Recent Configurational Advances for Solid-State Lithium Batteries Featuring Conversion-Type Cathodes
Abstract
:1. Introduction
2. Challenges Remained in Conversion-Type Cathode Materials
3. Solid-State Lithium Battery with Conversion-Type Cathodes
3.1. Chalcogen Cathodes with Solid-State Electrolytes
3.2. Chalcogenide Cathodes with Solid-State Electrolytes
3.3. Halide Cathodes with Solid-State Electrolytes
4. Summary and Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Erickson, E.M.; Ghanty, C.; Aurbach, D. New Horizons for Conventional Lithium Ion Battery Technology. J. Phys. Chem. Lett. 2014, 5, 3313–3324. [Google Scholar] [CrossRef] [PubMed]
- Erickson, E.M.; Li, W.; Dolocan, A.; Manthiram, A. Insights into the Cathode–Electrolyte Interphases of High-Energy-Density Cathodes in Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2020, 12, 16451–16461. [Google Scholar] [CrossRef] [PubMed]
- Park, M.S.; Ma, S.B.; Lee, D.J.; Im, D.; Doo, S.-G.; Yamamoto, O. A Highly Reversible Lithium Metal Anode. Sci. Rep. 2015, 4, 3815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, S.-H.; Feng, X.; Zhang, N.; Seok, J.; Abruña, H.D. Understanding Conversion-Type Electrodes for Lithium Rechargeable Batteries. Acc. Chem. Res. 2018, 51, 273–281. [Google Scholar] [CrossRef]
- Wu, F.; Yushin, G. Conversion Cathodes for Rechargeable Lithium and Lithium-Ion Batteries. Energy Environ. Sci. 2017, 10, 435–459. [Google Scholar] [CrossRef]
- Manthiram, A.; Fu, Y.; Chung, S.-H.; Zu, C.; Su, Y.-S. Rechargeable Lithium–Sulfur Batteries. Chem. Rev. 2014, 114, 11751–11787. [Google Scholar] [CrossRef] [PubMed]
- Olbrich, L.F.; Xiao, A.W.; Pasta, M. Conversion-Type Fluoride Cathodes: Current State of the Art. Curr. Opin. Electrochem. 2021, 30, 100779. [Google Scholar] [CrossRef]
- Xu, J.; Ma, J.; Fan, Q.; Guo, S.; Dou, S. Recent Progress in the Design of Advanced Cathode Materials and Battery Models for High-Performance Lithium-X (X = O2, S, Se, Te, I2, Br2) Batteries. Adv. Mater. 2017, 29, 1606454. [Google Scholar] [CrossRef]
- Deng, N.; Feng, Y.; Wang, G.; Wang, X.; Wang, L.; Li, Q.; Zhang, L.; Kang, W.; Cheng, B.; Liu, Y. Rational Structure Designs of 2D Materials and Their Applications toward Advanced Lithium-Sulfur Battery and Lithium-Selenium Battery. Chem. Eng. J. 2020, 401, 125976. [Google Scholar] [CrossRef]
- Su, Y.-S.; Fu, Y.; Cochell, T.; Manthiram, A. A Strategic Approach to Recharging Lithium-Sulphur Batteries for Long Cycle Life. Nat. Commun. 2013, 4, 2985. [Google Scholar] [CrossRef] [Green Version]
- Manthiram, A.; Fu, Y.; Su, Y.-S. Challenges and Prospects of Lithium–Sulfur Batteries. Acc. Chem. Res. 2013, 46, 1125–1134. [Google Scholar] [CrossRef]
- Luo, C.; Xu, Y.; Zhu, Y.; Liu, Y.; Zheng, S.; Liu, Y.; Langrock, A.; Wang, C. Selenium@Mesoporous Carbon Composite with Superior Lithium and Sodium Storage Capacity. ACS Nano 2013, 7, 8003–8010. [Google Scholar] [CrossRef] [PubMed]
- Cabana, J.; Monconduit, L.; Larcher, D.; Palacín, M.R. Beyond Intercalation-Based Li-Ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions. Adv. Mater. 2010, 22, E170–E192. [Google Scholar] [CrossRef] [PubMed]
- Jache, B.; Mogwitz, B.; Klein, F.; Adelhelm, P. Copper Sulfides for Rechargeable Lithium Batteries: Linking Cycling Stability to Electrolyte Composition. J. Power Sources 2014, 247, 703–711. [Google Scholar] [CrossRef]
- Xiao, S.; Li, X.; Sun, W.; Guan, B.; Wang, Y. General and Facile Synthesis of Metal Sulfide Nanostructures: In Situ Microwave Synthesis and Application as Binder-Free Cathode for Li-Ion Batteries. Chem. Eng. J. 2016, 306, 251–259. [Google Scholar] [CrossRef]
- Wang, J.; Chew, S.Y.; Wexler, D.; Wang, G.X.; Ng, S.H.; Zhong, S.; Liu, H.K. Nanostructured Nickel Sulfide Synthesized via a Polyol Route as a Cathode Material for the Rechargeable Lithium Battery. Electrochem. Commun. 2007, 9, 1877–1880. [Google Scholar] [CrossRef]
- Yufit, V.; Freedman, K.; Nathan, M.; Burstein, L.; Golodnitsky, D.; Peled, E. Thin-Film Iron Sulfide Cathodes for Lithium and Li-Ion/Polymer Electrolyte Microbatteries. Electrochim. Acta 2004, 50, 417–420. [Google Scholar] [CrossRef]
- Hua, X.; Eggeman, A.S.; Castillo-Martínez, E.; Robert, R.; Geddes, H.S.; Lu, Z.; Pickard, C.J.; Meng, W.; Wiaderek, K.M.; Pereira, N.; et al. Revisiting Metal Fluorides as Lithium-Ion Battery Cathodes. Nat. Mater. 2021, 20, 841–850. [Google Scholar] [CrossRef] [PubMed]
- Yamakawa, N.; Jiang, M.; Key, B.; Grey, C.P. Identifying the Local Structures Formed during Lithiation of the Conversion Material, Iron Fluoride, in a Li Ion Battery: A Solid-State NMR, X-Ray Diffraction, and Pair Distribution Function Analysis Study. J. Am. Chem. Soc. 2009, 131, 10525–10536. [Google Scholar] [CrossRef]
- Li, L.; Jacobs, R.; Gao, P.; Gan, L.; Wang, F.; Morgan, D.; Jin, S. Origins of Large Voltage Hysteresis in High-Energy-Density Metal Fluoride Lithium-Ion Battery Conversion Electrodes. J. Am. Chem. Soc. 2016, 138, 2838–2848. [Google Scholar] [CrossRef] [Green Version]
- Wu, F.; Srot, V.; Chen, S.; Lorger, S.; Aken, P.A.; Maier, J.; Yu, Y. 3D Honeycomb Architecture Enables a High-Rate and Long-Life Iron (III) Fluoride–Lithium Battery. Adv. Mater. 2019, 31, 1905146. [Google Scholar] [CrossRef] [PubMed]
- Gu, Z.; Xin, X.; Xu, Z.; He, J.; Wu, J.; Sun, Y.; Yao, X. Garnet Electrolyte-Based Integrated Architecture for High-Performance All-Solid-State Lithium-Oxygen Batteries. Adv. Funct. Mater. 2023, 2301583. [Google Scholar] [CrossRef]
- Yi, X.; Liu, X.; Qin, B.; Zhao, X.; Leong, K.W.; Pan, W.; Jiang, K.; Ma, S.; Hao, Z.; Leung, D.Y.C.; et al. High-Energy Composite Cathode for Solid-State Lithium-Oxygen Battery Boosted by Ultrafine Carbon Nanotube Catalysts and Amorphous Lithium Peroxide. Mater. Today Chem. 2023, 29, 101430. [Google Scholar] [CrossRef]
- Liu, Z.; Zhao, N.; Zhao, X.; Wang, C.; Zhang, T.; Xu, S.; Guo, X. Combination of Li-Rich Layered-Oxide with O2 Cathodes for High-Energy Li-Ion/Li-O2 Hybrid Batteries. Appl. Phys. Lett. 2022, 120, 193901. [Google Scholar] [CrossRef]
- Hou, Y.; Chen, Z.; Zhang, R.; Cui, H.; Yang, Q.; Zhi, C. Recent Advances and Interfacial Challenges in Solid-state Electrolytes for Rechargeable Li-air Batteries. Exploration 2023, 20220051. [Google Scholar] [CrossRef]
- Xia, S.; Wu, X.; Zhang, Z.; Cui, Y.; Liu, W. Practical Challenges and Future Perspectives of All-Solid-State Lithium-Metal Batteries. Chem 2019, 5, 753–785. [Google Scholar] [CrossRef]
- Shen, Y.; Zhang, Y.; Han, S.; Wang, J.; Peng, Z.; Chen, L. Unlocking the Energy Capabilities of Lithium Metal Electrode with Solid-State Electrolytes. Joule 2018, 2, 1674–1689. [Google Scholar] [CrossRef] [Green Version]
- Tufail, M.K.; Zhai, P.; Jia, M.; Zhao, N.; Guo, X. Design of Solid Electrolytes with Fast Ion Transport: Computation-Driven and Practical Approaches. Energy Mater. Adv. 2023, 4, 0015. [Google Scholar] [CrossRef]
- Wan, J.; Xie, J.; Mackanic, D.G.; Burke, W.; Bao, Z.; Cui, Y. Status, Promises, and Challenges of Nanocomposite Solid-State Electrolytes for Safe and High Performance Lithium Batteries. Mater. Today Nano 2018, 4, 1–16. [Google Scholar] [CrossRef]
- Cheng, X.-B.; Zhao, C.-Z.; Yao, Y.-X.; Liu, H.; Zhang, Q. Recent Advances in Energy Chemistry between Solid-State Electrolyte and Safe Lithium-Metal Anodes. Chem 2019, 5, 74–96. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Q.; Stalin, S.; Zhao, C.-Z.; Archer, L.A. Designing Solid-State Electrolytes for Safe, Energy-Dense Batteries. Nat. Rev. Mater. 2020, 5, 229–252. [Google Scholar] [CrossRef]
- Černý, R.; Murgia, F.; Brighi, M. Metal Hydroborates: From Hydrogen Stores to Solid Electrolytes. J. Alloys Compd. 2022, 895, 162659. [Google Scholar] [CrossRef]
- Dimitrievska, M.; Shea, P.; Kweon, K.E.; Bercx, M.; Varley, J.B.; Tang, W.S.; Skripov, A.V.; Stavila, V.; Udovic, T.J.; Wood, B.C. Carbon Incorporation and Anion Dynamics as Synergistic Drivers for Ultrafast Diffusion in Superionic LiCB11H12 and NaCB11H12. Adv. Energy Mater. 2018, 8, 1703422. [Google Scholar] [CrossRef]
- Duchêne, L.; Remhof, A.; Hagemann, H.; Battaglia, C. Status and Prospects of Hydroborate Electrolytes for All-Solid-State Batteries. Energy Storage Mater. 2020, 25, 782–794. [Google Scholar] [CrossRef]
- Li, X.; Liu, J.; Banis, M.N.; Lushington, A.; Li, R.; Cai, M.; Sun, X. Atomic Layer Deposition of Solid-State Electrolyte Coated Cathode Materials with Superior High-Voltage Cycling Behavior for Lithium Ion Battery Application. Energy Environ. Sci. 2014, 7, 768–778. [Google Scholar] [CrossRef]
- Wang, C.; Fu, K.; Kammampata, S.P.; McOwen, D.W.; Samson, A.J.; Zhang, L.; Hitz, G.T.; Nolan, A.M.; Wachsman, E.D.; Mo, Y.; et al. Garnet-Type Solid-State Electrolytes: Materials, Interfaces, and Batteries. Chem. Rev. 2020, 120, 4257–4300. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Yuan, L.; Zhang, W.; Li, Z.; Xie, X.; Huang, Y. Reducing the Thickness of Solid-State Electrolyte Membranes for High-Energy Lithium Batteries. Energy Environ. Sci. 2021, 14, 12–36. [Google Scholar] [CrossRef]
- Umeshbabu, E.; Zheng, B.; Yang, Y. Recent Progress in All-Solid-State Lithium−Sulfur Batteries Using High Li-Ion Conductive Solid Electrolytes. Electrochem. Energ. Rev. 2019, 2, 199–230. [Google Scholar] [CrossRef]
- Li, S.; Zhang, W.; Zheng, J.; Lv, M.; Song, H.; Du, L. Inhibition of Polysulfide Shuttles in Li–S Batteries: Modified Separators and Solid-State Electrolytes. Adv. Energy Mater. 2021, 11, 2000779. [Google Scholar] [CrossRef]
- Su, Y.-S.; Fu, Y.; Guo, B.; Dai, S.; Manthiram, A. Fast, Reversible Lithium Storage with a Sulfur/Long-Chain-Polysulfide Redox Couple. Chem. Eur. J. 2013, 19, 8621–8626. [Google Scholar] [CrossRef]
- Fu, Y.; Su, Y.-S.; Manthiram, A. Highly Reversible Lithium/Dissolved Polysulfide Batteries with Carbon Nanotube Electrodes. Angew. Chem. Int. Ed. 2013, 52, 6930–6935. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Danilov, D.L.; Eichel, R.; Notten, P.H.L. Host Materials Anchoring Polysulfides in Li–S Batteries Reviewed. Adv. Energy Mater. 2021, 11, 2001304. [Google Scholar] [CrossRef]
- Nagao, M.; Hayashi, A.; Tatsumisago, M. Sulfur–Carbon Composite Electrode for All-Solid-State Li/S Battery with Li2S–P2S5 Solid Electrolyte. Electrochim. Acta 2011, 56, 6055–6059. [Google Scholar] [CrossRef]
- Lei, D.; Shi, K.; Ye, H.; Wan, Z.; Wang, Y.; Shen, L.; Li, B.; Yang, Q.-H.; Kang, F.; He, Y.-B. Progress and Perspective of Solid-State Lithium-Sulfur Batteries. Adv. Funct. Mater. 2018, 28, 1707570. [Google Scholar] [CrossRef]
- Gocheva, I.D.; Nishijima, M.; Doi, T.; Okada, S.; Yamaki, J.; Nishida, T. Mechanochemical Synthesis of NaMF3 (M=Fe, Mn, Ni) and Their Electrochemical Properties as Positive Electrode Materials for Sodium Batteries. J. Power Sources 2009, 187, 247–252. [Google Scholar] [CrossRef]
- Yang, Z.; Guo, J.; Das, S.K.; Yu, Y.; Zhou, Z.; Abruña, H.D.; Archer, L.A. In Situ Synthesis of Lithium Sulfide–Carbon Composites as Cathode Materials for Rechargeable Lithium Batteries. J. Mater. Chem. A 2013, 1, 1433–1440. [Google Scholar] [CrossRef]
- Shit, S.C.; Khilari, S.; Mondal, I.; Pradhan, D.; Mondal, J. The Design of a New Cobalt Sulfide Nanoparticle Implanted Porous Organic Polymer Nanohybrid as a Smart and Durable Water-Splitting Photoelectrocatalyst. Chem. Eur. J. 2017, 23, 14827–14838. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Liang, J.; Chen, N.; Luo, J.; Adair, K.R.; Wang, C.; Banis, M.N.; Sham, T.; Zhang, L.; Zhao, S.; et al. Water-Mediated Synthesis of a Superionic Halide Solid Electrolyte. Angew. Chem. 2019, 131, 16579–16584. [Google Scholar] [CrossRef]
- Zhu, Y.; Mo, Y. Materials Design Principles for Air-Stable Lithium/Sodium Solid Electrolytes. Angew. Chem. Int. Ed. 2020, 59, 17472–17476. [Google Scholar] [CrossRef]
- Ye, T.; Li, L.; Zhang, Y. Recent Progress in Solid Electrolytes for Energy Storage Devices. Adv. Funct. Mater. 2020, 30, 2000077. [Google Scholar] [CrossRef]
- Wang, K.; Ren, Q.; Gu, Z.; Duan, C.; Wang, J.; Zhu, F.; Fu, Y.; Hao, J.; Zhu, J.; He, L.; et al. A Cost-Effective and Humidity-Tolerant Chloride Solid Electrolyte for Lithium Batteries. Nat. Commun. 2021, 12, 4410. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Xu, H.; Chien, P.; Wu, N.; Xin, S.; Xue, L.; Park, K.; Hu, Y.; Goodenough, J.B. A Perovskite Electrolyte That Is Stable in Moist Air for Lithium-Ion Batteries. Angew. Chem. Int. Ed. 2018, 57, 8587–8591. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Pollard, T.P.; Ren, X.; Kim, D.; Magasinski, A.; Borodin, O.; Yushin, G. Fading Mechanisms and Voltage Hysteresis in FeF2 –NiF2 Solid Solution Cathodes for Lithium and Lithium-Ion Batteries. Small 2019, 15, 1804670. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Turcheniuk, K.; Ren, X.; Magasinski, A.; Song, A.-Y.; Xiao, Y.; Kim, D.; Yushin, G. Cycle Stability of Conversion-Type Iron Fluoride Lithium Battery Cathode at Elevated Temperatures in Polymer Electrolyte Composites. Nat. Mater. 2019, 18, 1343–1349. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Yang, K.; Sun, S.; Ma, Q.; Yi, G.; Chen, X.; Wang, Z.; Yan, W.; Liu, X.; Cai, Q.; et al. Advances in Thermal-related Analysis Techniques for Solid-state Lithium Batteries. InfoMat 2023, 5, e12401. [Google Scholar] [CrossRef]
- Zhang, X.-D.; Yue, F.-S.; Liang, J.-Y.; Shi, J.-L.; Li, H.; Guo, Y.-G. Structure Design of Cathode Electrodes for Solid-State Batteries: Challenges and Progress. Small Struct. 2020, 1, 2000042. [Google Scholar] [CrossRef]
- Ye, H.; Li, M.; Liu, T.; Li, Y.; Lu, J. Activating Li2S as the Lithium-Containing Cathode in Lithium–Sulfur Batteries. ACS Energy Lett. 2020, 5, 2234–2245. [Google Scholar] [CrossRef]
- Xia, S.; Huang, W.; Yan, W.; Yuan, X.; Chen, X.; Liu, L.; Fu, L.; Zhu, Y.; Huang, Q.; Wu, Y.; et al. A Separator Modified with Rutile Titania and Three-Dimensional Interconnected Graphene-Like Carbon for Advanced Li−S Batteries. ChemElectroChem 2022, 9, e202200301. [Google Scholar] [CrossRef]
- Xia, S.; Zhou, Q.; Peng, B.; Zhang, X.; Liu, L.; Guo, F.; Fu, L.; Wang, T.; Liu, Y.; Wu, Y. Co3O4@MWCNT Modified Separators for Li–S Batteries with Improved Cycling Performance. Mater. Today Energy 2022, 30, 101163. [Google Scholar] [CrossRef]
- Yan, W.; Yang, J.; Xiong, X.; Fu, L.; Chen, Y.; Wang, Z.; Zhu, Y.; Zhao, J.; Wang, T.; Wu, Y. Versatile Asymmetric Separator with Dendrite-Free Alloy Anode Enables High-Performance Li–S Batteries. Adv. Sci. 2022, 9, 2202204. [Google Scholar] [CrossRef]
- Yang, X.; Luo, J.; Sun, X. Towards High-Performance Solid-State Li–S Batteries: From Fundamental Understanding to Engineering Design. Chem. Soc. Rev. 2020, 49, 2140–2195. [Google Scholar] [CrossRef] [PubMed]
- Yan, W.; Gao, X.; Yang, J.; Xiong, X.; Xia, S.; Huang, W.; Chen, Y.; Fu, L.; Zhu, Y.; Wu, Y. Boosting Polysulfide Catalytic Conversion and Facilitating Li+ Transportation by Ion-Selective COFs Composite Nanowire for Li–S Batteries. Small 2022, 18, 2106679. [Google Scholar] [CrossRef]
- Rafie, A.; Kim, J.W.; Sarode, K.K.; Kalra, V. A Review on the Use of Carbonate-Based Electrolytes in Li-S Batteries: A Comprehensive Approach Enabling Solid-Solid Direct Conversion Reaction. Energy Storage Mater. 2022, 50, 197–224. [Google Scholar] [CrossRef]
- Wang, D.-W.; Zhou, G.; Li, F.; Wu, K.-H.; Lu, G.Q.M.; Cheng, H.-M.; Gentle, I.R. A Microporous–Mesoporous Carbon with Graphitic Structure for a High-Rate Stable Sulfur Cathode in Carbonate Solvent-Based Li–S Batteries. Phys. Chem. Chem. Phys. 2012, 14, 8703. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Wang, J.; Yang, J.; Miao, X.; Chen, R.; Qian, J.; Miao, R. Enhanced Performance of a Lithium-Sulfur Battery Using a Carbonate-Based Electrolyte. Angew. Chem. Int. Ed. 2016, 55, 10372–10375. [Google Scholar] [CrossRef]
- Yao, X.; Huang, N.; Han, F.; Zhang, Q.; Wan, H.; Mwizerwa, J.P.; Wang, C.; Xu, X. High-Performance All-Solid-State Lithium–Sulfur Batteries Enabled by Amorphous Sulfur-Coated Reduced Graphene Oxide Cathodes. Adv. Energy Mater. 2017, 7, 1602923. [Google Scholar] [CrossRef]
- Xu, R.; Yue, J.; Liu, S.; Tu, J.; Han, F.; Liu, P.; Wang, C. Cathode-Supported All-Solid-State Lithium–Sulfur Batteries with High Cell-Level Energy Density. ACS Energy Lett. 2019, 4, 1073–1079. [Google Scholar] [CrossRef]
- Tao, X.; Liu, Y.; Liu, W.; Zhou, G.; Zhao, J.; Lin, D.; Zu, C.; Sheng, O.; Zhang, W.; Lee, H.-W.; et al. Solid-State Lithium–Sulfur Batteries Operated at 37 °C with Composites of Nanostructured Li7La3Zr2O12/Carbon Foam and Polymer. Nano Lett. 2017, 17, 2967–2972. [Google Scholar] [CrossRef]
- Tao, T.; Zheng, Z.; Gao, Y.; Yu, B.; Fan, Y.; Chen, Y.; Huang, S.; Lu, S. Understanding the Role of Interfaces in Solid-State Lithium-Sulfur Batteries. Energy Mater 2022, 2, 35. [Google Scholar] [CrossRef]
- Manthiram, A.; Yu, X.; Wang, S. Lithium Battery Chemistries Enabled by Solid-State Electrolytes. Nat. Rev. Mater. 2017, 2, 16103. [Google Scholar] [CrossRef]
- Sakuda, A.; Hayashi, A.; Tatsumisago, M. Interfacial Observation between LiCoO2 Electrode and Li2S−P2S5 Solid Electrolytes of All-Solid-State Lithium Secondary Batteries Using Transmission Electron Microscopy. Chem. Mater. 2010, 22, 949–956. [Google Scholar] [CrossRef]
- Takada, K. Interfacial Nanoarchitectonics for Solid-State Lithium Batteries. Langmuir 2013, 29, 7538–7541. [Google Scholar] [CrossRef] [PubMed]
- Lightfoot, P.; Mehta, M.A.; Bruce, P.G. Crystal Structure of the Polymer Electrolyte Poly(Ethylene Oxide)3:LiCF3 SO3. Science 1993, 262, 883–885. [Google Scholar] [CrossRef] [PubMed]
- Croce, F.; Appetecchi, G.B.; Persi, L.; Scrosati, B. Nanocomposite Polymer Electrolytes for Lithium Batteries. Nature 1998, 394, 456–458. [Google Scholar] [CrossRef]
- Li, M.; Frerichs, J.E.; Kolek, M.; Sun, W.; Zhou, D.; Huang, C.J.; Hwang, B.J.; Hansen, M.R.; Winter, M.; Bieker, P. Solid-State Lithium–Sulfur Battery Enabled by Thio-LiSICON/Polymer Composite Electrolyte and Sulfurized Polyacrylonitrile Cathode. Adv. Funct. Mater. 2020, 30, 1910123. [Google Scholar] [CrossRef] [Green Version]
- Meng, X.; Liu, Y.; Ma, Y.; Boyjoo, Y.; Liu, J.; Qiu, J.; Wang, Z. Diagnosing and Correcting the Failure of the Solid-State Polymer Electrolyte for Enhancing Solid-State Lithium–Sulfur Batteries. Adv. Mater. 2023, 35, 2212039. [Google Scholar] [CrossRef]
- Zhang, N.; Wu, S.; Zheng, H.; Li, G.; Liu, H.; Duan, H. Recent Progress of Multilayer Polymer Electrolytes for Lithium Batteries. Energy Mater. 2023, 3, 300009. [Google Scholar] [CrossRef]
- Yu, X.; Bi, Z.; Zhao, F.; Manthiram, A. Polysulfide-Shuttle Control in Lithium-Sulfur Batteries with a Chemically/Electrochemically Compatible NaSICON-Type Solid Electrolyte. Adv. Energy Mater. 2016, 6, 1601392. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, Y.; You, Y.; Vinu, A.; Mai, L. NASICONs-type Solid-state Electrolytes: The History, Physicochemical Properties, and Challenges. Interdiscip. Mater. 2023, 2, 91–110. [Google Scholar] [CrossRef]
- Wang, L.; Wang, Y.; Xia, Y. A High Performance Lithium-Ion Sulfur Battery Based on a Li2S Cathode Using a Dual-Phase Electrolyte. Energy Environ. Sci. 2015, 8, 1551–1558. [Google Scholar] [CrossRef]
- Wang, D.-W.; Zeng, Q.; Zhou, G.; Yin, L.; Li, F.; Cheng, H.-M.; Gentle, I.R.; Lu, G.Q.M. Carbon–Sulfur Composites for Li–S Batteries: Status and Prospects. J. Mater. Chem. A 2013, 1, 9382. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Xia, X.; Zhong, Y.; Wu, J.; Xu, R.; Yao, Z.; Wang, D.; Tang, W.; Wang, X.; Tu, J. Porous Carbon Hosts for Lithium–Sulfur Batteries. Chem. Eur. J. 2019, 25, 3710–3725. [Google Scholar] [CrossRef]
- Borchardt, L.; Oschatz, M.; Kaskel, S. Carbon Materials for Lithium Sulfur Batteries—Ten Critical Questions. Chem. Eur. J. 2016, 22, 7324–7351. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.-G.; Xie, K.; Wei, B. Advanced Engineering of Nanostructured Carbons for Lithium–Sulfur Batteries. Nano Energy 2015, 15, 413–444. [Google Scholar] [CrossRef]
- Li, Z.; Huang, Y.; Yuan, L.; Hao, Z.; Huang, Y. Status and Prospects in Sulfur–Carbon Composites as Cathode Materials for Rechargeable Lithium–Sulfur Batteries. Carbon 2015, 92, 41–63. [Google Scholar] [CrossRef]
- Hou, L.-P.; Yuan, H.; Zhao, C.-Z.; Xu, L.; Zhu, G.-L.; Nan, H.-X.; Cheng, X.-B.; Liu, Q.-B.; He, C.-X.; Huang, J.-Q.; et al. Improved Interfacial Electronic Contacts Powering High Sulfur Utilization in All-Solid-State Lithium–Sulfur Batteries. Energy Storage Mater. 2020, 25, 436–442. [Google Scholar] [CrossRef]
- Li, X.; Liang, J.; Li, X.; Wang, C.; Luo, J.; Li, R.; Sun, X. High-Performance All-Solid-State Li–Se Batteries Induced by Sulfide Electrolytes. Energy Environ. Sci. 2018, 11, 2828–2832. [Google Scholar] [CrossRef]
- Gogia, A.; Vallo, N.; Subramanyam, G.; Fellner, J.P.; Kumar, J. Proof-of-Concept Molten Lithium–Selenium Battery. Energy Fuels 2021, 35, 20400–20405. [Google Scholar] [CrossRef]
- Li, X.; Liang, J.; Luo, J.; Wang, C.; Li, X.; Sun, Q.; Li, R.; Zhang, L.; Yang, R.; Lu, S.; et al. High-Performance Li–SeSx All-Solid-State Lithium Batteries. Adv. Mater. 2019, 31, 1808100. [Google Scholar] [CrossRef]
- Wang, S.; Tang, M.; Zhang, Q.; Li, B.; Ohno, S.; Walther, F.; Pan, R.; Xu, X.; Xin, C.; Zhang, W.; et al. Lithium Argyrodite as Solid Electrolyte and Cathode Precursor for Solid-State Batteries with Long Cycle Life. Adv. Energy Mater. 2021, 11, 2101370. [Google Scholar] [CrossRef]
- Ha Dao, A.; López-Aranguren, P.; Černý, R.; Guiader, O.; Zhang, J.; Cuevas, F.; Latroche, M.; Jordy, C. Improvement of the Ionic Conductivity on New Substituted Borohydride Argyrodites. Solid State Ion. 2019, 339, 114987. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, R.; Liu, T.; Xu, B.; Zhang, X.; Li, L.; Lin, Y.; Nan, C.-W.; Shen, Y. High Capacity and Superior Cyclic Performances of All-Solid-State Lithium Batteries Enabled by a Glass–Ceramics Solo. ACS Appl. Mater. Interfaces 2018, 10, 10029–10035. [Google Scholar] [CrossRef] [PubMed]
- Fan, H.-H.; Li, H.-H.; Huang, K.-C.; Fan, C.-Y.; Zhang, X.-Y.; Wu, X.-L.; Zhang, J.-P. Metastable Marcasite-FeS2 as a New Anode Material for Lithium Ion Batteries: CNFs-Improved Lithiation/Delithiation Reversibility and Li-Storage Properties. ACS Appl. Mater. Interfaces 2017, 9, 10708–10716. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Fan, X.; Suo, L.; Luo, C.; Gao, T.; Wang, C. Electrospun FeS2@Carbon Fiber Electrode as a High Energy Density Cathode for Rechargeable Lithium Batteries. ACS Nano 2016, 10, 1529–1538. [Google Scholar] [CrossRef] [PubMed]
- Shao-Horn, Y.; Osmialowski, S.; Horn, Q.C. Nano-FeS[Sub 2] for Commercial Li/FeS[Sub 2] Primary Batteries. J. Electrochem. Soc. 2002, 149, A1499. [Google Scholar] [CrossRef]
- Ulissi, U.; Ito, S.; Hosseini, S.M.; Varzi, A.; Aihara, Y.; Passerini, S. High Capacity All-Solid-State Lithium Batteries Enabled by Pyrite-Sulfur Composites. Adv. Energy Mater. 2018, 8, 1801462. [Google Scholar] [CrossRef]
- Pelé, V.; Flamary, F.; Bourgeois, L.; Pecquenard, B.; Le Cras, F. Perfect Reversibility of the Lithium Insertion in FeS2: The Combined Effects of All-Solid-State and Thin Film Cell Configurations. Electrochem. Commun. 2015, 51, 81–84. [Google Scholar] [CrossRef] [Green Version]
- Whiteley, J.M.; Taynton, P.; Zhang, W.; Lee, S.-H. Ultra-Thin Solid-State Li-Ion Electrolyte Membrane Facilitated by a Self-Healing Polymer Matrix. Adv. Mater. 2015, 27, 6922–6927. [Google Scholar] [CrossRef]
- Whiteley, J.M.; Hafner, S.; Han, S.S.; Kim, S.C.; Oh, K.H.; Lee, S.-H. FeS2-Imbedded Mixed Conducting Matrix as a Solid Battery Cathode. Adv. Energy Mater. 2016, 6, 1600495. [Google Scholar] [CrossRef]
- Zhou, L.; Tufail, M.K.; Yang, L.; Ahmad, N.; Chen, R.; Yang, W. Cathode-Doped Sulfide Electrolyte Strategy for Boosting All-Solid-State Lithium Batteries. Chem. Eng. J. 2020, 391, 123529. [Google Scholar] [CrossRef]
- Wan, H.; Liu, G.; Li, Y.; Weng, W.; Mwizerwa, J.P.; Tian, Z.; Chen, L.; Yao, X. Transitional Metal Catalytic Pyrite Cathode Enables Ultrastable Four-Electron-Based All-Solid-State Lithium Batteries. ACS Nano 2019, 13, 9551–9560. [Google Scholar] [CrossRef]
- Zhang, B.-W.; Sheng, T.; Liu, Y.-D.; Wang, Y.-X.; Zhang, L.; Lai, W.-H.; Wang, L.; Yang, J.; Gu, Q.-F.; Chou, S.-L.; et al. Atomic Cobalt as an Efficient Electrocatalyst in Sulfur Cathodes for Superior Room-Temperature Sodium-Sulfur Batteries. Nat. Commun. 2018, 9, 4082. [Google Scholar] [CrossRef] [PubMed]
- Dai, C.; Lim, J.-M.; Wang, M.; Hu, L.; Chen, Y.; Chen, Z.; Chen, H.; Bao, S.-J.; Shen, B.; Li, Y.; et al. Honeycomb-Like Spherical Cathode Host Constructed from Hollow Metallic and Polar Co9S8 Tubules for Advanced Lithium-Sulfur Batteries. Adv. Funct. Mater. 2018, 28, 1704443. [Google Scholar] [CrossRef]
- He, P.; Yan, M.; Zhang, G.; Sun, R.; Chen, L.; An, Q.; Mai, L. Layered VS2 Nanosheet-Based Aqueous Zn Ion Battery Cathode. Adv. Energy Mater. 2017, 7, 1601920. [Google Scholar] [CrossRef]
- Qi, H.; Wang, L.; Zuo, T.; Deng, S.; Li, Q.; Liu, Z.; Hu, P.; He, X. Hollow Structure VS2@Reduced Graphene Oxide (RGO) Architecture for Enhanced Sodium-Ion Battery Performance. ChemElectroChem 2020, 7, 78–85. [Google Scholar] [CrossRef] [Green Version]
- Su, Y.-S.; Manthiram, A. Sulfur/Lithium-Insertion Compound Composite Cathodes for Li–S Batteries. J. Power Sources 2014, 270, 101–105. [Google Scholar] [CrossRef]
- Chung, S.-H.; Luo, L.; Manthiram, A. TiS2—Polysulfide Hybrid Cathode with High Sulfur Loading and Low Electrolyte Consumption for Lithium–Sulfur Batteries. ACS Energy Lett. 2018, 3, 568–573. [Google Scholar] [CrossRef]
- Xu, S.; Kwok, C.Y.; Zhou, L.; Zhang, Z.; Kochetkov, I.; Nazar, L.F. A High Capacity All Solid-State Li-Sulfur Battery Enabled by Conversion-Intercalation Hybrid Cathode Architecture. Adv. Funct. Mater. 2021, 31, 2004239. [Google Scholar] [CrossRef]
- Shin, B.R.; Nam, Y.J.; Kim, J.W.; Lee, Y.-G.; Jung, Y.S. Interfacial Architecture for Extra Li+ Storage in All-Solid-State Lithium Batteries. Sci. Rep. 2014, 4, 5572. [Google Scholar] [CrossRef] [Green Version]
- Badway, F.; Pereira, N.; Cosandey, F.; Amatucci, G.G. Carbon-Metal Fluoride Nanocomposites: Structure and Electrochemistry of FeF3: C. J. Electrochem. Soc. 2003, 150, A1209. [Google Scholar] [CrossRef]
- Badway, F.; Cosandey, F.; Pereira, N.; Amatucci, G.G. Carbon Metal Fluoride Nanocomposites: High-Capacity Reversible Metal Fluoride Conversion Materials as Rechargeable Positive Electrodes for Li Batteries. J. Electrochem. Soc. 2003, 150, A1318. [Google Scholar] [CrossRef]
- Li, H.; Richter, G.; Maier, J. Reversible Formation and Decomposition of LiF Clusters Using Transition Metal Fluorides as Precursors and Their Application in Rechargeable Li Batteries. Adv. Mater. 2003, 15, 736–739. [Google Scholar] [CrossRef]
- Camargos, P.H.; dos Santos, P.H.J.; dos Santos, I.R.; Ribeiro, G.S.; Caetano, R.E. Perspectives on Li-ion Battery Categories for Electric Vehicle Applications: A Review of State of the Art. Int. J. Energy Res. 2022, 46, 19258–19268. [Google Scholar] [CrossRef]
- Nitta, N.; Wu, F.; Lee, J.T.; Yushin, G. Li-Ion Battery Materials: Present and Future. Mater. Today 2015, 18, 252–264. [Google Scholar] [CrossRef]
- Li, M.; Lu, J.; Chen, Z.; Amine, K. 30 Years of Lithium-Ion Batteries. Adv. Mater. 2018, 30, 1800561. [Google Scholar] [CrossRef] [Green Version]
- Amatucci, G.G.; Pereira, N. Fluoride Based Electrode Materials for Advanced Energy Storage Devices. J. Fluor. Chem. 2007, 128, 243–262. [Google Scholar] [CrossRef]
- Wang, F.; Robert, R.; Chernova, N.A.; Pereira, N.; Omenya, F.; Badway, F.; Hua, X.; Ruotolo, M.; Zhang, R.; Wu, L.; et al. Conversion Reaction Mechanisms in Lithium Ion Batteries: Study of the Binary Metal Fluoride Electrodes. J. Am. Chem. Soc. 2011, 133, 18828–18836. [Google Scholar] [CrossRef]
- Li, C.; Gu, L.; Tong, J.; Tsukimoto, S.; Maier, J. A Mesoporous Iron-Based Fluoride Cathode of Tunnel Structure for Rechargeable Lithium Batteries. Adv. Funct. Mater. 2011, 21, 1391–1397. [Google Scholar] [CrossRef]
- Jiang, J.; Li, L.; Xu, M.; Zhu, J.; Li, C.M. FeF3@Thin Nickel Ammine Nitrate Matrix: Smart Configurations and Applications as Superior Cathodes for Li-Ion Batteries. ACS Appl. Mater. Interfaces 2016, 8, 16240–16247. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, Y.; Yin, Y.; Fan, L.; Zhang, N. Packing FeF3·0.33H2O into Porous Graphene/Carbon Nanotube Network as High Volumetric Performance Cathode for Lithium Ion Battery. J. Power Sources 2020, 447, 227303. [Google Scholar] [CrossRef]
- Wygant, B.R.; Schorr, N.B.; Kolesnichenko, I.V.; Lambert, T.N. Nanoparticulate FeF2@C as a Li Battery Conversion Cathode. ACS Appl. Energy Mater. 2022, 5, 13346–13355. [Google Scholar] [CrossRef]
- Li, B.; Zhang, N.; Sun, K. Confined Iron Fluoride@CMK-3 Nanocomposite as an Ultrahigh Rate Capability Cathode for Li-Ion Batteries. Small 2014, 10, 2039–2046. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Hayner, C.M.; Kung, M.C.; Kung, H.H. Photothermal-Assisted Fabrication of Iron Fluoride–Graphene Composite Paper Cathodes for High-Energy Lithium-Ion Batteries. Chem. Commun. 2012, 48, 9909. [Google Scholar] [CrossRef]
- Li, J.; Fu, L.; Xu, Z.; Zhu, J.; Yang, W.; Li, D.; Zhou, L. Electrochemical Properties of Carbon-Wrapped FeF3 Nanocomposite as Cathode Material for Lithium Ion Battery. Electrochim. Acta 2018, 281, 88–98. [Google Scholar] [CrossRef]
- Xiao, A.W.; Lee, H.J.; Capone, I.; Robertson, A.; Wi, T.-U.; Fawdon, J.; Wheeler, S.; Lee, H.-W.; Grobert, N.; Pasta, M. Understanding the Conversion Mechanism and Performance of Monodisperse FeF2 Nanocrystal Cathodes. Nat. Mater. 2020, 19, 644–654. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Li, L.; Cao, Y.L.; Ai, X.P.; Yang, H.X. Reversible Three-Electron Redox Behaviors of FeF3 Nanocrystals as High-Capacity Cathode-Active Materials for Li-Ion Batteries. J. Phys. Chem. C 2010, 114, 3190–3195. [Google Scholar] [CrossRef]
- Gao, B.; Jalem, R.; Ma, Y.; Tateyama, Y. Li+ Transport Mechanism at the Heterogeneous Cathode/Solid Electrolyte Interface in an All-Solid-State Battery via the First-Principles Structure Prediction Scheme. Chem. Mater. 2020, 32, 85–96. [Google Scholar] [CrossRef]
- Lei, M.; Fan, S.; Yu, Y.; Hu, J.; Chen, K.; Gu, Y.; Wu, C.; Zhang, Y.; Li, C. NASICON-Based Solid State Li-Fe-F Conversion Batteries Enabled by Multi-Interface-Compatible Sericin Protein Buffer Layer. Energy Storage Mater. 2022, 47, 551–560. [Google Scholar] [CrossRef]
- Tian, H.-K.; Jalem, R.; Gao, B.; Yamamoto, Y.; Muto, S.; Sakakura, M.; Iriyama, Y.; Tateyama, Y. Electron and Ion Transfer across Interfaces of the NASICON-Type LATP Solid Electrolyte with Electrodes in All-Solid-State Batteries: A Density Functional Theory Study via an Explicit Interface Model. ACS Appl. Mater. Interfaces 2020, 12, 54752–54762. [Google Scholar] [CrossRef]
Cell Configuration | Temp. | Capacity | Rate | Cycle Life | Feature | Ref. |
---|---|---|---|---|---|---|
Chalcogen Cathode | ||||||
rGO@S‖Li10GeP2S12‖75Li2S/24P2S5/1P2O5‖Li | 60 °C | 830 mAh g−1 | 1 C | 750 | The conformal S coating minimizing interface resistance & stress/strain | [66] |
80Li2S/20LiI+LPS‖LPS+Kevlar‖Li | 25 °C | 537.8 mAh g−1 | 0.2 C | 100 | Thick cathode-supported all-solid-state lithium batteries | [67] |
S@LLZO@C‖PEO-LiClO4‖Li | 37 °C | >900 mAh g–1 | N/A | 90 | A LLZO nanoparticle-decorated porous carbon foam for high S utilization | [68] |
Li2S6‖LYZP‖Li | 25 °C | ≈1000 mAh g−1 | 0.2 C | 150 | A NaSICON solid-electrolyte/separator suppressing polysulfide crossover | [78] |
Se+Li3PS4‖Li3PS4‖Li or LiSn alloy | 25 °C | 652 mAh g−1 | 50 mA g−1 | 100 | The Se cathode improving charge transfer in solid-state batteries | [87] |
Se‖Li7La3Zr2O12‖Li | 465 °C | 824 mAh g−1 | 30 mA g−1 | N/A | A high-temperature molten Li-Se battery for stable OCV and cyclability | [88] |
SeS2‖Li10GeP2S12+Li3PS4‖Li | 25 °C | 1100 mAh g−1 | 50 mA g−1 | 100 | SeSx solid solutions introduced into S cathode for enhanced utilization | [89] |
LPSCB-MWCNTs‖Li6PS5Cl0.5Br0.5‖Li-In | 25 °C | 12.56 mAh cm−2 | ≈0.7 C | 1030 | The electrochemically decomposed LPSCB forming a multiphase cathode | [90] |
Chalcogenide Cathode | ||||||
FeS2‖99.5(70Li2S/30P2S5)/0.5FeS2‖Li–In | 25 °C | 543 mAh g−1 | 0.03 mA cm−2 | 20 | A FeS2-doped solid electrolyte lowering interfacial resistance | [100] |
Co0.1Fe0.9S2‖Li10GeP2S12/75Li2S/24P2S5/1P2O5‖Li | N/A | 685.8 mAh g−1 | 500 mA g–1 | 100 | The catalytic cobalt in FeS2 cathode enhancing electrochemical activity | [101] |
S+VS2+Li3PS4‖Li3PS4‖Li-In | 25 °C | 7.8 mAh cm−2 | 0.12 mA cm−2 | 200 | The hybrid S/VS2 cathode achieving high sulfur utilization | [108] |
TiS2+75Li2S/25P2S5‖75Li2S/25P2S5‖Li0.5In | 30 °C | 837 mAh g−1 | 50 mA g−1 | 60 | An amorphous Li-Ti-P-S phase offering increased capacity | [109] |
Halide Cathode | ||||||
FeF3‖IL@SPF+LATP‖Li | 25 °C | 524.3 mAh g−1 | 0.1 C | 100 | A conformal sericin protein film stabilizing the Li-LATP interface | [128] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chiu, K.-C.; Chang, J.-K.; Su, Y.-S. Recent Configurational Advances for Solid-State Lithium Batteries Featuring Conversion-Type Cathodes. Molecules 2023, 28, 4579. https://doi.org/10.3390/molecules28124579
Chiu K-C, Chang J-K, Su Y-S. Recent Configurational Advances for Solid-State Lithium Batteries Featuring Conversion-Type Cathodes. Molecules. 2023; 28(12):4579. https://doi.org/10.3390/molecules28124579
Chicago/Turabian StyleChiu, Kuan-Cheng, Jeng-Kuei Chang, and Yu-Sheng Su. 2023. "Recent Configurational Advances for Solid-State Lithium Batteries Featuring Conversion-Type Cathodes" Molecules 28, no. 12: 4579. https://doi.org/10.3390/molecules28124579
APA StyleChiu, K. -C., Chang, J. -K., & Su, Y. -S. (2023). Recent Configurational Advances for Solid-State Lithium Batteries Featuring Conversion-Type Cathodes. Molecules, 28(12), 4579. https://doi.org/10.3390/molecules28124579