Google Scholar]
- Chen, M.L.; Gou, J.M.; Meng, X.L.; Chen, C.L.; Liu, X.N. Cepharanthine, a bisbenzylisoquinoline alkaloid, inhibits lipopolysaccharide-induced microglial activation. Pharmazie 2019, 74, 606–610. [Google Scholar] [PubMed]
- Ohnishi, S.T. Inhibition of the in vitro formation of irreversibly sickled cells by cepharanthine. Br. J. Haematol. 1983, 55, 665–671. [Google Scholar] [CrossRef] [PubMed]
- Fujii, T.; Sato, T.; Tamura, A.; Kometani, M.; Nakao, K.; Fujitani, K.; Kodama, K.; Akasu, M. Structure-activity relationships of 4’-O-substituted 1-benzylisoquinolines with respect to their actions on the cell membrane of blood platelets and erythrocytes. Eur. J. Pharmacol. 1988, 146, 285–290. [Google Scholar] [CrossRef] [PubMed]
- Weidner, T.; Illing, T.; Elsner, P. Primary Localized Cutaneous Amyloidosis: A Systematic Treatment Review. Am. J. Clin. Derm. 2017, 18, 629–642. [Google Scholar] [CrossRef]
- Yoshida, A.; Takahashi, K.; Tagami, H.; Akasaka, T. Lichen amyloidosis induced on the upper back by long-term friction with a nylon towel. J. Dermatol. 2009, 36, 56–59. [Google Scholar] [CrossRef]
- Suzuki, K.; Aimi, T.; Ishihara, T.; Mizushima, T. Identification of approved drugs that inhibit the binding of amyloid β oligomers to ephrin type-B receptor 2. FEBS Open Bio. 2016, 6, 461–468. [Google Scholar] [CrossRef]
- Wu, Y.; Cao, Y.; Wang, S.; Xu, X.; Wang, M. Cepharanthine promotes the effect of dexmedetomidine on the deposition of β-amyloid in the old age of the senile dementia rat model by regulating inflammasome expression. Folia Neuropathol. 2019, 57, 348–356. [Google Scholar] [CrossRef] [Green Version]
- Ma, L.; Yang, X.W. Absorption of papaverine, laudanosine and cepharanthine across human intestine by using human Caco-2 cells monolayers model. Yao Xue Xue Bao = Acta Pharm. Sin. 2008, 43, 202–207. [Google Scholar]
- Hao, G.; Liang, H.; Li, Y.; Li, H.; Gao, H.; Liu, G.; Liu, Z. Simple, sensitive and rapid HPLC-MS/MS method for the determination of cepharanthine in human plasma. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2010, 878, 2923–2927. [Google Scholar] [CrossRef]
- Gao, P.; Jiang, Z.; Luo, Q.; Mu, C.; Cui, M.; Yang, X. Preparation and Evaluation of Self-emulsifying Drug Delivery System (SEDDS) of Cepharanthine. AAPS PharmSciTech 2021, 22, 245. [Google Scholar] [CrossRef]
- Lu, C.; Zheng, J.; Ding, Y.; Meng, Y.; Tan, F.; Gong, W.; Chu, X.; Kong, X.; Gao, C. Cepharanthine loaded nanoparticles coated with macrophage membranes for lung inflammation therapy. Drug Deliv. 2021, 28, 2582–2593. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Chen, G.; Meng, Z.; Wu, Z.; Gan, H.; Zhu, X.; Han, P.; Liu, T.; Wang, F.; Gu, R.; et al. Bioavailability Enhancement of Cepharanthine via Pulmonary Administration in Rats and Its Therapeutic Potential for Pulmonary Fibrosis Associated with COVID-19 Infection. Molecules 2022, 27, 2745. [Google Scholar] [CrossRef] [PubMed]
- Kakehi, Y.; Yoshida, O.; Segawa, T.; Kanematsu, A.; Hiura, M.; Shichiri, Y.; Arai, Y. Intraarterial chemotherapy for metastatic renal cell carcinomas: Combination with MDR-overcoming agents. Hinyokika Kiyo. Acta Urol. Jpn. 1994, 40, 925–929. [Google Scholar]
- 2002ZD-1166; Cepharanthine Tablets. National Medical Products Administration: Beijing, China, 2002.
- Shahriyar, S.A.; Woo, S.M.; Seo, S.U.; Min, K.J.; Kwon, T.K. Cepharanthine Enhances TRAIL-Mediated Apoptosis Through STAMBPL1-Mediated Downregulation of Survivin Expression in Renal Carcinoma Cells. Int. J. Mol. Sci. 2018, 19, 3280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oyaizu, H.; Adachi, Y.; Yasumizu, R.; Ono, M.; Ikebukuro, K.; Fukuhara, S.; Ikehara, S. Protection of T cells from radiation-induced apoptosis by Cepharanthin. Int. Immunopharmacol. 2001, 1, 2091–2099. [Google Scholar] [CrossRef] [PubMed]
- Cierluk, K.; Szlasa, W.; Rossowska, J.; Tarek, M.; Szewczyk, A.; Saczko, J.; Kulbacka, J. Cepharanthine induces ROS stress in glioma and neuronal cells via modulation of VDAC permeability. Saudi. Pharm. J. 2020, 28, 1364–1373. [Google Scholar] [CrossRef]
- Wu, J.; Suzuki, H.; Akhand, A.A.; Zhou, Y.W.; Hossain, K.; Nakashima, I. Modes of activation of mitogen-activated protein kinases and their roles in cepharanthine-induced apoptosis in human leukemia cells. Cell. Signal. 2002, 14, 509–515. [Google Scholar] [CrossRef]
- Biswas, K.K.; Tancharoen, S.; Sarker, K.P.; Kawahara, K.; Hashiguchi, T.; Maruyama, I. Cepharanthine triggers apoptosis in a human hepatocellular carcinoma cell line (HuH-7) through the activation of JNK1/2 and the downregulation of Akt. FEBS Lett. 2006, 580, 703–710. [Google Scholar] [CrossRef] [Green Version]
- Luo, H.; Vong, C.T.; Chen, H.; Gao, Y.; Lyu, P.; Qiu, L.; Zhao, M.; Liu, Q.; Cheng, Z.; Zou, J.; et al. Naturally occurring anti-cancer compounds: Shining from Chinese herbal medicine. Chin. Med. 2019, 14, 48. [Google Scholar] [CrossRef] [Green Version]
- Nishiyama, M.; Aogi, K.; Saeki, S.; Hirabayashi, N.; Toge, T. Combination of a biscoclaurine alkaloid, cepharanthine, and anticancer agents: Effects and mechanism in human gastric and pancreatic carcinoma cell lines. Gan Kagaku Ryoho. Cancer Chemother. 1991, 18, 2429–2433. [Google Scholar]
- Edashige, K.; Utsumi, T.; Utsumi, K. Inhibition of 12-O-tetradecanoyl phorbol-13-acetate promoted tumorigenesis by cepharanthine, a biscoclaurine alkaloid, in relation to the inhibitory effect on protein kinase C. Biochem. Pharmacol. 1991, 41, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Aogi, K.; Nishiyama, M.; Kim, R.; Hirabayashi, N.; Toge, T.; Mizutani, A.; Okada, K.; Sumiyoshi, H.; Fujiwara, Y.; Yamakido, M.; et al. Overcoming CPT-11 resistance by using a biscoclaurine alkaloid, cepharanthine, to modulate plasma trans-membrane potential. Int. J. Cancer 1997, 72, 295–300. [Google Scholar] [CrossRef]
- Abe, T.; Koike, K.; Ohga, T.; Kubo, T.; Wada, M.; Kohno, K.; Mori, T.; Hidaka, K.; Kuwano, M. Chemosensitisation of spontaneous multidrug resistance by a 1,4-dihydropyridine analogue and verapamil in human glioma cell lines overexpressing MRP or MDR1. Br. J. Cancer 1995, 72, 418–423. [Google Scholar] [CrossRef] [Green Version]
- Kuroda, M.; Kawasaki, S.; Hiraki, Y. Cepharanthin reduces thermotolerance by enhancing thermosensitivity in NIH3T3 cells. Acta Med. Okayama 1992, 46, 147–155. [Google Scholar] [PubMed]
- Aono, K.; Shiraishi, N.; Arita, T.; Inouye, B.; Nakazawa, T.; Utsumi, K. Changes in mitochondrial function by lipid peroxidation and their inhibition by biscoclaurin alkaloid. Physiol. Chem. Phys. 1981, 13, 137–144. [Google Scholar] [PubMed]
- Kato, T.; Suzumura, Y. Potentiation of antitumor activity of vincristine by the biscoclaurine alkaloid cepharanthine. J. Natl. Cancer Inst. 1987, 79, 527–532. [Google Scholar]
- Sekiya, S.; Mogi, M.; Tanigawa, S.; Hayashi, H.; Uchiyama, T.; Okayasu, M. In vitro sensitivity test of anti-neoplastic agents and their enhancement by biscoclaurine alkaloid. Gan Kagaku Ryoho. Cancer Chemother. 1985, 12, 524–529. [Google Scholar]
- Ono, M. Effect of cepharanthine on antitumor activity of 1-(2-tetrahydrofuryl)-5-fluorouracil (FT-207)--5-fluorouracil delivery into tumor tissue. Nihon Gan Chiryo Gakkai Shi 1989, 24, 1379–1392. [Google Scholar]
- Kakehi, Y.; Hashimura, T.; Yoshida, O.; Segawa, T.; Kanematsu, A. Circumvention of the multidrug-resistance in renal cancer by bisbenzylisoquinoline. Hinyokika Kiyo. Acta Urol. Jpn. 1993, 39, 1227–1232. [Google Scholar]
- Hotta, T.; Tanimura, H.; Yamaue, H.; Iwahashi, M.; Tani, M.; Tsunoda, T.; Noguchi, K.; Mizobata, S.; Terasawa, H. Synergistic effects of tamoxifen and cepharanthine for circumventing the multidrug resistance. Cancer Lett. 1996, 107, 117–123. [Google Scholar] [CrossRef]
- Kitazono, M.; Okumura, H.; Ikeda, R.; Sumizawa, T.; Furukawa, T.; Nagayama, S.; Seto, K.; Aikou, T.; Akiyama, S. Reversal of LRP-associated drug resistance in colon carcinoma SW-620 cells. Int. J. Cancer 2001, 91, 126–131. [Google Scholar] [CrossRef]
- Malofeeva, E.V.; Domanitskaya, N.; Gudima, M.; Hopper-Borge, E.A. Modulation of the ATPase and transport activities of broad-acting multidrug resistance factor ABCC10 (MRP7). Cancer Res. 2012, 72, 6457–6467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Makidono, R.; Ouchida, T.; Makidono, A.; Jingu, K. Severe damage of CD4-2H4+ T subpopulation cells (naive T cells and suppressor/inducer) by radiation therapy, their recovery being promoted by a plant alkaloid. Nihon Igaku Hoshasen Gakkai Zasshi Nippon. Acta Radiol. 1992, 52, 223–228. [Google Scholar]
- Kitajima, H.; Anzai, K.; Kubo, M.; Hoshi, Y.; Akatsuka, J. Effective combination therapy by recombinant erythropoietin and cepharanthin in a girl with refractory anemia. [Rinsho Ketsueki] Jpn. J. Clin. Hematol. 1994, 35, 694–698. [Google Scholar]
- Kao, M.C.; Yang, C.H.; Chou, W.C.; Sheu, J.R.; Huang, C.J. Cepharanthine mitigates lung injury in lower limb ischemia-reperfusion. J. Surg. Res. 2015, 199, 647–656. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.K.; Huang, S.C.; Kao, M.C.; Huang, C.J. Cepharanthine alleviates liver injury in a rodent model of limb ischemia-reperfusion. Acta Anaesthesiol. Taiwanica Off. J. Taiwan Soc. Anesthesiol. 2016, 54, 11–15. [Google Scholar] [CrossRef] [PubMed]
- Kusaka, J.; Hagiwara, S.; Hasegawa, A.; Kudo, K.; Koga, H.; Noguchi, T. Cepharanthine improves renal ischemia-reperfusion injury in rats. J. Surg. Res. 2011, 171, 212–217. [Google Scholar] [CrossRef] [PubMed]
- Nomura, S.; Yanabu, M.; Miyake, T.; Miyazaki, Y.; Kawakatsu, T.; Kido, H.; Yamaguchi, K.; Fukuroi, T.; Kagawa, H.; Suzuki, M.; et al. Effect of cepharanthin and cytochalasin D on platelet internalization of anti-glycoprotein IIb/IIIa antibodies. Autoimmunity 1994, 18, 23–29. [Google Scholar] [CrossRef]
- Sato, T.; Kometani, M.; Fujii, T. Certain membrane-interacting amphiphiles inhibit aggregation and reverse shape change of rabbit platelets pre-activated with arachidonic acid through dissociation of cytoskeletal assembly. Thromb. Res. 1987, 46, 587–592. [Google Scholar] [CrossRef]
- Tsukada, K.; Ohhashi, M.; Isobe, T.; Masuko, K. Cases with familiar amyloid neuropathy starting of the upper limbs and having hepatic disorder. Jpn. J. Med. 1987, 26, 243–248. [Google Scholar] [CrossRef] [Green Version]
- Zheng, J.; Lu, C.; Yang, M.; Sun, J.; Zhang, J.; Meng, Y.; Wang, Y.; Li, Z.; Yang, Y.; Gong, W.; et al. Lung-Targeted Delivery of Cepharanthine by an Erythrocyte-Anchoring Strategy for the Treatment of Acute Lung Injury. Pharmaceutics 2022, 14, 1820. [Google Scholar] [CrossRef] [PubMed]
- Liang, D.; Li, Q.; Du, L.; Dou, G. Pharmacological Effects and Clinical Prospects of Cepharanthine. Molecules 2022, 27, 8933. [Google Scholar] [CrossRef] [PubMed]
Virus | Cell | Antiviral Effect |
---|---|---|
SARS-CoV-2 [100] | A549 | EC50 = 0.15 µM |
SARS-CoV-2 [20] | hACE2 mice | 10 mg/kg cepharanthine effectively improved lung injury and inflammation. |
GX_P2V [93] | Vero E6 | EC50 = 0.98 µM; CC50 = 39.30 µM; SI = 39.91 |
SARS-CoV-2 S pseudovirus (G614) [101] | 293T-ACE2 | EC50 = 0.351 µM |
Calu3 | EC50 = 0.759 µM | |
A549-ACE2 | EC50 = 0.911 µM | |
SARS-CoV-2 S pseudovirus (D614) [101] SARS-CoV-2 S pseudovirus (N501Y.V1) [101] SARS-CoV-2 S pseudovirus (N501Y.V2) [101] | 293T-ACE2 | EC50 = 0.0537 µM |
293T-ACE2 | EC50 = 0.047 µM | |
293T-ACE2 | EC50 = 0.140 µM | |
SARS-CoV S pseudovirus [101] | 293T | EC50 = 0.0417 µM |
MERS-CoV S pseudovirus [101] | 293T | EC50 = 0.140 µM |
SARS-CoV [99] | Vero E6 | EC50 = 6.0 μg/mL |
HCoV-OC43 [77] | MRC-5 | EC50 = 0.83µM |
PEDV [77] | Vero | EC50 = 2.53 µM |
Piglet | 11.1 mg/kg cepharanthine effectively reduced the PEDV load, attenuated histopathological changes, and reduced PEDV damage in piglets. | |
SADS-CoV [95] | Huh7 | EC50 = 0.79 µM |
HIV-1 [75] | / | EC50 = 0.026 µM |
EBOV Δ VP30-GFP [20] | / | EC50 = 0.42 μM |
ZIKV(MR766) [20] | / | EC50 = 2.19 μM |
HSV-1 [25] | / | EC50 = 0.835 μg/mL |
PRRSV [78] | Marc-145 | 10 μM cepharanthine reduced the TCID50 of PRRSV by 5.6 times. |
PCV2 [98] | PK-15 | Cepharanthine inhibited PCV2 infection in a dose-dependent manner, and 0.00075 mg/mL cepharanthine significantly reduced the virus expression. |
HTLV-1 [79] | / | Synergistic inhibition of HTLV-1 in combination cepharanthine with TMNAA. |
CV-B3 [99] | / | 1.25–6.25 μg/mL cepharanthine had a high CVB3 inhibitory activity. |
Cell Line | Test Concentration | Mechanism of Action |
---|---|---|
KHM-11 and 12PE cells [17] | 10 μM | Induce apoptosis by regulating ROS, Bax and caspase-3; Block the cell cycle by inducing CDK inhibitors and down-regulating CDK. |
Primary effusion lymphoma (PEL) derived cell lines (BCBL-, TY-1, and RM-P1) [12] | 10 μg/mL | Inhibit the activation of NF-κB; Induce the apoptosis of PEL cell line. |
Hep3B and HCCLM3 cells [13] | 20 μM | Induce apoptosis through the activation of caspase-9/3; Regulate amino acid metabolism. |
T98G and U87MG cells [123] | 15 µg/mL | / |
U251MG cells [123] | 15 µg/mL | Induce apoptosis via the caspase cascade. |
MDA-MB-231 and MCF-7 cells [42] | 4 μM | Impair autophagosome–lysosome fusion by mediation the downregulation of MYO1C. |
MCF-7 cells [81] | 10 μM | Induce autophagy and apoptosis by inhibiting the AKT/mTOR signaling pathway. |
MDA-MB-231 cells [81] | 7 μM | Induce autophagy and apoptosis by inhibiting the AKT/mTOR signaling pathway. |
Hela cells [124] | 10 μM | Enhance autophagic flux and autophagosome formation via the AMPK-TSC2-mTOR signaling pathway. |
NCI-H1975 cells [8] | 20 μM | Block autophagosome–lysosome fusion; Inhibit lysosomal cathepsin B and cathepsin D maturation. |
HSC2, HSC3, and HSC4 cells [118] | 10 μg/mL | Promote the mitotic death by radiation; Inhibit DNA double-strand break (DSB) repair after radiation. |
HSC3 cells [118] | 5 μg/mL | Promote the mitotic death by radiation; Inhibit DNA double-strand break (DSB) repair after radiation. |
Human adenosquamous cell carcinoma cell line (TYS) [119] | 10 μg/mL | Induce G1 arrest via expression of p21Waf1 and apoptosis through caspase 3. |
Human osteosarcoma cell line SaOS2 [9] | 3.18 μM | Inhibit the STAT3 signaling pathway. |
CaOV-3 cells [19] | 10 μM | Increase the expression of p21Waf1 protein; Decrease the expression of cyclins A and D proteins and trigger apoptotic cell death. |
OVCAR-3 cells [19] | 20 μM | Increase the expression of p21Waf1 protein; Decrease the expression of cyclins A and D proteins and trigger apoptotic cell death. |
Human umbilical vein endothelial cells (HUVECs) and Human dermal microvascular endothelial cells (HMVECs) [130] | 10 μg/mL | Enhance a sequential immune mechanism; Inhibit angiogenesis in tumors. |
B88 and HSC3 cells [80] | 2 μg/mL | Inhibit the expression of VEGF and IL-8 involved in the blockade of NF-κB activity. |
K562 cells [43] | 10 µM | Reverse P-gp mediate MDR; Inhibit the acidification of organelles. |
SaOS2-AR cells [140] | 5.5 μg/mL | Inhibit adriamycin (ADR) resistance on ADR-induced apoptosis and necrosis. |
NIH 3T3 cells [142] | 1 μg/mL | Improve the drug sensitivity of tumors resistant to adriamycin (ADR). |
P388 leukemia (P388/R) cells [143] | 3.5 μg/mL | Enhance the antitumor activity of doxorubicin (DOX). |
A549 and GR cells [148] | 3 μg/mL | Increase the sensitivity to gemcitabine in A549/GR cells by inhibiting the MRP7 expression. |
KKU-M213 and KKU-M214 cells [113] | 10 μg/mL | Inhibit the metastatic migration and invasion of human CCA cell lines; Inhibit the activation of NF-κB. |
Pharmacological Activity | Speculated Application | Potential Mechanisms |
---|---|---|
Antipathogenic activity | Antiviral therapy: SARS-CoV-2 [20,21,24,27,72,73,84,85,86,87,88,89,90], SARS-CoV [73,92], MERS-CoV [92], HCoV-OC43 [77], GX_P2V [21,93], PEDV [77], SADS-CoV [77], HIV-1 [26,74,75,76,96], HSV-1 [82,97], Ebola virus [20], Zika virus [20], PRRSV [78], PCV2 [78], HTLV-1 [78], CV-B3 [78]; Anti parasitic therapy: Plasmodium falciparum [28,31,33], Trypanosoma cruzi [103]; Antibacterial therapy: Methicillin- and gentamicin-resistant Staphylococcus aureus [36], Mycobacterium leprae [36]. | Inhibit the fusion of viral with the cell membrane [101], Stabilize plasma membrane fluidity [74], Inhibit the NPC1 protein [84,102], Reverse dysregulated endoplasmic reticulum stress/unfolded protein response and heat shock response [21], Inhibitory activities on NF-κB [74,75,76], Target the STING/TBK1/P62, the PI3K/Akt and p38 MAPK signaling pathways [25,82]. |
Antitumor activity | Treatment of Ehrlich’s ascites tumor [106], Primary exudative lymphoma [12], Hepatocellular carcinoma [13], Breast cancer [81], Human oral squamous carcinoma [80,118], Human adenosquamous cell carcinoma [119], Human osteosarcoma [9], Non-small cell lung cancer [8], Lewis lung cancer [157], Bilaterally transplanted solid tumors [166]. | Induce apoptosis [6,13,17,44,47,60,117,118,122,235,236,237,238,239], Inhibit autophagy [8,42,124], Cause cell cycle arrest [9,17,82,119], Inhibit angiogenesis [80,102,130,240], Disrupt plasma membrane function [147,241,242,243], Increase tumor cell sensitivity [8,43,118,135,152,153,154,155,160,244,245,246,247,248,249,250], Reverse multidrug resistance [9,43,140,150,243,244,251,252], Reduce damage from chemoradiotherapy [114,115,254]. |
Anti-inflammatory | Treatment of Mastitis [49], Otitis media [189], Injuries in the lung [185,186,256], Injuries in the liver and kidney [187,256,257], Diabetic nephropathy [188], Renal injury [258]. | Inhibit NF-κB activation, IκB-α degradation, ERK, p38, and JNK phosphorylation [48], Reduce proinflammatory cytokine levels [48], Reduce the overproduction of oxygen species [171]. |
Immunomodulation | Treatment of Chronic immune thrombocytopenia [200,202,205,206,207,208,259], Platelet aggregation [192,260] and Platelet activation [4,209], Autoimmune thyroid disease [22,52], Toxic diffuse goiter (Graves’ disease) [51], Other autoimmune diseases: Arthritis [40], Sjögren’s syndrome [214] Pemphigus vulgaris [69]. | Modulate signaling pathways of abnormally activated T cells [50], Inhibit NF-κB signaling pathway [7,167], Reduce proinflammatory cytokine levels [49,171], Scavenge free radicals and antioxidants [171,173]. |
Others | A potential anti-osteoporosis agent [39]; Treatment of late-onset neurodegenerative neuromuscular diseases [221], Venomous snake bites [55,56,57,58,59], Amyloidosis [224,225,227,261], Ameliorate sickle-cell anemia [192,222,223], Alzheimer’s disease [98,227]. | Inhibit bone resorption [39], Inhibit the release of cytokines [221], Inhibit endothelial hyperplasia [216,217], Bind to G-quadruplex nucleic acid structures [215]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, K.; Hong, B.; Wang, S.; Lou, F.; You, Y.; Hu, R.; Shafqat, A.; Fan, H.; Tong, Y. Pharmacological Activity of Cepharanthine. Molecules 2023, 28, 5019. https://doi.org/10.3390/molecules28135019
Liu K, Hong B, Wang S, Lou F, You Y, Hu R, Shafqat A, Fan H, Tong Y. Pharmacological Activity of Cepharanthine. Molecules. 2023; 28(13):5019. https://doi.org/10.3390/molecules28135019
Chicago/Turabian StyleLiu, Ke, Bixia Hong, Shuqi Wang, Fuxing Lou, Yecheng You, Ruolan Hu, Amna Shafqat, Huahao Fan, and Yigang Tong. 2023. "Pharmacological Activity of Cepharanthine" Molecules 28, no. 13: 5019. https://doi.org/10.3390/molecules28135019
APA StyleLiu, K., Hong, B., Wang, S., Lou, F., You, Y., Hu, R., Shafqat, A., Fan, H., & Tong, Y. (2023). Pharmacological Activity of Cepharanthine. Molecules, 28(13), 5019. https://doi.org/10.3390/molecules28135019