Cepharanthine Dry Powder Inhaler for the Treatment of Acute Lung Injury
Abstract
:1. Introduction
2. Results
2.1. Optimized Prescription of Cepharanthine Dry Powder Inhalers
2.2. Fine Particle Fractions and Powderological Investigation of CEP
2.3. A Cepharanthine Dry Powder Inhaler Has the Effect of Reducing ALI
2.4. Cepharanthine Dry Powder Inhaler Has the Effect of Reducing the Inflammatory Response
3. Discussion
4. Materials and Methods
4.1. Reagents and Materials
4.2. Establishment of a Rat Model of ALI and Drug Administration Protocol
4.3. The Content Determination
4.4. Preparation of Cepharanthine Powder Aerosol
4.5. Investigation of the Powderological Properties
4.5.1. Bulk Density and Aerodynamic Particle Size
4.5.2. Scanning Electron Microscopy to Examine the Appearance of Cepharanthine Powder Aerosol
4.5.3. Measurement of the Lung Deposition Rate
4.6. Pharmacodynamic Evaluation
4.6.1. Establishment of a Rat Model of ALI and the Administration Protocol
4.6.2. Lung Appearance and Histopathological Examination
4.6.3. ELISA
4.6.4. Measurement of BCA Content
4.7. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xiao, K.; He, W.; Guan, W.; Hou, F.; Yan, P.; Xu, J.; Zhou, T.; Liu, Y.; Xie, L. Mesenchymal Stem Cells Reverse EMT Process through Blocking the Activation of NF-ΚB and Hedgehog Pathways in LPS-Induced Acute Lung Injury. Cell Death Dis. 2020, 11, 863. [Google Scholar] [CrossRef] [PubMed]
- Wheeler, A.P.; Bernard, G.R. Acute Lung Injury and the Acute Respiratory Distress Syndrome: A Clinical Review. Lancet 2007, 369, 1553–1564. [Google Scholar] [CrossRef]
- Reiss, L.K.; Uhlig, U.; Uhlig, S. Models and Mechanisms of Acute Lung Injury Caused by Direct Insults. Eur. J. Cell Biol. 2012, 91, 590–601. [Google Scholar] [CrossRef]
- Mokrá, D. Acute Lung Injury—from Pathophysiology to Treatment. Physiol. Res. 2020, 69, S353–S366. [Google Scholar] [CrossRef]
- Herridge, M.S.; Moss, M.; Hough, C.L.; Hopkins, R.O.; Rice, T.W.; Bienvenu, O.J.; Azoulay, E. Recovery and Outcomes after the Acute Respiratory Distress Syndrome (ARDS) in Patients and Their Family Caregivers. Intensive Care Med. 2016, 42, 725–738. [Google Scholar] [CrossRef] [PubMed]
- Zu, Z.Y.; Jiang, M.D.; Xu, P.P.; Chen, W.; Ni, Q.Q.; Lu, G.M.; Zhang, L.J. Coronavirus Disease 2019 (COVID-19): A Perspective from China. Radiology 2020, 296, E15–E25. [Google Scholar] [CrossRef]
- Tuinman, P.R.; Dixon, B.; Levi, M.; Juffermans, N.P.; Schultz, M.J. Nebulized Anticoagulants for Acute Lung Injury—A Systematic Review of Preclinical and Clinical Investigations. Crit. Care 2012, 16, R70. [Google Scholar] [CrossRef]
- Quon, B.S.; Goss, C.H.; Ramsey, B.W. Inhaled Antibiotics for Lower Airway Infections. Ann. Am. Thorac. Soc. 2014, 11, 425–434. [Google Scholar] [CrossRef]
- Hijikata, A.; Shionyu-Mitsuyama, C.; Nakae, S.; Shionyu, M.; Ota, M.; Kanaya, S.; Hirokawa, T.; Nakajima, S.; Watashi, K.; Shirai, T. Evaluating Cepharanthine Analogues as Natural Drugs against SARS-CoV-2. FEBS Open Bio 2022, 12, 285–294. [Google Scholar] [CrossRef]
- Rogosnitzky, M.; Okediji, P.; Koman, I. Cepharanthine: A Review of the Antiviral Potential of a Japanese-Approved Alopecia Drug in COVID-19—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/32700247/ (accessed on 3 March 2023).
- Bailly, C. Cepharanthine: An Update of Its Mode of Action, Pharmacological Properties and Medical Applications. Phytomedicine 2019, 62, 152956. [Google Scholar] [CrossRef]
- Rogosnitzky, M.; Danks, R. Therapeutic Potential of the Biscoclaurine Alkaloid, Cepharanthine, for a Range of Clinical Conditions. Pharm. Rep. 2011, 63, 337–347. [Google Scholar] [CrossRef]
- Yasuda, K.; Moro, M.; Akasu, M.; Ohnishi, A. Pharmacokinetics of Cepharanthin in phase I clinical trials (single and continuous intravenous administration). Clin. Pharmacol. 1989, 20, 741–749. [Google Scholar] [CrossRef]
- Gao, S.; Zhou, L.; Lu, J.; Fang, Y.; Wu, H.; Xu, W.; Pan, Y.; Wang, J.; Wang, X.; Zhang, J.; et al. Cepharanthine Attenuates Early Brain Injury after Subarachnoid Hemorrhage in Mice via Inhibiting 15-Lipoxygenase-1-Mediated Microglia and Endothelial Cell Ferroptosis. Oxid. Med. Cell Longev. 2022, 2022, 4295208. [Google Scholar] [CrossRef] [PubMed]
- Paudel, K.R.; Karki, R.; Kim, D.-W. Cepharanthine Inhibits in Vitro VSMC Proliferation and Migration and Vascular Inflammatory Responses Mediated by RAW264.7. Toxicol. Vitr. 2016, 34, 16–25. [Google Scholar] [CrossRef] [PubMed]
- Fan, H.-H.; Wang, L.-Q.; Liu, W.-L.; An, X.-P.; Liu, Z.-D.; He, X.-Q.; Song, L.-H.; Tong, Y.-G. Repurposing of Clinically Approved Drugs for Treatment of Coronavirus Disease 2019 in a 2019-Novel Coronavirus-Related Coronavirus Model. Chin. Med. J. 2020, 133, 1051–1056. [Google Scholar] [CrossRef]
- Deng, Y.; Wu, W.; Ye, S.; Wang, W.; Wang, Z. Determination of Cepharanthine in Rat Plasma by LC-MS/MS and Its Application to a Pharmacokinetic Study. Pharm. Biol. 2017, 55, 1775–1779. [Google Scholar] [CrossRef]
- Zhang, Y.; Lu, P.; Qin, H.; Zhang, Y.; Sun, X.; Song, X.; Liu, J.; Peng, H.; Liu, Y.; Nwafor, E.O.; et al. Traditional Chinese Medicine Combined with Pulmonary Drug Delivery System and Idiopathic Pulmonary Fibrosis: Rationale and Therapeutic Potential. Biomed. Pharm. 2021, 133, 111072. [Google Scholar] [CrossRef]
- Mansour, H.M.; Rhee, Y.-S.; Wu, X. Nanomedicine in Pulmonary Delivery. Int. J. Nanomed. 2009, 4, 299–319. [Google Scholar] [CrossRef]
- Bodier-Montagutelli, E.; Mayor, A.; Vecellio, L.; Respaud, R.; Heuzé-Vourc’h, N. Designing Inhaled Protein Therapeutics for Topical Lung Delivery: What Are the next Steps? Expert Opin. Drug Deliv. 2018, 15, 729–736. [Google Scholar] [CrossRef]
- Wan, F.; Møller, E.H.; Yang, M.; Jørgensen, L. Formulation Technologies to Overcome Unfavorable Properties of Peptides and Proteins for Pulmonary Delivery. Drug Discov. Today Technol. 2012, 9, e71–e174. [Google Scholar] [CrossRef]
- Patil, J.S.; Sarasija, S. Pulmonary Drug Delivery Strategies: A Concise, Systematic Review. Lung India 2012, 29, 44–49. [Google Scholar] [CrossRef]
- Xiroudaki, S.; Schoubben, A.; Giovagnoli, S.; Rekkas, D.M. Dry Powder Inhalers in the Digitalization Era: Current Status and Future Perspectives. Pharmaceutics 2021, 13, 1455. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.; Ma, Y.; Zhu, J. The Future of Dry Powder Inhaled Therapy: Promising or Discouraging for Systemic Disorders? Int. J. Pharm. 2022, 614, 121457. [Google Scholar] [CrossRef]
- Almurshedi, A.S.; Aljunaidel, H.A.; Alquadeib, B.; Aldosari, B.N.; Alfagih, I.M.; Almarshidy, S.S.; Eltahir, E.K.D.; Mohamoud, A.Z. Development of Inhalable Nanostructured Lipid Carriers for Ciprofloxacin for Noncystic Fibrosis Bronchiectasis Treatment. Int. J. Nanomed. 2021, 16, 2405–2417. [Google Scholar] [CrossRef] [PubMed]
- Azoulay, É.; Canet, E.; Raffoux, E.; Lengliné, E.; Lemiale, V.; Vincent, F.; de Labarthe, A.; Seguin, A.; Boissel, N.; Dombret, H.; et al. Dexamethasone in Patients with Acute Lung Injury from Acute Monocytic Leukaemia. Eur. Respir. J. 2012, 39, 648–653. [Google Scholar] [CrossRef] [PubMed]
- Nader, N.D.; Knight, P.R.; Bobela, I.; Davidson, B.A.; Johnson, K.J.; Morin, F. High-Dose Nitric Oxide Inhalation Increases Lung Injury after Gastric Aspiration. Anesthesiology 1999, 91, 741–749. [Google Scholar] [CrossRef] [PubMed]
- Malaviya, R.; Laskin, J.D.; Laskin, D.L. Anti-TNFα Therapy in Inflammatory Lung Diseases. Pharmacol. Ther. 2017, 180, 90–98. [Google Scholar] [CrossRef] [PubMed]
- Fujishima, S. Pathophysiology and Biomarkers of Acute Respiratory Distress Syndrome. J. Intensive Care 2014, 2, 32. [Google Scholar] [CrossRef]
- Anticevich, S.Z.; Hughes, J.M.; Black, J.L.; Armour, C.L. Induction of Human Airway Hyperresponsiveness by Tumour Necrosis Factor-Alpha. Eur. J. Pharm. 1995, 284, 221–225. [Google Scholar] [CrossRef]
- Choi, I.-W.; Sun-Kim; Kim, Y.-S.; Ko, H.-M.; Im, S.-Y.; Kim, J.-H.; You, H.-J.; Lee, Y.-C.; Lee, J.-H.; Park, Y.-M.; et al. TNF-Alpha Induces the Late-Phase Airway Hyperresponsiveness and Airway Inflammation through Cytosolic Phospholipase A(2) Activation. J. Allergy Clin. Immunol. 2005, 116, 537–543. [Google Scholar] [CrossRef]
- Herfs, M.; Hubert, P.; Poirrier, A.-L.; Vandevenne, P.; Renoux, V.; Habraken, Y.; Cataldo, D.; Boniver, J.; Delvenne, P. Proinflammatory Cytokines Induce Bronchial Hyperplasia and Squamous Metaplasia in Smokers: Implications for Chronic Obstructive Pulmonary Disease Therapy. Am. J. Respir. Cell Mol. Biol. 2012, 47, 67–79. [Google Scholar] [CrossRef] [PubMed]
- Hughes, J.M.; Stringer, R.S.; Black, J.L.; Armour, C.L. The Effects of Tumour Necrosis Factor Alpha on Mediator Release from Human Lung. Pulm. Pharm. 1995, 8, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.; Church, M.K.; Holgate, S.T. Tumour Necrosis Factor Alpha: A Potential Mediator of Asthma. Clin. Exp. Allergy 1995, 25, 1038–1044. [Google Scholar] [CrossRef] [PubMed]
- Chen, N.; Zhou, M.; Dong, X.; Qu, J.; Gong, F.; Han, Y.; Qiu, Y.; Wang, J.; Liu, Y.; Wei, Y.; et al. Epidemiological and Clinical Characteristics of 99 Cases of 2019 Novel Coronavirus Pneumonia in Wuhan, China: A Descriptive Study. Lancet 2020, 395, 507–513. [Google Scholar] [CrossRef] [PubMed]
- Cabrera-Benitez, N.E.; Laffey, J.G.; Parotto, M.; Spieth, P.M.; Villar, J.; Zhang, H.; Slutsky, A.S. Mechanical Ventilation–Associated Lung Fibrosis in Acute Respiratory Distress Syndrome A Significant Contributor to Poor Outcome. Anesthesiology 2014, 121, 189–198. [Google Scholar] [CrossRef]
- Liu, C.; Xiao, K.; Xie, L. Advances in the Use of Exosomes for the Treatment of ALI/ARDS. Front. Immunol. 2022, 13, 971189. [Google Scholar] [CrossRef]
- Boyle, A.J.; Sweeney, R.M.; McAuley, D.F. Pharmacological Treatments in ARDS; a State-of-the-Art Update. BMC Med. 2013, 11, 166. [Google Scholar] [CrossRef]
- Calfee, C.S.; Delucchi, K.L.; Sinha, P.; Matthay, M.A.; Hackett, J.; Shankar-Hari, M.; McDowell, C.; Laffey, J.G.; O’Kane, C.M.; McAuley, D.F.; et al. Acute Respiratory Distress Syndrome Subphenotypes and Differential Response to Simvastatin: Secondary Analysis of a Randomised Controlled Trial. Lancet Respir. Med. 2018, 6, 691–698. [Google Scholar] [CrossRef]
- Kao, M.C.; Yang, C.H.; Chou, W.C.; Sheu, J.R.; Huang, C.J. Cepharanthine Mitigates Lung Injury in Lower Limb Ischemia–Reperfusion. J. Surg. Res. 2015, 199, 647–656. [Google Scholar] [CrossRef]
- Zheng, J.; Lu, C.; Yang, M.; Sun, J.; Zhang, J.; Meng, Y.; Wang, Y.; Li, Z.; Yang, Y.; Gong, W.; et al. Lung-Targeted Delivery of Cepharanthine by an Erythrocyte-Anchoring Strategy for the Treatment of Acute Lung Injury. Pharmaceutics 2022, 14, 1820. [Google Scholar] [CrossRef]
- Huang, H.; Hu, G.; Wang, C.; Xu, H.; Chen, X.; Qian, A. Cepharanthine, an Alkaloid from Stephania Cepharantha Hayata, Inhibits the Inflammatory Response in the RAW264.7 Cell and Mouse Models. Inflammation 2014, 37, 235–246. [Google Scholar] [CrossRef] [PubMed]
- Man, K.N.M.; Tian, Z.; Lam, D.C.-L.; Wan, J.M.F.; Tan-Un, K.C. Satisfaction, Preference and Error Occurrence of Three Dry Powder Inhalers as Assessed by a Cohort Naïve to Inhaler Operation. Int. J. Chron. Obs. Pulmon Dis. 2018, 13, 1949–1963. [Google Scholar] [CrossRef]
- Li, J.; Chen, G.; Meng, Z.; Wu, Z.; Gan, H.; Zhu, X.; Han, P.; Liu, T.; Wang, F.; Gu, R.; et al. Bioavailability Enhancement of Cepharanthine via Pulmonary Administration in Rats and Its Therapeutic Potential for Pulmonary Fibrosis Associated with COVID-19 Infection. Molecules 2022, 27, 2745. [Google Scholar] [CrossRef] [PubMed]
- Izutsu, K.-I. Applications of Freezing and Freeze-Drying in Pharmaceutical Formulations. Adv. Exp. Med. Biol. 2018, 1081, 371–383. [Google Scholar] [CrossRef] [PubMed]
- Newman, S.P. Fine Particle Fraction: The Good and the Bad. J. Aerosol Med. Pulm. Drug Deliv. 2022, 35, 2–10. [Google Scholar] [CrossRef]
- Gan, C.; Wang, Y.; Xiang, Z.; Liu, H.; Tan, Z.; Xie, Y.; Yao, Y.; Ouyang, L.; Gong, C.; Ye, T. Niclosamide-Loaded Nanoparticles (Ncl-NPs) Reverse Pulmonary Fibrosis in Vivo and in Vitro. J. Adv. Res. 2022, in press. [Google Scholar] [CrossRef]
Prescription Components | Mass Ratio |
---|---|
Cepharanthine | / |
Cepharanthine/Lactose | 1:1, 1:2, 1:3, 1:5 |
Cepharanthine/Mannitol | 1:1, 1:2, 1:3, 1:5 |
Scanning Mode | 0.4~87.5 μm | 4~875 μm |
---|---|---|
Cepharanthine | 6.27 ± 0.32 | 7.56 ± 0.37 |
Cepharanthine/Mannitol = 1:1 | 7.29 ± 0.58 | 9.02 ± 0.67 |
Cepharanthine/Mannitol = 1:2 | 10.48 ± 1.06 | 11.19 ± 0.82 |
Cepharanthine/Mannitol = 1:3 | / | 7.31 ± 0.72 |
Cepharanthine/Mannitol = 1:5 | / | 13.02 ± 0.49 |
Parameters | Results |
---|---|
Bulk density (g/cm3) | 0.142 ± 0.036 |
Tap density (g/cm3) | 0.237 ± 0.066 |
Geometric diameter (μm) | 6.27 ± 0.32 |
MMAD (μm) | 3.202 ± 0.092 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, D.; Wang, W.; Chen, G.; Li, J.; Dou, G.; Gan, H.; Han, P.; Du, L.; Gu, R. Cepharanthine Dry Powder Inhaler for the Treatment of Acute Lung Injury. Molecules 2023, 28, 4441. https://doi.org/10.3390/molecules28114441
Liang D, Wang W, Chen G, Li J, Dou G, Gan H, Han P, Du L, Gu R. Cepharanthine Dry Powder Inhaler for the Treatment of Acute Lung Injury. Molecules. 2023; 28(11):4441. https://doi.org/10.3390/molecules28114441
Chicago/Turabian StyleLiang, Di, Wanmei Wang, Guangrui Chen, Jian Li, Guifang Dou, Hui Gan, Peng Han, Lina Du, and Ruolan Gu. 2023. "Cepharanthine Dry Powder Inhaler for the Treatment of Acute Lung Injury" Molecules 28, no. 11: 4441. https://doi.org/10.3390/molecules28114441
APA StyleLiang, D., Wang, W., Chen, G., Li, J., Dou, G., Gan, H., Han, P., Du, L., & Gu, R. (2023). Cepharanthine Dry Powder Inhaler for the Treatment of Acute Lung Injury. Molecules, 28(11), 4441. https://doi.org/10.3390/molecules28114441