Investigation of Broadband Optical Nonlinear Absorption and Transient Dynamics in Orange IV Containing Azobenzene
Abstract
:1. Introduction
2. Results and Discussion
2.1. UV-Vis Absorption and Fluorescence
2.2. The Third-Order NLO Research
2.3. Transient Absorption Spectrum
2.4. Transient Refraction
3. Materials and Methods
3.1. Characterization of Orange IV
3.2. Z-Scan Experiment
3.3. Femtosecond Transient Absorption Spectroscopy
3.4. Phase Object Pump-Probe
3.5. Quantum Chemical Calculations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Boyd, R.W. Nonlinear Optics, 4th ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 4–6. [Google Scholar]
- Bai, Y.; Olivier, J.-H.; Yoo, H.; Polizzi, N.F.; Park, J.; Rawson, J.; Therien, M.J. Molecular Road Map to Tuning Ground State Absorption and Excited State Dynamics of Long-Wavelength Absorbers. J. Am. Chem. Soc. 2017, 139, 16946–16958. [Google Scholar] [CrossRef]
- Wu, X.; Xiao, J.; Sun, R.; Jin, T.; Yang, J.; Shi, G.; Wang, Y.; Zhang, X.; Song, Y. Spindle-Type Conjugated Compounds Containing Twistacene Unit: Synthesis and Ultrafast Broadband Reverse Saturable Absorption. Adv. Opt. Mater. 2017, 5, 1600712. [Google Scholar] [CrossRef]
- Gu, B.; Zhao, C.; Baev, A.; Yong, K.-T.; Wen, S.; Prasad, P.N. Molecular Nonlinear Optics: Recent Advances and Applications. Adv. Opt. Photonics 2016, 8, 328–369. [Google Scholar] [CrossRef]
- Chu, C.C.; Chang, Y.C.; Tsai, B.K.; Lin, T.C.; Lin, J.H.; Hsiao, V.K. Trans/Cis-Isomerization of Fluorene-Bridged Azo Chromophore with Significant Two-Photon Absorbability at near-Infrared Wavelength. Chem. Asian J. 2014, 9, 3390–3396. [Google Scholar] [CrossRef]
- He, T.; Wang, C.; Zhang, J.; Zhang, X.; Lu, X. Nonlinear Absorption in an Azo-Containing Ion Liquid Crystal Polymer in the Different Excitation Regimes. Synth. Met. 2010, 160, 1896–1901. [Google Scholar] [CrossRef]
- He, T.; Cheng, Y.; Du, Y.; Mo, Y. Z-Scan Determination of Third-Order Nonlinear Optical Nonlinearity of Three Azobenzenes Doped Polymer Films. Opt. Commun. 2007, 275, 240–244. [Google Scholar] [CrossRef]
- Pan, Y.; Wang, C. Periodic Oscillation of the Optical Transmittance in Azo Dye-Doped Liquid Crystals between Two Crossed Polarizers. Opt. Commun. 2020, 461, 125225. [Google Scholar] [CrossRef]
- Nahata, A.; Shan, J.; Yardley, J.T.; Wu, C. Electro-Optic Determination of the Nonlinear-Optical Properties of a Covalently Functionalized Disperse Red 1 Copolymer. JOSA B 1993, 10, 1553–1564. [Google Scholar] [CrossRef]
- Ushiwata, T.; Okamoto, E.; Kaino, T. Development of Thermally Stable Novel Eo-Polymers. Mol. Cryst. Liq. Cryst. 2002, 374, 303–314. [Google Scholar] [CrossRef]
- Venkataramani, S.; Jana, U.; Dommaschk, M.; Sönnichsen, F.; Tuczek, F.; Herges, R. Magnetic Bistability of Molecules in Homogeneous Solution at Room Temperature. Science 2011, 331, 445–448. [Google Scholar] [CrossRef]
- Rau, H. Photoisomerization of Azobenzenes. Photoreact. Org. Thin Film. 2002, 3–47. [Google Scholar] [CrossRef]
- Yager, K.G.; Barrett, C.J. Novel Photo-Switching Using Azobenzene Functional Materials. J. Photochem. Photobiol. A Chem. 2006, 182, 250–261. [Google Scholar] [CrossRef]
- Khan, A.; Kaiser, C.; Hecht, S. Prototype of a Photoswitchable Foldamer. Angew. Chem. Int. Ed. Engl. 2006, 45, 1878–1881. [Google Scholar] [CrossRef] [PubMed]
- Gelebart, A.H.; Jan Mulder, D.; Varga, M.; Konya, A.; Vantomme, G.; Meijer, E.; Selinger, R.L.; Broer, D.J. Making Waves in a Photoactive Polymer Film. Nature 2017, 546, 632–636. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Li, H.-X.; Zhang, Z.-Y.; Zhao, W.; Lang, J.-P.; Abrahams, B.F. Activation and Amplification of the Third-Order Nlo and Luminescent Responses of a Precursor Cluster by a Supramolecular Approach. Chem. Commun. 2012, 48, 4480–4482. [Google Scholar] [CrossRef] [PubMed]
- Xue, X.; Wang, H.; Han, Y.; Hou, H. Photoswitchable Nonlinear Optical Properties of Metal Complexes. Dalton Trans. 2018, 47, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Liaros, N.; Couris, S.; Maggini, L.; De Leo, F.; Cattaruzza, F.; Aurisicchio, C.; Bonifazi, D. NLO Response of Photoswitchable Azobenzene-Based Materials. Chemphyschem 2013, 14, 2961–2972. [Google Scholar] [CrossRef]
- Bandara, H.M.; Burdette, S.C. Photoisomerization in Different Classes of Azobenzene. Chem. Soc. Rev. 2012, 41, 1809–1825. [Google Scholar] [CrossRef]
- Zhu, H.; Liu, M.; Zhou, J.; Xiao, X.; Wang, Y.; Chen, Z.; Xiao, S.; He, J. Two-Photon Absorption in Multi-Azobenzene Based Complexes Influenced by Photo-Isomerization. Opt. Mater. 2022, 133, 112985. [Google Scholar] [CrossRef]
- Lin, T.; Peng, B.-X. Synthesis and Spectral Characteristics of Some Highly Soluble Squarylium Cyanine Dyes. Dye. Pigment. 1997, 35, 331–338. [Google Scholar] [CrossRef]
- Moreshead, W.V.; Przhonska, O.V.; Bondar, M.V.; Kachkovski, A.D.; Nayyar, I.H.; Masunov, A.E.; Woodward, A.W.; Belfield, K.D. Design of a New Optical Material with Broad Spectrum Linear and Two-Photon Absorption and Solvatochromism. J. Phys. Chem. C 2013, 117, 23133–23147. [Google Scholar] [CrossRef]
- Kubota, Y.; Tsukamoto, M.; Ohnishi, K.; Jin, J.; Funabiki, K.; Matsui, M. Synthesis and Fluorescence Properties of Novel Squarylium-Boron Complexes. Org. Chem. Front. 2017, 4, 1522–1527. [Google Scholar] [CrossRef]
- Van Stokkum, I.H.; Larsen, D.S.; Van Grondelle, R. Global and Target Analysis of Time-Resolved Spectra. Biochim. Biophys. Acta Bioenerg. 2004, 1657, 82–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Planells, M.; Pizzotti, M.; Nichol, G.S.; Tessore, F.; Robertson, N. Effect of Torsional Twist on 2nd Order Non-Linear Optical Activity of Anthracene and Pyrene Tricyanofuran Derivatives. Phys. Chem. Chem. Phys. 2014, 16, 23404–23411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maidur, S.R.; Patil, P.S.; Rao, S.V.; Shkir, M.; Dharmaprakash, S.M. Experimental and computational studies on second-and third-order nonlinear optical properties of a novel D-π-A type chalcone derivative: 3-(4-methoxyphenyl)-1-(4-nitrophenyl) prop-2-en-1-one. Opt. Laser Technol. 2017, 97, 219–228. [Google Scholar] [CrossRef]
- Sheik-Bahae, M.; Said, A.A.; Wei, T.; Hagan, D.J.; Stryland, E.W.V. Sensitive Measurement of Optical Nonlinearities Using a Single Beam. IEEE J. Quantum Electron. 1990, 26, 760–769. [Google Scholar] [CrossRef] [Green Version]
- Kovsh, D.I.; Hagan, D.J.; Stryland, E.W.V. Numerical Modeling of Thermal Refraction in Liquids in the Transient Regime. Opt. Express 1999, 4, 315–327. [Google Scholar] [CrossRef]
- Yang, J.; Song, Y. Direct observation of the transient thermal-lensing effect using the phase-object Z-scan technique. Opt. Lett. 2009, 34, 157–159. [Google Scholar] [CrossRef]
- Yang, Y.; Wu, X.; Jia, J.; Shen, L.; Zhou, W.; Yang, J.; Song, Y. Investigation of Ultrafast Optical Nonlinearities in Novel Bis-Chalcone Derivatives. Opt. Laser Technol. 2020, 123, 105903. [Google Scholar] [CrossRef]
- Yang, J.; Song, Y.; Wang, Y.; Li, C.; Jin, X.; Shui, M. Time-Resolved Pump-Probe Technology with Phase Object for Measurements of Optical Nonlinearities. Opt. Express 2009, 17, 7110–7117. [Google Scholar] [CrossRef]
- Boudebs, G.; Cherukulappurath, S. Nonlinear optical measurements using a 4f coherent imaging system with phase objects. Phys. Rev. A 2004, 69, 053813. [Google Scholar] [CrossRef]
532 nm, T = 0.35 | 600 nm, T = 0.93 | 700 nm, T = 0.93 | |
---|---|---|---|
Orange IV | β = 2.2 × 10−12 m/W | β = 4.4 × 10−14 m/W | β = 2.5 × 10−14 m/W |
n2 = -6.5 × 10−20 m2/W | γ = 6.3 × 10−28 m3/W2 |
13 ps, T = 0.35 | 4 ns, T = 0.35 | |
---|---|---|
Orange IV | β = 1.6 × 10−11 m/W | β = 3.8 × 10−10 m/W |
n2 = 2.5 × 10−18 m3/W2 | γ = 6.3 × 10−17 m3/W2 |
State | σn (m2) | Δηn (m3) | τn (ps) |
---|---|---|---|
LE | 8.8 × 10−21 | -3.1 × 10−21 | 0.3 |
4.7 × 10−21 | -1.1 × 10−21 | 4.1 | |
CT | 1.4 × 10−21 | -7.2 × 10−22 | >4000 |
S0 | 1.2 × 10−21 | 0 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Q.; Ruan, R.; Li, X.; Zhao, Y.; Li, Y.; Fang, Y.; Chen, Y.; Wu, Q.; Song, Y.; Wu, X. Investigation of Broadband Optical Nonlinear Absorption and Transient Dynamics in Orange IV Containing Azobenzene. Molecules 2023, 28, 4692. https://doi.org/10.3390/molecules28124692
Wu Q, Ruan R, Li X, Zhao Y, Li Y, Fang Y, Chen Y, Wu Q, Song Y, Wu X. Investigation of Broadband Optical Nonlinear Absorption and Transient Dynamics in Orange IV Containing Azobenzene. Molecules. 2023; 28(12):4692. https://doi.org/10.3390/molecules28124692
Chicago/Turabian StyleWu, Quanhua, Rui Ruan, Xingxing Li, Yujie Zhao, Yang Li, Yu Fang, Yongqiang Chen, Quanying Wu, Yinglin Song, and Xingzhi Wu. 2023. "Investigation of Broadband Optical Nonlinear Absorption and Transient Dynamics in Orange IV Containing Azobenzene" Molecules 28, no. 12: 4692. https://doi.org/10.3390/molecules28124692
APA StyleWu, Q., Ruan, R., Li, X., Zhao, Y., Li, Y., Fang, Y., Chen, Y., Wu, Q., Song, Y., & Wu, X. (2023). Investigation of Broadband Optical Nonlinear Absorption and Transient Dynamics in Orange IV Containing Azobenzene. Molecules, 28(12), 4692. https://doi.org/10.3390/molecules28124692