Catalytic Acceptorless Dehydrogenation (CAD) of Secondary Benzylic Alcohols into Value-Added Ketones Using Pd(II)–NHC Complexes
Abstract
:1. Introduction
2. Results and Discussion
Catalytic Acceptorless Alcohol Dehydrogenation (CAAD) Using Pd(II)–NHC Catalysts (A–F)
3. Experimental Section
3.1. General Considerations
3.2. General Procedure for the Synthesis of NHC-Pd-I2(pyridine) (PEPPSI) Complexes (A−C)
3.3. General Procedure for the Synthesis of Pd–bis-NHC (Cl2) Complexes (D−F)
3.4. General Procedure for the Preparation of Various Secondary Alcohols from Their Corresponding Ketones
3.5. General Procedure (A) for Catalytic Acceptorless Dehydrogenation (CAD) of Secondary Alcohols into Their Corresponding Value-Added Ketones
3.6. Characterization of All Compounds
3.6.1. Synthesis of Acetophenone (2a)
3.6.2. Synthesis of 1-p-Tolylethanone (2b)
3.6.3. Synthesis of 1-(3-Methoxyphenyl)ethanone (2c)
3.6.4. Synthesis of 1-(4-Methoxyphenyl)ethanone (2d)
3.6.5. Synthesis of 1-(4-Aminophenyl)ethanone (2e)
3.6.6. Synthesis of 1-(4-Fluorophenyl)ethanone (2f)
3.6.7. Synthesis of 1-(3-Chlorophenyl)ethanone (2g)
3.6.8. Synthesis of 1-(4-Chlorophenyl)ethanone (2h)
3.6.9. Synthesis of 1-(2-Bromophenyl)ethanone (2i)
3.6.10. Synthesis of 1-(4-Bromophenyl)ethanone (2j)
3.6.11. Synthesis of 1-(2-Nitrophenyl)ethanone (2k)
3.6.12. Synthesis of 1-(Naphthalen-1-yl)ethanone (2l)
3.6.13. Synthesis of 1-(Naphthalen-2-yl)ethanone (2m)
3.6.14. Synthesis of 1-(Pyridin-2-yl)ethanone (4a)
3.6.15. Synthesis of 1-(Pyridin-3-yl)ethanone (4b)
3.6.16. Synthesis of 1-(Thiophen-2-yl)ethanone (4c)
3.6.17. Synthesis of Cyclopentanone (4e)
3.6.18. Synthesis of Cyclohexanone (4f)
3.6.19. Synthesis of Cycloheptanone (4g)
3.7. Mercury Drop Experiment Performed at Varying Time Intervals
3.7.1. Mercury Addition at the Start of the Reaction
3.7.2. Mercury Addition after 2 h of Reaction Time
3.8. Experimental Procedure for Detection of H2 Gas by GC
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lombardo, M.; Trombini, C. α-Hydroxyallylation Reaction of Carbonyl Compounds. Chem. Rev. 2007, 107, 3843–3879. [Google Scholar] [CrossRef]
- Krief, A.; Laval, A.-M. Coupling of Organic Halides with Carbonyl Compounds Promoted by SmI2, the Kagan Reagent. Chem. Rev. 1999, 99, 745–778. [Google Scholar] [CrossRef]
- Kahn, B.E.; Rieke, R.D. Carbonyl coupling reactions using transition metals, lanthanides, and actinides. Chem. Rev. 1988, 88, 733–745. [Google Scholar] [CrossRef]
- Stevens, R.V.; Chapman, K.T.; Weller, H.N. Convenient and inexpensive procedure for oxidation of secondary alcohols to ketones. J. Org. Chem. 1980, 45, 2030–2032. [Google Scholar] [CrossRef]
- Fatiadi, A.J. The Classical Permanganate Ion: Still a Novel Oxidant in Organic Chemistry. Synthesis 1987, 2, 85–127. [Google Scholar] [CrossRef]
- Lee, D.G.; Ribagorda, M.; Adrio, J. “Potassium Permanganate” Encyclopedia of Reagents for Organic Synthesis; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2001. [Google Scholar]
- Highet, R.J.; Wildman, W.C. Solid Manganese Dioxide as an Oxidizing Agent. J. Am. Chem. Soc. 1955, 77, 4399–4401. [Google Scholar] [CrossRef]
- Dess, D.B.; Martin, J.C. Readily accessible 12-I-5 oxidant for the conversion of primary and secondary alcohols to aldehydes and ketones. J. Org. Chem. 1983, 48, 4155–4156. [Google Scholar] [CrossRef]
- Omura, K.; Swern, D. Oxidation of alcohols by “activated” dimethyl sulfoxide: A preparative, steric and mechanistic study. Tetrahedron 1978, 34, 1651–1660. [Google Scholar] [CrossRef]
- Sigman, M.S.; Jensen, D.R. Ligand-modulated palladium-catalyzed aerobic alcohol oxidations. Acc. Chem. Res. 2006, 39, 221–229. [Google Scholar] [CrossRef]
- Sheldon, R.A.; Arends, I.W.C.E.; Ten Brink, G.-J.; Dijksman, A. Green, catalytic oxidations of alcohols. Acc. Chem. Res. 2002, 35, 774–781. [Google Scholar] [CrossRef]
- Csjernyik, G.; Éll, A.H.; Fadini, L.; Pugin, B.; Bäckvall, J.-E. Efficient ruthenium-catalyzed aerobic oxidation of alcohols using a biomimetic coupled catalytic system. J. Org. Chem. 2002, 67, 1657–1662. [Google Scholar] [CrossRef]
- Lee, D.G.; Spitzer, U.A. Aqueous dichromate oxidation of primary alcohols. J. Org. Chem. 1970, 35, 3589–3590. [Google Scholar] [CrossRef]
- Holum, J.R.J. Study of the Chromium(VI) Oxide-Pyridine Complex. Org. Chem. 1961, 26, 4814–4816. [Google Scholar] [CrossRef]
- Join, B.; Möller, K.; Ziebart, C.; Schröder, K.; Gördes, D.; Thurow, K.; Spannenberg, A.; Junge, K.; Beller, M. Selective Iron-Catalyzed Oxidation of Benzylic and Allylic Alcohols. Adv. Synth. Catal. 2011, 353, 3023–3030. [Google Scholar] [CrossRef]
- Noyori, R.; Aoki, M.; Sato, K. Green oxidation with aqueous hydrogen peroxide. Chem. Commun. 2003, 1977–1986. [Google Scholar] [CrossRef]
- Turner, J.A. Sustainable Hydrogen Production. Science 2004, 305, 972–974. [Google Scholar] [CrossRef]
- Maeda, K.; Domen, K. Development of Novel Photocatalyst and Cocatalyst Materials for Water Splitting under Visible Light. Bull. Chem. Soc. Jpn. 2016, 89, 627–648. [Google Scholar] [CrossRef]
- Yamada, Y.M.A.; Arakawa, T.; Hocke, H.; Uozumi, Y. A Nanoplatinum Catalyst for Aerobic Oxidation of Alcohols in Water. Angew. Chem. Int. Ed. 2007, 46, 704–706. [Google Scholar] [CrossRef]
- Zeng, G.; Sakaki, S.; Fujita, K.-I.; Sano, H.; Yamaguchi, R. Efficient Catalyst for Acceptorless Alcohol Dehydrogenation: Interplay of Theoretical and Experimental Studies. ACS Catal. 2014, 4, 1010–1020. [Google Scholar] [CrossRef]
- Junge, H.; Loges, B.; Beller, M. Novel improved ruthenium catalysts for the generation of hydrogen from alcohols. Chem. Commun. 2007, 522–524. [Google Scholar] [CrossRef]
- Zweifel, T.; Naubron, J.V.; Grützmacher, H. Catalyzed dehydrogenative coupling of primary alcohols with water, methanol, or amines. Angew. Chem. Int. Ed. 2009, 48, 559–563. [Google Scholar] [CrossRef]
- Charman, H.B. Hydride Transfer Reactions catalysed by Metal Complexes. Nature 1966, 212, 278–279. [Google Scholar] [CrossRef]
- Zhang, Y.; Lim, C.-S.; Sim, D.S.B.; Pan, H.-J.; Zhao, Y. Catalytic Enantioselective Amination of Alcohols by the Use of Borrowing Hydrogen Methodology: Cooperative Catalysis by Iridium and a Chiral Phosphoric Acid. Angew. Chem. Int. Ed. 2014, 53, 1399–1403. [Google Scholar] [CrossRef]
- Fujita, K.-I.; Yoshida, T.; Imori, Y.; Yamaguchi, R. Dehydrogenative Oxidation of Primary and Secondary Alcohols Catalyzed by a Cp*Ir Complex Having a Functional C,N-Chelate Ligand. Org. Lett. 2011, 13, 2278–2281. [Google Scholar] [CrossRef]
- Royer, A.M.; Rauchfuss, T.B.; Gray, D.L. Organoiridium Pyridonates and Their Role in the Dehydrogenation of Alcohols. Organometallics 2010, 29, 6763–6768. [Google Scholar] [CrossRef]
- Fujita, K.-I.; Tanino, N.; Yamaguchi, R. Ligand-Promoted Dehydrogenation of Alcohols Catalyzed by Cp*Ir Complexes A New Catalytic System for Oxidant-Free Oxidation of Alcohols. Org. Lett. 2007, 9, 109–111. [Google Scholar] [CrossRef]
- Mena, I.; Casado, M.A.; Polo, V.; Garcia-Orduña, P.; Lahoz, F.J.; Oro, L.A. The Dehydrogenation of Alcohols through a Concerted Bimetallic Mechanism Involving an Amido-Bridged Diiridium Complex. Angew. Chem. Int. Ed. 2012, 51, 8259–8263. [Google Scholar] [CrossRef] [Green Version]
- Bertoli, M.; Choualeb, A.; Lough, A.J.; Moore, B.; Spasyuk, D.; Gusev, D.G. Osmium and Ruthenium Catalysts for Dehydrogenation of Alcohols. Organometallics 2011, 30, 3479–3482. [Google Scholar] [CrossRef]
- Tsunoyama, H.; Ichikuni, N.; Sakurai, H.; Tsukuda, T. Effect of Electronic Structures of Au Clusters Stabilized by Poly(N-vinyl-2-pyrrolidone) on Aerobic Oxidation Catalysis. J. Am. Chem. Soc. 2009, 131, 7086–7093. [Google Scholar] [CrossRef]
- Mitsudome, T.; Mikami, Y.; Funai, H.; Mizugaki, T.; Jitsukawa, K.; Kaneda, K. Oxidant-Free Alcohol Dehydrogenation Using a Reusable Hydrotalcite-Supported Silver Nanoparticle Catalyst. Angew. Chem. Int. Ed. 2008, 47, 138–141. [Google Scholar] [CrossRef]
- Waiba, S.; Barman, M.K.; Maji, B. Manganese-Catalyzed Acceptorless Dehydrogenative Coupling of Alcohols With Sulfones: A Tool To Access Highly Substituted Vinyl Sulfones. J. Org. Chem. 2019, 84, 973–982. [Google Scholar] [CrossRef]
- Zhihui, S.; Yujie, W.; Yaqian, L.; Qian, W.; Xiaoling, F.; Qiang, L. A general and efficient Mn-catalyzed acceptorless dehydrogenative coupling of alcohols with hydroxides into carboxylates. Org. Chem. Front. 2018, 5, 1248–1256. [Google Scholar]
- Nad, P.; Mukherjee, A. Acceptorless Dehydrogenative Coupling Reactions by Manganese Pincer Complexes. Asian J. Org. Chem. 2021, 10, 1958–1985. [Google Scholar] [CrossRef]
- Song, H.; Kang, B.; Hong, S.H. Fe-Catalyzed Acceptorless Dehydrogenation of Secondary Benzylic Alcohols. ACS Catal. 2014, 4, 2889–2895. [Google Scholar] [CrossRef]
- Chakraborty, S.; Brennessel, W.W.; Jones, W.D. A Molecular Iron Catalyst for the Acceptorless Dehydrogenation and Hydrogenation of N-Heterocycles. J. Am. Chem. Soc. 2014, 136, 8564–8567. [Google Scholar] [CrossRef]
- Alberico, E.; Sponholz, P.; Cordes, C.; Nielsen, M.; Drexler, H.-J.; Baumann, W.; Junge, H.; Beller, M. Selective Hydrogen Production from Methanol with a Defined Iron Pincer Catalyst under Mild Conditions. Angew. Chem. Int. Ed. 2013, 52, 14162–14166. [Google Scholar] [CrossRef]
- Zhang, G.; Hanson, S.K. Switchable Cobalt-Catalyzed α-Olefination and α-Alkylation of Nitriles with Primary Alcohols. Org. Lett. 2013, 15, 650–653. [Google Scholar] [CrossRef]
- Shimizu, K.-I.; Kon, K.; Seto, M.; Shimura, K.; Yamazaki, H.; Kondo, J.N. Heterogeneous cobalt catalysts for the acceptorless dehydrogenation of alcohols. Green Chem. 2013, 15, 418–424. [Google Scholar] [CrossRef]
- Chakraborty, S.; Piszel, P.E.; Brennessel, W.W.; Jones, W.D. A Single Nickel Catalyst for the Acceptorless Dehydrogenation of Alcohols and Hydrogenation of Carbonyl Compounds. Organometallics 2015, 34, 5203–5206. [Google Scholar] [CrossRef]
- Bertrand, G.; Diez-Barra, E.; Fernandez-Baeza, J.; Gornitzka, H.; Moreno, A.; Otero, A.; Rodriguez-Curiel, R.I.; Tejeda, J. Synthesis, Characterization and Dynamic Behavior of Mono- and Dinuclear Palladium(II) Carbene Complexes Derived From 1,1′-Methylenebis(4-alkyl-1,2,4-triazolium) Diiodides. Eur. J. Inorg. Chem. 1999, 1999, 1965–1971. [Google Scholar] [CrossRef]
- Seitz, S.C.; Rominger, F.; Straub, B.F. Stepwise Deprotonation of a Thiol-Functionalized Bis(1,2,4-triazolium) Salt as a Selective Route to Heterometallic NHC Complexes. Organometallics 2013, 32, 2427–2434. [Google Scholar] [CrossRef]
- Rogers, H.; Daniel, I.T.; Freakley, S.J. Acceptorless dehydrogenation of 1-phenylethanol using Pd/TiO2 catalysts prepared by sol immobilization. Catal. Commun. 2022, 162, 106377. [Google Scholar] [CrossRef]
- Nicolau, G.; Tarantino, G.; Hammond, C. Acceptorless Alcohol Dehydrogenation Catalysed by Pd/C. ChemSusChem. 2019, 12, 4953–4961. [Google Scholar] [CrossRef]
- Hohloch, S.; Frey, W.; Su, C.-Y.; Sarkar, B. Abnormal carbenes derived from the 1,5-cycloaddition product between azides and alkynes: Structural characterization of Pd(ii) complexes and their catalytic properties. Dalton Trans. 2013, 42, 11355–11358. [Google Scholar] [CrossRef] [Green Version]
- Canseco-Gonzalez, D.; Gniewek, A.; Szulmanowicz, M.; Müeller-Bunz, H.; Trzeciak, A.M.; Albrecht, M. PEPPSI-Type Palladium Complexes Containing Basic 1,2,3-Triazolylidene Ligands and Their Role in Suzuki–Miyaura Catalysis. Chem. Eur. J. 2012, 18, 6055–6062. [Google Scholar] [CrossRef] [Green Version]
- Saravanakumar, R.; Ramkumar, V.; Sankararaman, S. Synthesis and Structure of 1,4-Diphenyl-3-methyl-1,2,3-triazol-5-ylidene Palladium Complexes and Application in Catalytic Hydroarylation of Alkynes. Organometallics 2011, 30, 1689–1694. [Google Scholar] [CrossRef]
- Nakamura, T.; Ogata, K.; Fukuzawa, S.-I. Synthesis of Dichlorobis(1,4-dimesityl-1H-1,2,3-triazol-5-ylidene)palladium [PdCl2(TMes)2] and Its Application to Suzuki–Miyaura Coupling Reaction. Chem. Lett. 2010, 39, 920–922. [Google Scholar] [CrossRef]
- Gangwar, M.K.; Kalita, A.C.; Ghosh, P. Palladium complexes of a new type of N-heterocyclic carbene ligand derived from a tricyclic triazolooxazine framework. J. Chem. Sci. 2014, 126, 1557–1563. [Google Scholar] [CrossRef]
- Yiğit, M.; Gök, Y.; Yiğit, B.; Celikal, O.O.; Yiğit, M. Palladium/Benzimidazolium Salt Catalyst Systems and N-Heterocyclic Carbene-Palladium(II)-Pyridine (PEPPSI) Complexes for Anti-Markovnikov Hydroaminations of Styrene in Ionic Liquid. Heterocycles 2019, 98, 403–415. [Google Scholar] [CrossRef]
- Prades, A.; Peris, E.; Albrecht, M. Oxidations and Oxidative Couplings Catalyzed by Triazolylidene Ruthenium Complexes. Organometallics 2011, 30, 1162–1167. [Google Scholar] [CrossRef] [Green Version]
- Keske, E.C.; Zenkina, O.V.; Wang, R.; Crudden, C.M. Synthesis and Structure of Palladium 1,2,3-Triazol-5-ylidene Mesoionic Carbene PEPPSI Complexes and Their Catalytic Applications in the Mizoroki–Heck Reaction. Organometallics 2012, 31, 6215–6221. [Google Scholar] [CrossRef]
- Gangwar, M.K.; Butcher, R.J. Chiral tricyclic triazolooxazine derived mesoionic carbene (MIC)-Pd(II) complexes of cyclohexene oxide scaffold: Synthesis, structure, and characterizations. J. Organomet. Chem. 2020, 930, 121598. [Google Scholar] [CrossRef]
- Gangwar, M.K.; Butcher, R.J. Axially Chiral bis-1,2,3-Triazol-4-ylidene-Ag(I)-MIC and, bis-Au(I)-MIC Complexes of (R)-BINOL and (-)-Menthol Scaffold: Synthesis, Structure, and Characterizations. J. Organomet. Chem. 2020, 932, 121626. [Google Scholar] [CrossRef]
- Anusha, G.; Reddy, M.V.K.; Reddy, P.V.G. Investigation of Pd-PEPPSI catalysts and coupling partners towards direct C2-arylation/heteroarylation of benzoxazole. Appl. Organomet Chem 2021, 35, e6296. [Google Scholar]
- Haack, K.J.; Hashiguchi, S.; Fujii, A.; Ikariya, T.; Noyori, R. The Catalyst Precursor, Catalyst, and Intermediate in the RuII-Promoted Asymmetric Hydrogen Transfer between Alcohols and Ketones. Angew. Chem. Int. Ed. 1997, 36, 285–288. [Google Scholar] [CrossRef]
- Alonso, D.A.; Brandt, P.; Nordin, S.J.M.; Andersson, P.G. Ru(arene)(amino alcohol)-Catalyzed Transfer Hydrogenation of Ketones: Mechanism and Origin of Enantioselectivity. J. Am. Chem. Soc. 1999, 121, 9580–9588. [Google Scholar] [CrossRef]
- Weismann, J.; Gessner, V.H. Catalytic Transfer Hydrogenation with a Methandiide-Based Carbene Complex: An Experimental and Computational Study. Chem. Eur. J. 2015, 21, 16103–16112. [Google Scholar] [CrossRef]
- Gangwar, M.K.; Dey, S.; Prakasham, A.P.; Ghosh, P. Palladium(II), silver(I), and gold(I) complexes of a new class of chiral bicyclic [1,2,3]-triazolooxazine derived N-heterocyclic carbenes (NHCs): Synthesis, structure and application studies. Polyhedron 2021, 197, 115011. [Google Scholar] [CrossRef]
- Hu, A.; Ngo, H.L.; Lin, W. Chiral Porous Hybrid Solids for Practical Heterogeneous Asymmetric Hydrogenation of Aromatic Ketones. J. Am. Chem. Soc. 2003, 125, 11490–11491. [Google Scholar] [CrossRef]
- Tan, D.-W.; Li, H.-X.; Zhang, M.-J.; Yao, J.-L.; Lang, J.-P. Acceptorless Dehydrogenation of Alcohols Catalysed by Cu(I) Nheterocycle Thiolate Complexes. ChemCatChem. 2017, 9, 1113–1118. [Google Scholar] [CrossRef]
- Polukeev, A.V.; Abdelaziz, O.Y.; Wendt, O.F. Combined Experimental and Computational Study of the Mechanism of Acceptorless Alcohol Dehydrogenation by POCOP Iridium Pincer Complexes. Organometallics 2022, 41, 859–873. [Google Scholar] [CrossRef]
- Alabau, R.G.; Esteruelas, M.A.; Martínez, A.; Oliván, M.; Oñate, E. Base-Free and Acceptorless Dehydrogenation of Alcohols Catalyzed by an Iridium Complex Stabilized by a N,N,N-Osmaligand. Organometallics 2018, 37, 2732–2740. [Google Scholar] [CrossRef] [Green Version]
- Jayaprakash, H.; Guo, L.; Wang, S.; Bruneau, C.; Fischmeister, C. Acceptorless and Base-Free Dehydrogenation of Alcohols Mediated by a Dipyridylamine-Iridium(III) Catalyst. Eur. J. Org. Chem. 2020, 2020, 4326–4330. [Google Scholar] [CrossRef]
- Fuse, H.; Mitsunuma, H.; Kanai, M. Catalytic Acceptorless Dehydrogenation of Aliphatic Alcohols. J. Am. Chem. Soc. 2020, 142, 4493–4499. [Google Scholar] [CrossRef] [PubMed]
Entry [a] | Pd Catalysts (0.025 mmol, 5 mol%) | Base (0.10 mmol, 20 mol%) | Solvent (mL) | Temp (°C) | Time (h) | Yield (%) [b] |
---|---|---|---|---|---|---|
1 | Catalyst A (5) | KOH (20) | Toluene | 100 | 16 | 85 |
2 | Catalyst B (5) | KOH (20) | Toluene | 100 | 16 | 78 |
3 | Catalyst C (5) | KOH (20) | Toluene | 100 | 16 | 67 |
4 | Catalyst D (5) | KOH (20) | Toluene | 100 | 16 | 98 |
5 | Catalyst E (5) | KOH (20) | Toluene | 100 | 16 | 89 |
6 | Catalyst F (5) | KOH (20) | Toluene | 100 | 16 | 91 |
7 | Catalyst D (5) | KOtBu (20) | Toluene | 100 | 16 | 84 [c] |
8 | Catalyst D (5) | K2CO3 (20) | Toluene | 100 | 16 | 56 [d] |
9 | Catalyst D (5) | Na2CO3 (20) | Toluene | 100 | 16 | 48 [e] |
10 | Catalyst D (5) | Cs2CO3 (20) | Toluene | 100 | 16 | 59 [f] |
11 | Catalyst D (5) | NaOH (20) | Toluene | 100 | 16 | 77 [g] |
12 | Catalyst D (5) | TBD (10) | Toluene | 100 | 16 | 53 [h] |
13 | Catalyst D (5) | KOH (20) | Xylene | 100 | 20 | 60 [i] |
14 | Catalyst D (5) | KOH (20) | TFE | 80 | 24 | 76 [j] |
15 | Catalyst D (5) | KOH (20) | DCE | 100 | 24 | 38 [k] |
16 | Catalyst D (5) | KOH (20) | TFT | 100 | 20 | 65 [l] |
17 | Catalyst D (5) | KOH (20) | Acetone | 60 | 12 | 44 [m] |
18 | Catalyst D (5) | KOH (20) | H2O | 100 | 20 | n.d. [n] |
19 | Catalyst D (5) | KOH (20) | CH3CN | 90 | 20 | n.d. [o] |
20 | Catalyst D (5) | KOH (20) | DMF | 120 | 16 | n.d. [p] |
21 | - | KOH (20) | Toluene | 100 | 16 | n.d. [q] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Romaizan, A.N.; Gangwar, M.K.; Verma, A.; Bawaked, S.M.; Saleh, T.S.; Al-Ammari, R.H.; Butcher, R.J.; Siddiqui, I.R.; Mostafa, M.M.M. Catalytic Acceptorless Dehydrogenation (CAD) of Secondary Benzylic Alcohols into Value-Added Ketones Using Pd(II)–NHC Complexes. Molecules 2023, 28, 4992. https://doi.org/10.3390/molecules28134992
Al-Romaizan AN, Gangwar MK, Verma A, Bawaked SM, Saleh TS, Al-Ammari RH, Butcher RJ, Siddiqui IR, Mostafa MMM. Catalytic Acceptorless Dehydrogenation (CAD) of Secondary Benzylic Alcohols into Value-Added Ketones Using Pd(II)–NHC Complexes. Molecules. 2023; 28(13):4992. https://doi.org/10.3390/molecules28134992
Chicago/Turabian StyleAl-Romaizan, Abeer Nasser, Manoj Kumar Gangwar, Ankit Verma, Salem M. Bawaked, Tamer S. Saleh, Rahmah H. Al-Ammari, Ray J. Butcher, Ibadur Rahman Siddiqui, and Mohamed Mokhtar M. Mostafa. 2023. "Catalytic Acceptorless Dehydrogenation (CAD) of Secondary Benzylic Alcohols into Value-Added Ketones Using Pd(II)–NHC Complexes" Molecules 28, no. 13: 4992. https://doi.org/10.3390/molecules28134992
APA StyleAl-Romaizan, A. N., Gangwar, M. K., Verma, A., Bawaked, S. M., Saleh, T. S., Al-Ammari, R. H., Butcher, R. J., Siddiqui, I. R., & Mostafa, M. M. M. (2023). Catalytic Acceptorless Dehydrogenation (CAD) of Secondary Benzylic Alcohols into Value-Added Ketones Using Pd(II)–NHC Complexes. Molecules, 28(13), 4992. https://doi.org/10.3390/molecules28134992