DeepBindGCN: Integrating Molecular Vector Representation with Graph Convolutional Neural Networks for Protein–Ligand Interaction Prediction
Abstract
:1. Introduction
2. Results
2.1. The Performance of DeepBindGCN_BC and DeepBindGCN_RG on Training and Test Set
2.2. The Performance of DeepBindGCN_BC and DeepBindGCN_RG on the DUD.E Dataset
2.3. Virtual Screening by DeepBindGCN against the TIPE3 and PD-L1 Dimers as Self-Concept-Approve Examples
3. Discussion
4. Materials and Methods
4.1. Data Preparation
4.2. The Dataset for a Binary Classification Task
4.3. The Dataset for the Affinity Prediction Task
4.4. Pre-Train 30-Dimension Molecular Vector to Represent Residues in Pocket
4.5. Model Construction
4.6. Model Training
4.7. Model Performance Compared with Other Methods on the DUD.E Dataset
4.8. Virtual Screening of Candidates against Two Targets (TIPE3 and the PD-L1 Dimer)
4.9. Tools Used in the Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Klebe, G. Protein–Ligand Interactions as the Basis for Drug Action. In Drug Design; Springer: Berlin/Heidelberg, Germany, 2013; pp. 61–88. [Google Scholar]
- Savojardo, C.; Martelli, P.L.; Fariselli, P.; Casadio, R. DeepSig: Deep learning improves signal peptide detection in proteins. Bioinformatics 2018, 34, 1690–1696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Z.; Zhao, P.; Li, C.; Li, F.; Xiang, D.; Chen, Y.Z.; Akutsu, T.; Daly, R.J.; Webb, G.I.; Zhao, Q.; et al. ILearnPlus: A comprehensive and automated machine-learning platform for nucleic acid and protein sequence analysis, prediction and visualization. Nucleic Acids Res. 2021, 49, e60. [Google Scholar] [CrossRef]
- Gromiha, M.M.; Huang, L.-T. Machine learning algorithms for predicting protein folding rates and stability of mutant proteins: Comparison with statistical methods. Curr. Protein Pept. Sci. 2011, 12, 490–502. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Saravanan, K.M.; Yang, Y.; Wei, Y.; Yi, P.; Zhang, J.Z.H. Generating and screening de novo compounds against given targets using ultrafast deep learning models as core components. Brief. Bioinform. 2022, 23, bbac226. [Google Scholar] [CrossRef]
- Zhang, H.; Saravanan, K.M.; Wei, Y.; Jiao, Y.; Yang, Y.; Pan, Y.; Wu, X.; Zhang, J.Z.H. Deep Learning-Based Bioactive Therapeutic Peptide Generation and Screening. J. Chem. Inf. Model. 2023, 63, 835–845. [Google Scholar] [CrossRef] [PubMed]
- Sreeraman, S.; Kannan, P.M.; Singh Kushwah, R.B.; Sundaram, V.; Veluchamy, A.; Thirunavukarasou, A.; Saravanan, M.K. Drug Design and Disease Diagnosis: The Potential of Deep Learning Models in Biology. Curr. Bioinform. 2023, 18, 208–220. [Google Scholar]
- Stepniewska-Dziubinska, M.M.; Zielenkiewicz, P.; Siedlecki, P. Development and evaluation of a deep learning model for protein–ligand binding affinity prediction. Bioinformatics 2018, 34, 3666–3674. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.; Le, H.; Quinn, T.P.; Nguyen, T.; Le, T.D.; Venkatesh, S. GraphDTA: Predicting drug target binding affinity with graph neural networks. Bioinformatics 2021, 37, 1140–1147. [Google Scholar] [CrossRef]
- Yuan, H.; Huang, J.; Li, J. Protein-ligand binding affinity prediction model based on graph attention network. Math. Biosci. Eng. 2021, 18, 9148–9162. [Google Scholar] [CrossRef]
- Seo, S.; Choi, J.; Park, S.; Ahn, J. Binding affinity prediction for protein–ligand complex using deep attention mechanism based on intermolecular interactions. BMC Bioinform. 2021, 22, 542. [Google Scholar] [CrossRef]
- Zhao, Q.; Xiao, F.; Yang, M.; Li, Y.; Wang, J. AttentionDTA: Prediction of drug-target binding affinity using attention model. In Proceedings of the 2019 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2019, San Diego, CA, USA, 18–21 November 2019; pp. 64–69. [Google Scholar]
- Zhang, H.; Liao, L.; Saravanan, K.M.; Yin, P.; Wei, Y. DeepBindRG: A deep learning based method for estimating effective protein–ligand affinity. PeerJ 2019, 7, e7362. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhang, T.; Saravanan, K.M.; Liao, L.; Wu, H.; Zhang, H.; Zhang, H.; Pan, Y.; Wu, X.; Wei, Y. A novel virtual drug screening pipeline with deep-leaning as core component identifies inhibitor of pancreatic alpha-amylase. In Proceedings of the 2021 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2021, Houston, TX, USA, 9–12 December 2021; pp. 104–111. [Google Scholar]
- Zhang, H.; Liao, L.; Cai, Y.; Hu, Y.; Wang, H. IVS2vec: A tool of Inverse Virtual Screening based on word2vec and deep learning techniques. Methods 2019, 166, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Lin, X.; Wei, Y.; Zhang, H.; Liao, L.; Wu, H.; Pan, Y.; Wu, X. Validation of Deep Learning-Based DFCNN in Extremely Large-Scale Virtual Screening and Application in Trypsin I Protease Inhibitor Discovery. Front. Mol. Biosci. 2022, 9, 872086. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Li, J.; Saravanan, K.M.; Wu, H.; Wang, Z.; Wu, D.; Wei, Y.; Lu, Z.; Chen, Y.H.; Wan, X.; et al. An Integrated Deep Learning and Molecular Dynamics Simulation-Based Screening Pipeline Identifies Inhibitors of a New Cancer Drug Target TIPE2. Front. Pharmacol. 2021, 12, 772296. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, Y.; Li, J.; Wang, M.; Saravanan, K.M.; Wei, J.; Tze-Yang Ng, J.; Tofazzal Hossain, M.; Liu, M.; Zhang, H.; et al. A novel virtual screening procedure identifies Pralatrexate as inhibitor of SARS-CoV-2 RdRp and it reduces viral replication in vitro. PLoS Comput. Biol. 2020, 16, e1008489. [Google Scholar] [CrossRef]
- Zhang, S.; Tong, H.; Xu, J.; Maciejewski, R. Graph convolutional networks: A comprehensive review. Comput. Soc. Netw. 2019, 6, 11. [Google Scholar] [CrossRef] [Green Version]
- Kojima, R.; Ishida, S.; Ohta, M.; Iwata, H.; Honma, T.; Okuno, Y. KGCN: A graph-based deep learning framework for chemical structures. J. Cheminform. 2020, 12, 32. [Google Scholar] [CrossRef]
- Chen, J.; Si, Y.W.; Un, C.W.; Siu, S.W.I. Chemical toxicity prediction based on semi-supervised learning and graph convolutional neural network. J. Cheminform. 2021, 13, 93. [Google Scholar] [CrossRef]
- Torng, W.; Altman, R.B. Graph Convolutional Neural Networks for Predicting Drug-Target Interactions. J. Chem. Inf. Model. 2019, 59, 4134–4149. [Google Scholar] [CrossRef]
- Moesser, M.A.; Klein, D.; Boyles, F.; Deane, C.M.; Baxter, A.; Morris, G.M. Protein-Ligand Interaction Graphs: Learning from Ligand-Shaped 3D Interaction Graphs to Improve Binding Affinity Prediction. bioRxiv 2022. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, T.; Saravanan, K.M.; Liao, L.; Wu, H.; Zhang, H.; Zhang, H.; Pan, Y.; Wu, X.; Wei, Y. DeepBindBC: A practical deep learning method for identifying native-like protein-ligand complexes in virtual screening. Methods 2022, 205, 247–262. [Google Scholar] [CrossRef]
- Zhang, H.; Gong, X.; Peng, Y.; Saravanan, K.M.; Bian, H.; Zhang, J.Z.H.; Wei, Y.; Pan, Y.; Yang, Y. An Efficient Modern Strategy to Screen Drug Candidates Targeting RdRp of SARS-CoV-2 with Potentially High Selectivity and Specificity. Front. Chem. 2022, 10, 933102. [Google Scholar] [CrossRef]
- Feng, Y.; Cheng, X.; Wu, S.; Mani Saravanan, K.; Liu, W. Hybrid drug-screening strategy identifies potential SARS-CoV-2 cell-entry inhibitors targeting human transmembrane serine protease. Struct. Chem. 2022, 33, 1503–1515. [Google Scholar] [CrossRef]
- Wang, R.; Fang, X.; Lu, Y.; Yang, C.-Y.; Wang, S. The PDBbind Database: Methodologies and Updates. J. Med. Chem. 2005, 48, 4111–4119. [Google Scholar] [CrossRef]
- Zhang, H.; Bei, Z.; Xi, W.; Hao, M.; Ju, Z.; Saravanan, K.M.; Zhang, H.; Guo, N.; Wei1, Y. Evaluation of residue-residue contact prediction methods: From retrospective to prospective. PLoS Comput. Biol. 2021, 17, e1009027. [Google Scholar] [CrossRef]
- Saravanan, K.M.; Selvaraj, S. Dihedral angle preferences of amino acid residues forming various non-local interactions in proteins. J. Biol. Phys. 2017, 43, 265–278. [Google Scholar] [CrossRef]
- Fayngerts, S.A.; Wu, J.; Oxley, C.L.; Liu, X.; Vourekas, A.; Cathopoulis, T.; Wang, Z.; Cui, J.; Liu, S.; Sun, H.; et al. TIPE3 is the transfer protein of lipid second messengers that promote cancer. Cancer Cell 2014, 26, 465–478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Q.; Yu, D.; Yu, Z.; Gao, Q.; Chen, R.; Zhou, L.; Wang, R.; Li, Y.; Qian, Y.; Zhao, J.; et al. TIPE3 promotes non-small cell lung cancer progression via the protein kinase B/extracellular signal-regulated kinase 1/2-glycogen synthase kinase 3β-β-catenin/Snail axis. Transl. Lung Cancer Res. 2021, 10, 936–954. [Google Scholar] [CrossRef]
- Li, Y.; Han, L.; Liu, Z.; Wang, R. Comparative assessment of scoring functions on an updated benchmark: 2. evaluation methods and general results. J. Chem. Inf. Model. 2014, 54, 1717–1736. [Google Scholar] [CrossRef] [PubMed]
- Jiménez, J.; Škalič, M.; Martínez-Rosell, G.; De Fabritiis, G. KDEEP: Protein-Ligand Absolute Binding Affinity Prediction via 3D-Convolutional Neural Networks. J. Chem. Inf. Model. 2018, 58, 287–296. [Google Scholar] [CrossRef] [PubMed]
- Jones, D.; Kim, H.; Zhang, X.; Zemla, A.; Stevenson, G.; Bennett, W.F.D.; Kirshner, D.; Wong, S.E.; Lightstone, F.C.; Allen, J.E. Improved Protein–Ligand Binding Affinity Prediction with Structure-Based Deep Fusion Inference. J. Chem. Inf. Model. 2021, 61, 1583–1592. [Google Scholar] [CrossRef] [PubMed]
- Son, J.; Kim, D. Development of a graph convolutional neural network model for efficient prediction of protein-ligand binding affinities. PLoS ONE 2021, 16, e0249404. [Google Scholar] [CrossRef]
- Kwon, Y.; Shin, W.H.; Ko, J.; Lee, J. AK-score: Accurate protein-ligand binding affinity prediction using an ensemble of 3D-convolutional neural networks. Int. J. Mol. Sci. 2020, 21, 8424. [Google Scholar] [CrossRef]
- Li, Y.; Rezaei, M.A.; Li, C.; Li, X. DeepAtom: A Framework for Protein-Ligand Binding Affinity Prediction. In Proceedings of the 2019 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2019, San Diego, CA, USA, 18–21 November 2019; pp. 303–310. [Google Scholar]
- Wang, Y.; Wu, S.; Duan, Y.; Huang, Y. A point cloud-based deep learning strategy for protein–ligand binding affinity prediction. Brief. Bioinform. 2022, 23, bbab474. [Google Scholar] [CrossRef] [PubMed]
- Meli, R.; Anighoro, A.; Bodkin, M.J.; Morris, G.M.; Biggin, P.C. Learning protein-ligand binding affinity with atomic environment vectors. J. Cheminform. 2021, 13, 59. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wu, S.; Duan, Y.; Huang, Y. ResAtom system: Protein and ligand affinity prediction model based on deep learning. arXiv 2021, arXiv:2105.05125. [Google Scholar]
- Ahmed, A.; Mam, B.; Sowdhamini, R. DEELIG: A Deep Learning Approach to Predict Protein-Ligand Binding Affinity. Bioinform. Biol. Insights 2021, 15, 11779322211030364. [Google Scholar] [CrossRef]
- Moon, S.; Zhung, W.; Yang, S.; Lim, J.; Kim, W.Y. PIGNet: A physics-informed deep learning model toward generalized drug–target interaction predictions. Chem. Sci. 2022, 13, 3661–3673. [Google Scholar] [CrossRef]
- Wang, S.; Liu, D.; Ding, M.; Du, Z.; Zhong, Y.; Song, T.; Zhu, J.; Zhao, R. SE-OnionNet: A Convolution Neural Network for Protein–Ligand Binding Affinity Prediction. Front. Genet. 2021, 11, 607824. [Google Scholar] [CrossRef]
- Su, M.; Yang, Q.; Du, Y.; Feng, G.; Liu, Z.; Li, Y.; Wang, R. Comparative Assessment of Scoring Functions: The CASF-2016 Update. J. Chem. Inf. Model. 2019, 59, 895–913. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, Y. Improving scoring-docking-screening powers of protein–ligand scoring functions using random forest. J. Comput. Chem. 2017, 38, 169–177. [Google Scholar] [CrossRef] [Green Version]
- Limongelli, V. Ligand binding free energy and kinetics calculation in 2020. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2020, 10, e1455. [Google Scholar] [CrossRef]
- Wang, L.; Wu, Y.; Deng, Y.; Kim, B.; Pierce, L.; Krilov, G.; Lupyan, D.; Robinson, S.; Dahlgren, M.K.; Greenwood, J.; et al. Accurate and Reliable Prediction of Relative Ligand Binding Potency in Prospective Drug Discovery by Way of a Modern Free-Energy Calculation Protocol and Force Field. J. Am. Chem. Soc. 2015, 137, 2695–2703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weis, A.; Katebzadeh, K.; Söderhjelm, P.; Nilsson, I.; Ryde, U. Ligand Affinities Predicted with the MM/PBSA Method: Dependence on the Simulation Method and the Force Field. J. Med. Chem. 2006, 49, 6596–6606. [Google Scholar] [CrossRef] [PubMed]
- Söderhjelm, P.; Ryde, U. How Accurate Can a Force Field Become? A Polarizable Multipole Model Combined with Fragment-Wise Quantum-Mechanical Calculations. J. Phys. Chem. A 2009, 113, 617–627. [Google Scholar] [CrossRef]
- Wang, J.; Olsson, S.; Wehmeyer, C.; Pérez, A.; Charron, N.E.; de Fabritiis, G.; Noé, F.; Clementi, C. Machine Learning of Coarse-Grained Molecular Dynamics Force Fields. ACS Cent. Sci. 2019, 5, 755–767. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Li, Y.; Han, L.; Li, J.; Liu, J.; Zhao, Z.; Nie, W.; Liu, Y.; Wang, R. PDB-wide collection of binding data: Current status of the PDBbind database. Bioinformatics 2015, 31, 405–412. [Google Scholar] [CrossRef] [Green Version]
- Sachkov, V.I.; Osipova, N.A.; Svetlov, V.A. The problem of induction anesthesia in modern anesthesiology. Anesteziol. Reanimatol. 1977, 6, 7–12. [Google Scholar]
- Jaeger, S.; Fulle, S.; Turk, S. Mol2vec: Unsupervised Machine Learning Approach with Chemical Intuition. J. Chem. Inf. Model. 2018, 58, 27–35. [Google Scholar] [CrossRef]
- Irwin, J.J.; Shoichet, B.K. ZINC—A Free Database of Commercially Available Compounds for Virtual Screening. J. Chem. Inf. Model. 2005, 45, 177–182. [Google Scholar] [CrossRef] [Green Version]
- Burlingham, B.T.; Widlanski, T.S. An Intuitive Look at the Relationship of Ki and IC50: A More General Use for the Dixon Plot. J. Chem. Educ. 2003, 80, 214. [Google Scholar] [CrossRef]
- Tayebi, A.; Yousefi, N.; Yazdani-Jahromi, M.; Kolanthai, E.; Neal, C.J.; Seal, S.; Garibay, O.O. UnbiasedDTI: Mitigating Real-World Bias of Drug-Target Interaction Prediction by Using Deep Ensemble-Balanced Learning. Molecules 2022, 27, 2980. [Google Scholar] [CrossRef] [PubMed]
- Mysinger, M.M.; Carchia, M.; Irwin, J.J.; Shoichet, B.K. Directory of useful decoys, enhanced (DUD-E): Better ligands and decoys for better benchmarking. J. Med. Chem. 2012, 55, 6582–6594. [Google Scholar] [CrossRef]
- Roy, A.; Yang, J.; Zhang, Y. COFACTOR: An accurate comparative algorithm for structure-based protein function annotation. Nucleic Acids Res. 2012, 40, W471–W477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guzik, K.; Zak, K.M.; Grudnik, P.; Magiera, K.; Musielak, B.; Törner, R.; Skalniak, L.; Dömling, A.; Dubin, G.; Holak, T.A. Small-Molecule Inhibitors of the Programmed Cell Death-1/Programmed Death-Ligand 1 (PD-1/PD-L1) Interaction via Transiently Induced Protein States and Dimerization of PD-L1. J. Med. Chem. 2017, 60, 5857–5867. [Google Scholar] [CrossRef] [PubMed]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef]
- Discovery Studio Visualizer v4. 0.100. 13345, Accelrys Software Inc.: Las Vegas, NV, USA, 2005.
- Murtagh, F.; Contreras, P. Algorithms for hierarchical clustering: An overview. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2012, 2, 86–97. [Google Scholar] [CrossRef]
- Murtagh, F.; Legendre, P. Ward’s Hierarchical Agglomerative Clustering Method: Which Algorithms Implement Ward’s Criterion? J. Classif. 2014, 31, 274–295. [Google Scholar] [CrossRef] [Green Version]
- DeLano, W.L. Pymol: An open-source molecular graphics tool. CCP4 Newsl. Protein Crystallogr. 2002, 40, 82–92. [Google Scholar]
- Laio, A.; Gervasio, F.L. Metadynamics: A method to simulate rare events and reconstruct the free energy in biophysics, chemistry and material science. Rep. Prog. Phys. 2008, 71, 126601. [Google Scholar] [CrossRef]
- Saleh, N.; Ibrahim, P.; Saladino, G.; Gervasio, F.L.; Clark, T. An Efficient Metadynamics-Based Protocol to Model the Binding Affinity and the Transition State Ensemble of G-Protein-Coupled Receptor Ligands. J. Chem. Inf. Model. 2017, 57, 1210–1217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruiz-Carmona, S.; Schmidtke, P.; Luque, F.J.; Baker, L.; Matassova, N.; Davis, B.; Roughley, S.; Murray, J.; Hubbard, R.; Barril, X. Dynamic undocking and the quasi-bound state as tools for drug discovery. Nat. Chem. 2017, 9, 201–206. [Google Scholar] [CrossRef] [Green Version]
- Hess, B.; Kutzner, C.; Van Der Spoel, D.; Lindahl, E. GRGMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput. 2008, 4, 435–447. [Google Scholar] [CrossRef] [Green Version]
- Hornak, V.; Simmerling, C. Generation of accurate protein loop conformations through low-barrier molecular dynamics. Proteins Struct. Funct. Genet. 2003, 51, 577–590. [Google Scholar] [CrossRef]
- Sousa da Silva, A.W.; Vranken, W.F. ACPYPE - AnteChamber PYthon Parser interfacE. BMC Res. Notes 2012, 5, 367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Wang, W.; Kollman, P.A.; Case, D.A. Automatic atom type and bond type perception in molecular mechanical calculations. J. Mol. Graph. Model. 2006, 25, 247–260. [Google Scholar] [CrossRef]
- Jorgensen, W.L.; Chandrasekhar, J.; Madura, J.D.; Impey, R.W.; Klein, M.L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983, 79, 926–935. [Google Scholar] [CrossRef]
- Van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A.E.; Berendsen, H.J.C. GROMACS: Fast, flexible, and free. J. Comput. Chem. 2005, 26, 1701–1718. [Google Scholar] [CrossRef]
- Darden, T.; York, D.; Pedersen, L. Particle mesh Ewald: An N·log(N) method for Ewald sums in large systems. J. Chem. Phys. 1993, 98, 10089–10092. [Google Scholar] [CrossRef] [Green Version]
- Hess, B.; Bekker, H.; Berendsen, H.J.C.; Fraaije, J.G.E.M. LINCS: A Linear Constraint Solver for molecular simulations. J. Comput. Chem. 1997, 18, 1463–1472. [Google Scholar] [CrossRef]
- Tribello, G.A.; Bonomi, M.; Branduardi, D.; Camilloni, C.; Bussi, G. PLUMED 2: New feathers for an old bird. Comput. Phys. Commun. 2014, 185, 604–613. [Google Scholar] [CrossRef] [Green Version]
- Williams, T.; Kelley, C.; Campbell, J.; Cunningham, R.; Denholm, D.; Elber, G.; Fearick, R.; Grammes, C.; Hart, L.; Hecking, L.; et al. Gnuplot 4.6. Softw. Man. 2012. [Google Scholar]
PDBID | AUC | TPR | Precision | Accuracy | MCC | Data_Size | Pos_Size | Neg_Size |
---|---|---|---|---|---|---|---|---|
3BWM | 1 | 0.8537 | 1 | 0.8571 | 0.3492 | 42 | 41 | 1 |
3KRJ | 0.9378 | 0.7558 | 1 | 0.7589 | 0.1944 | 394 | 389 | 5 |
2FSZ | 0.8597 | 0.9173 | 0.9661 | 0.8948 | 0.4686 | 1492 | 1366 | 126 |
1XL2 | 0.8517 | 0.4639 | 0.9887 | 0.491 | 0.1817 | 1607 | 1511 | 96 |
3D0E | 0.8424 | 0.6498 | 0.9809 | 0.6692 | 0.3015 | 260 | 237 | 23 |
2NNQ | 0.8364 | 0.9362 | 0.8 | 0.7778 | 0.3251 | 63 | 47 | 16 |
3L5D | 0.8266 | 0.9133 | 0.9665 | 0.8892 | 0.3445 | 641 | 600 | 41 |
2RGP | 0.819 | 0.7463 | 0.9322 | 0.7538 | 0.4423 | 2027 | 1620 | 407 |
2HZI | 0.8138 | 0.6895 | 0.94 | 0.7059 | 0.366 | 493 | 409 | 84 |
3G0E | 0.8057 | 0.6887 | 0.9924 | 0.6899 | 0.1338 | 387 | 379 | 8 |
3L3M | 0.8029 | 0.5301 | 1 | 0.5355 | 0.1125 | 1057 | 1045 | 12 |
1SJ0 | 0.8025 | 0.7057 | 0.9617 | 0.7078 | 0.2678 | 1451 | 1315 | 136 |
3F07 | 0.7875 | 0.8307 | 0.9298 | 0.8112 | 0.4865 | 392 | 319 | 73 |
3CCW | 0.7652 | 0.5878 | 0.9969 | 0.592 | 0.1124 | 549 | 541 | 8 |
1UDT | 0.7414 | 0.7536 | 0.9531 | 0.7413 | 0.231 | 1063 | 970 | 93 |
2CNK | 0.735 | 0.1928 | 0.9891 | 0.2495 | 0.1118 | 509 | 472 | 37 |
3ODU | 0.7184 | 0.8372 | 0.8372 | 0.7544 | 0.3372 | 57 | 43 | 14 |
3D4Q | 0.7178 | 0.8202 | 0.9524 | 0.7971 | 0.2392 | 345 | 317 | 28 |
2AYW | 0.7089 | 0.2182 | 0.9638 | 0.2946 | 0.1154 | 1093 | 976 | 117 |
2AA2 | 0.7052 | 0.2217 | 1 | 0.229 | 0.0515 | 214 | 212 | 2 |
PDBID | RMSE | MSE | Pearson | Spearman | CI | Data_Size |
---|---|---|---|---|---|---|
3BIZ | 0.6866 | 0.4714 | 0.1794 | 0.1800 | 0.5570 | 221 |
2AZR | 0.7134 | 0.5089 | 0.2293 | 0.2654 | 0.5903 | 284 |
1UYG | 0.7880 | 0.6209 | 0.3155 | 0.2981 | 0.6089 | 88 |
3M2W | 0.7958 | 0.6334 | 0.3754 | 0.3063 | 0.6073 | 184 |
3EQH | 0.8114 | 0.6584 | 0.3547 | 0.3277 | 0.6159 | 308 |
2ETR | 0.8119 | 0.6592 | 0.2780 | 0.2687 | 0.5961 | 219 |
3F9M | 0.8177 | 0.6686 | 0.1705 | 0.1740 | 0.5611 | 144 |
1KVO | 0.8184 | 0.6697 | 0.1789 | 0.1481 | 0.5510 | 176 |
1SQT | 0.8194 | 0.6715 | 0.2473 | 0.2282 | 0.5777 | 375 |
3D0E | 0.8439 | 0.7122 | 0.2704 | 0.2272 | 0.5797 | 237 |
3L5D | 0.8480 | 0.7191 | 0.3180 | 0.3432 | 0.6187 | 600 |
1LRU | 0.8956 | 0.8021 | 0.2213 | 0.2362 | 0.5805 | 173 |
3NF7 | 0.9010 | 0.8119 | 0.1790 | 0.1021 | 0.5353 | 185 |
3HMM | 0.9035 | 0.8163 | 0.0380 | 0.0055 | 0.5010 | 235 |
2ICA | 0.9056 | 0.8201 | 0.3269 | 0.3630 | 0.6210 | 324 |
2HZI | 0.9088 | 0.8258 | 0.5412 | 0.5701 | 0.6958 | 409 |
3KGC | 0.9121 | 0.8319 | −0.0222 | 0.0049 | 0.5013 | 488 |
2HV5 | 0.9258 | 0.8572 | 0.0512 | 0.0530 | 0.5178 | 606 |
3EL8 | 0.9303 | 0.8654 | 0.2629 | 0.2570 | 0.5875 | 1271 |
2OJG | 0.9386 | 0.8810 | 0.5505 | 0.5713 | 0.7045 | 81 |
1D3G | 0.9397 | 0.8831 | 0.0503 | 0.0742 | 0.5269 | 227 |
1BCD | 0.9496 | 0.9017 | 0.3138 | 0.2846 | 0.5974 | 1976 |
2V3F | 0.9621 | 0.9256 | 0.3420 | 0.2885 | 0.5987 | 55 |
3CCW | 0.9665 | 0.9341 | 0.2556 | 0.2955 | 0.6004 | 541 |
2QD9 | 0.9730 | 0.9468 | 0.3492 | 0.3509 | 0.6196 | 2218 |
3KRJ | 0.9770 | 0.9545 | 0.2654 | 0.2395 | 0.5826 | 389 |
3CQW | 0.9779 | 0.9562 | 0.2804 | 0.2742 | 0.5933 | 588 |
2ZNP | 0.9779 | 0.9564 | 0.1656 | 0.1517 | 0.5510 | 713 |
2OF2 | 0.9816 | 0.9635 | 0.2678 | 0.2355 | 0.5797 | 919 |
830C | 0.9833 | 0.9668 | 0.2000 | 0.1883 | 0.5641 | 1644 |
3LAN | 0.9854 | 0.9709 | 0.1809 | 0.1732 | 0.5596 | 1201 |
2OJ9 | 0.9918 | 0.9836 | 0.4426 | 0.4041 | 0.6388 | 373 |
3MAX | 0.9936 | 0.9873 | 0.0286 | 0.0379 | 0.5130 | 413 |
1J4H | 0.9965 | 0.9930 | −0.1850 | −0.1821 | 0.4383 | 165 |
3G0E | 0.9967 | 0.9935 | 0.0037 | −0.0001 | 0.4966 | 379 |
1UDT | 0.9988 | 0.9976 | 0.4255 | 0.4115 | 0.6419 | 970 |
Compound ID | DeepBindGCN_BC | DeepBindGCN_RG | Schrödinger Score |
---|---|---|---|
G858-0261 | 1.0000 | 9.0349 | −9.5265 |
D491-8162 | 1.0000 | 9.0312 | −7.7093 |
D307-0048 | 1.0000 | 9.0666 | −8.1571 |
3192-2836 | 1.0000 | 9.0383 | −9.2614 |
1000-1361 | 1.0000 | 9.0062 | −11.0240 |
8014-2686 | 1.0000 | 9.0927 | −7.5773 |
S049-0833 | 1.0000 | 9.1489 | −8.6633 |
V010-1363 | 1.0000 | 9.0040 | −8.4298 |
F844-0391 | 1.0000 | 9.0815 | −7.3199 |
S556-0709 | 1.0000 | 9.0541 | −7.0894 |
C200-4178 | 1.0000 | 9.0407 | −7.6719 |
F844-0420 | 1.0000 | 9.4370 | −8.2764 |
J026-0862 | 1.0000 | 9.0249 | −8.6472 |
C258-0578 | 1.0000 | 9.0228 | −8.3843 |
C200-0812 | 0.9999 | 9.0793 | −9.2365 |
S561-0589 | 0.9999 | 9.0254 | −8.1083 |
P166-2237 | 0.9999 | 9.6668 | −8.7043 |
V006-0149 | 0.9999 | 9.0806 | −8.3682 |
P074-3068 | 0.9999 | 9.0822 | −9.0598 |
7238-2062 | 0.9999 | 9.0083 | −8.6726 |
G702-4450 | 0.9998 | 9.0540 | −9.5383 |
Y031-6037 | 0.9998 | 9.0993 | −7.3331 |
L827-0130 | 0.9998 | 9.0523 | −8.5650 |
F844-0390 | 0.9998 | 9.2186 | −7.7939 |
K305-0239 | 0.9997 | 9.0028 | None |
7238-2058 | 0.9995 | 9.0692 | −8.5960 |
P166-2138 | 0.9994 | 9.7564 | −8.4074 |
8131-1510 | 0.9993 | 9.0366 | −8.5564 |
S543-0517 | 0.9992 | 9.3285 | −7.5612 |
F844-0389 | 0.9992 | 9.3423 | −8.7665 |
L824-0015 | 0.9990 | 9.3347 | −7.1463 |
G702-4471 | 0.9986 | 9.0317 | −8.7210 |
P074-3101 | 0.9985 | 9.0468 | −8.5187 |
Y043-1747 | 0.9980 | 9.0451 | −7.2643 |
V008-1643 | 0.9972 | 9.0701 | None |
8015-5821 | 0.9964 | 9.0231 | −9.7178 |
S431-1022 | 0.9954 | 9.3035 | −8.2101 |
S591-0082 | 0.9952 | 9.0663 | −6.7099 |
P166-2131 | 0.9944 | 9.3489 | −6.5523 |
C301-8688 | 0.9939 | 9.3810 | −8.3378 |
Test Set | Methods | RMSE | Pearson R | Spearman R |
---|---|---|---|---|
PDBbind v.2016 core set | DeepBindGCN_RG_x | 1.41 | 0.75 | 0.743 |
KDEEP | 1.27 | 0.82 | ||
Pafnucy | 1.42 | 0.78 | ||
midlevel fusion | 1.30 | 0.81 | 0.807 | |
GraphBAR(dataset 4, Adj-2) | 1.41 | 0.77 | ||
AK-score-ensemble | 1.29 | |||
DeepAtom | 1.23 | 0.83 | ||
PointNet(B) | 1.26 | 0.83 | 0.827 | |
PointTransform(B) | 1.19 | 0.85 | 0.853 | |
AEScore | 1.22 | 0.83 | ||
ResAtom-Score | 0.83 | |||
DEELIG | 0.88 | |||
PIGNet (ensemble) | 0.76 | |||
BAPA | 1.30 | |||
PDBbind v.2013 core set | DeepBindGCN_RG_x | 1.49 | 0.74 | 0.727 |
SE-OnionNet | 1.69 | 0.81 | ||
DeepBindRG | 1.81 | 0.63 | ||
DEELIG | 0.89 | |||
GraphBAR(dataset 4, best) | 1.63 | 0.70 | ||
BAPA | 1.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Saravanan, K.M.; Zhang, J.Z.H. DeepBindGCN: Integrating Molecular Vector Representation with Graph Convolutional Neural Networks for Protein–Ligand Interaction Prediction. Molecules 2023, 28, 4691. https://doi.org/10.3390/molecules28124691
Zhang H, Saravanan KM, Zhang JZH. DeepBindGCN: Integrating Molecular Vector Representation with Graph Convolutional Neural Networks for Protein–Ligand Interaction Prediction. Molecules. 2023; 28(12):4691. https://doi.org/10.3390/molecules28124691
Chicago/Turabian StyleZhang, Haiping, Konda Mani Saravanan, and John Z. H. Zhang. 2023. "DeepBindGCN: Integrating Molecular Vector Representation with Graph Convolutional Neural Networks for Protein–Ligand Interaction Prediction" Molecules 28, no. 12: 4691. https://doi.org/10.3390/molecules28124691
APA StyleZhang, H., Saravanan, K. M., & Zhang, J. Z. H. (2023). DeepBindGCN: Integrating Molecular Vector Representation with Graph Convolutional Neural Networks for Protein–Ligand Interaction Prediction. Molecules, 28(12), 4691. https://doi.org/10.3390/molecules28124691