New Trends in Supercritical Fluid Technology and Pressurized Liquids for the Extraction and Recovery of Bioactive Compounds from Agro-Industrial and Marine Food Waste
Abstract
:1. Introduction
2. Historical Background
3. Pressurized Liquid Extraction (PLE)
3.1. Principles of Pressurized Liquid Extraction (PLE)
3.2. Mechanism and Components of Pressurized Liquid Extraction (PLE)
3.3. Factors That Affect Pressurized Liquid Extraction (PLE)
3.3.1. Temperature
3.3.2. Pressure
3.3.3. Solvent
3.3.4. Plant Matrix
3.3.5. Extraction Time
3.3.6. Energy and Environmental Impact
3.3.7. Chemical and Sensory
4. Supercritical Fluid Extraction (SFE)
4.1. Principles of Supercritical Fluid Extraction (SFE)
4.2. Mechanism and Components of Supercritical Fluid Extraction (SFE)
4.3. Factors That Affect Supercritical Fluid Extraction (SFE)
4.3.1. Temperature and Pressure
4.3.2. Particle Size and Plant Matrix
4.3.3. Extraction Time
4.3.4. Co-Solvents
5. Recovery of Bioactive Components by Pressurized Liquid Extraction (PLE) and Supercritical Fluid Extraction (SFE) from the Food Matrix and Agro-Industrial Waste
6. Application of Bioactive Compounds as Ingredients in Health Food Formulation and Their Preventive Effect on Health
6.1. Bioactive Compounds and Health Effect
6.2. Food Waste and Novel Bioactive Compounds
7. Advantages and Disadvantages of Pressurized Liquid Extraction (PLE) and Supercritical Fluid Extraction (SFE)
7.1. Advantages and Disadvantages of PLE
7.2. Advantages and Disadvantages of SFE
7.3. Comparison between SFE and PLE
8. Future Expectations on the Use of Pressurized Liquid Extraction (PLE) and Supercritical Fluid Extraction (SFE) Technology
8.1. Sequential Biorefining of Bioactive Compounds and Components by SFE-PLE
8.2. Microencapsulation and Nanoencapsulation by Pressurized Liquid Extraction (PLE) and Supercritical Fluid Extraction (SFE)
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vojvodić, A.; Komes, D.; Vovk, I.; Belščak-Cvitanović, A.; Bušić, A. Compositional evaluation of selected agro-industrial wastes as valuable sources for the recovery of complex carbohydrates. Food Res. Int. 2016, 89, 565–573. [Google Scholar] [CrossRef] [PubMed]
- Castro-Muñoz, R.; Barragán-Huerta, B.E.; Fíla, V.; Denis, P.C.; Ruby-Figueroa, R. Current Role of Membrane Technology: From the Treatment of Agro-Industrial by-Products up to the Valorization of Valuable Compounds. Waste Biomass Valorization 2017, 9, 513–529. [Google Scholar] [CrossRef]
- Alvarez-Rivera, G.; Bueno, M.; Ballesteros-Vivas, D.; Mendiola, J.A.; Ibañez, E. Pressurized liquid extraction. In Liquid-Phase Extraction; Elsevier: Amsterdam, The Netherlands, 2019; pp. 375–398. [Google Scholar]
- Pattnaik, M.; Pandey, P.; Martin, G.J.O.; Mishra, H.N.; Ashokkumar, M. Innovative Technologies for Extraction and Microencapsulation of Bioactives from Plant-Based Food Waste and Their Applications in Functional Food Development. Foods 2021, 10, 279. [Google Scholar] [CrossRef]
- Rodrigues, L.; Silva, I.; Poejo, J.; Serra, A.T.; Matias, A.A.; Simplício, A.L.; Bronze, M.R.; Duarte, C.M.M. Recovery of antioxidant and antiproliferative compounds from watercress using pressurized fluid extraction. RSC Adv. 2016, 6, 30905–30918. [Google Scholar] [CrossRef]
- Sousa, A.D.; Maia, A.I.V.; Rodrigues, T.H.S.; Canuto, K.M.; Ribeiro, P.R.V.; Pereira, R.D.C.A.; Vieira, R.F.; de Brito, E.S. Ultrasound-assisted and pressurized liquid extraction of phenolic compounds from Phyllanthus amarus and its composition evaluation by UPLC-QTOF. Ind. Crops Prod. 2016, 79, 91–103. [Google Scholar] [CrossRef]
- Awaluddin, S.A.; Thiruvenkadam, S.; Izhar, S.; Hiroyuki, Y.; Danquah, M.K.; Harun, R. Subcritical Water Technology for Enhanced Extraction of Biochemical Compounds from Chlorella vulgaris. BioMed Res. Int. 2016, 2016, 5816974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zakaria, S.M.; Mustapa Kamal, S.M.; Harun, M.R.; Omar, R.; Siajam, S.I. Extraction of antioxidants from Chlorella sp. using subcritical water treatment. IOP Conf. Ser. Mater. Sci. Eng. 2017, 206, 012035. [Google Scholar] [CrossRef]
- Gustinelli, G.; Eliasson, L.; Svelander, C.; Andlid, T.; Lundin, L.; Ahrné, L.; Alminger, M. Supercritical Fluid Extraction of Berry Seeds: Chemical Composition and Antioxidant Activity. J. Food Qual. 2018, 2018, 6046074. [Google Scholar] [CrossRef]
- Ortiz-Viedma, J.; Bastias-Montes, J.M.; Char, C.; Vega, C.; Quintriqueo, A.; Gallón-Bedoya, M.; Flores, M.; Aguilera, J.M.; Miranda, J.M.; Barros-Velázquez, J. Sequential Biorefining of Bioactive Compounds of High Functional Value from Calafate Pomace (Berberis microphylla) Using Supercritical CO2 and Pressurized Liquids. Antioxidants 2023, 12, 323. [Google Scholar] [CrossRef]
- Hubert, P.; Vitzthum, O.G. Fluid Extraction of Hops, Spices, and Tobacco with Supercritical Gases. Angew. Chem. Int. Ed. 1978, 17, 710–715. [Google Scholar] [CrossRef]
- Roselius, W.; Vitzthum, O.; Hubert, P. Method for the Reduction of Caffeine-Free Coffee Extract, De-Os Patent 2119678 (1973), UK Patent 1346134 (1974), Fr.Patent 2133157, US Patent 3843824 (1974). Available online: https://patentimages.storage.googleapis.com/b0/67/6a/33f677de898bbb/US3843824.pdf (accessed on 21 May 2023).
- Hawthome, S.B.; Gab, A.B.; Schmitt, V.; Miller, D.J. Effect of SFE Flow Rate on Extraction Rates: Classifying Sample Extraction Behavior. Anal. Chem. 1995, 67, 2723–2732. [Google Scholar] [CrossRef]
- Richter, B.E.; Jones, B.A.; Ezzell, J.L.; Porter, N.L.; Avdalovic, N.; Pohl, C. Accelerated Solvent Extraction: A Technique for Sample Preparation. Anal. Chem. 1996, 68, 1033–1039. [Google Scholar] [CrossRef]
- Kawamura, F.; Kikuchi, Y.; Ohira, T.; Yatagai, M. Accelerated Solvent Extraction of Taxanes Compounds from Taxus cuspidata. J. Wood Sci. 1997, 43, 971–974. [Google Scholar]
- Salces, R.M.A.; Korta, E.; Barranco, A.; Berrueta, L.; Gallo, B.; Vicente, F. Pressurized liquid extraction for the determination of polyphenols in apple. J. Chromatogr. A 2001, 933, 37–43. [Google Scholar] [CrossRef] [PubMed]
- King, J.W.; Srinivas, K. Multiple unit processing using sub- and supercritical fluids. J. Supercrit. Fluids 2009, 47, 598–610. [Google Scholar] [CrossRef]
- Klejdus, B.; Mikelová, R.; Adam, V.; Zehnálek, J.; Vacek, J.; Kizek, R.; Kuban, V. Liquid chromatographic-mass spectrometric determination of genistin and daidzin in soybean food samples after accelerated solvent extraction with modified content of extraction cell. Anal. Chim. Acta 2004, 517, 1–11. [Google Scholar] [CrossRef]
- Ameer, K.; Shahbaz, H.M.; Kwon, J.-H. Green Extraction Methods for Polyphenols from Plant Matrices and Their Byproducts: A Review. Compr. Rev. Food Sci. Food Saf. 2017, 16, 295–315. [Google Scholar] [CrossRef] [Green Version]
- Uematsu, M.; Franck, E.U. Static Dielectric Constant of Water and Steam. J. Phys. Chem. Ref. Data 1980, 9, 1291–1306. [Google Scholar] [CrossRef]
- Luthria, D.L. Influence of experimental conditions on the extraction of phenolic compounds from parsley (Petroselinum crispum) flakes using a pressurized liquid extractor. Food Chem. 2008, 107, 745–752. [Google Scholar] [CrossRef]
- Huaman-Castilla, N.L.; Martínez-Cifuentes, M.; Camilo, C.; Pedreschi, F.; Mariotti-Celis, M.; Pérez-Correa, J.R. The Impact of Temperature and Ethanol Concentration on the Global Recovery of Specific Polyphenols in an Integrated HPLE/RP Process on Carménère Pomace Extracts. Molecules 2019, 24, 3145. [Google Scholar] [CrossRef] [Green Version]
- Solana, M.; Boschiero, I.; Dall’acqua, S.; Bertucco, A. A comparison between supercritical fluid and pressurized liquid extraction methods for obtaining phenolic compounds from Asparagus officinalis L. J. Supercrit. Fluids 2015, 100, 201–208. [Google Scholar] [CrossRef]
- Hirondart, M.; Rombaut, N.; Fabiano-Tixier, A.S.; Bily, A.; Chemat, F. Comparison between Pressurized Liquid Extraction and Conventional Soxhlet Extraction for Rosemary Antioxidants, Yield, Composition, and Environmental Footprint. Foods 2020, 9, 584. [Google Scholar] [CrossRef]
- Wijngaard, H.; Brunton, N. The Optimization of Extraction of Antioxidants from Apple Pomace by Pressurized Liquids. J. Agric. Food Chem. 2009, 57, 10625–10631. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Zhan, X.; Zeng, Z.; Chen, R.; Li, H.; Xie, T.; Wang, S. Recent advances on supercritical fluid extraction of essential oils. Afr. J. Pharm. Pharmacol. 2011, 5, 1196–1211. [Google Scholar] [CrossRef] [Green Version]
- Salami, A.; Asefi, N.; Kenari, R.E.; Gharekhani, M. Extraction of pumpkin peel extract using supercritical CO2 and subcritical water technology: Enhancing oxidative stability of canola oil. J. Food Sci. Technol. 2020, 58, 1101–1109. [Google Scholar] [CrossRef] [PubMed]
- Xiong, K.; Chen, Y. Supercritical carbon dioxide extraction of essential oil from tangerine peel: Experimental optimization and kinetics modelling. Chem. Eng. Res. Des. 2020, 164, 412–423. [Google Scholar] [CrossRef]
- De Melo, M.M.R.; Silvestre, A.J.D.; Silva, C.M. Supercritical fluid extraction of vegetable matrices: Applications, trends and future perspectives of a convincing green technology. J. Supercrit. Fluids 2014, 92, 115–176. [Google Scholar] [CrossRef]
- Machida, H.; Takesue, M.; Smith, R.L. Green chemical processes with supercritical fluids: Properties, materials, separations and energy. J. Supercrit. Fluids 2011, 60, 2–15. [Google Scholar] [CrossRef]
- Aziz, A.H.A.; Putra, N.R.; Yian, L.N.; Rasidek, N.A.M.; Yunus, M.A.C. Parametric and kinetic study of supercritical carbon dioxide extraction on sinensetin from Orthosiphon stamineus Benth. leaves. Sep. Sci. Technol. 2021, 57, 444–453. [Google Scholar] [CrossRef]
- Devani, B.; Jani, B.; Balani, P.; Akbari, S. Optimization of supercritical CO2 extraction process for oleoresin from rotten onion waste. Food Bioprod. Process. 2019, 119, 287–295. [Google Scholar] [CrossRef]
- Louaer, M.; Zermane, A.; Besombes, C.; Allaf, K.; Meniai, A.H. Effect of the Instant Controlled Pressure-Drop DIC Technique on the Supercritical Carbon Dioxide Date Seeds Oil Extraction. Arab. J. Sci. Eng. 2020, 46, 6359–6367. [Google Scholar] [CrossRef]
- Al-Hamimi, S.; Turner, C. A Fast and Green Extraction Method for Berry Seed Lipid Extraction Using CO2 Expanded Ethanol Combined with Sonication. Eur. J. Lipid Sci. Technol. 2020, 122, 1900283. [Google Scholar] [CrossRef]
- Jaime, L.; Vázquez, E.; Fornari, T.; López-Hazas, M.d.C.; García-Risco, M.R.; Santoyo, S.; Reglero, G. Extraction of functional ingredients from spinach (Spinacia oleracea L.) using liquid solvent and supercritical CO2 extraction. J. Sci. Food Agric. 2015, 95, 722–729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piras, A.; Porcedda, S.; Falconieri, D.; Fais, A.; Era, B.; Carta, G.; Rosa, A. Supercritical extraction of volatile and fixed oils from Petroselinum crispum L. seeds: Chemical composition and biological activity. Nat. Prod. Res. 2020, 36, 1883–1888. [Google Scholar] [CrossRef]
- Nastić, N.; Lozano-Sánchez, J.; Borrás-Linares, I.; Švarc-Gajić, J.; Segura-Carretero, A. New technological approaches for recovering bioactive food constituents from sweet cherry (Prunus avium L.) stems. Phytochem. Anal. 2019, 31, 119–130. [Google Scholar] [CrossRef]
- Tripodo, G.; Ibáñez, E.; Cifuentes, A.; Gilbert-López, B.; Fanali, C. Optimization of pressurized liquid extraction by response surface methodology of Goji berry (Lycium barbarum L.) phenolic bioactive compounds. Electrophoresis. 2018, 39, 1673–1682. [Google Scholar] [CrossRef] [Green Version]
- del Garcia-Mendoza, M.; Espinosa-Pardo, F.A.; Baseggio, A.M.; Barbero, G.F.; Junior, M.R.M.; Rostagno, M.A.; Martínez, J. Extraction of phenolic compounds and anthocyanins from juçara (Euterpe edulis Mart.) residues using pressurized liquids and supercritical fluids. J. Supercrit. Fluids 2017, 119, 9–16. [Google Scholar] [CrossRef]
- Ibañez, E.; Kubátová, A.; Señoráns, F.J.; Cavero, S.; Reglero, G.; Hawthorne, S.B. Subcritical Water Extraction of Antioxidant Compounds from Rosemary Plants. J. Agric. Food Chem. 2002, 51, 375–382. [Google Scholar] [CrossRef]
- Bicchi, C.; Binello, A.; Rubiolo, P. Determination of phenolic diterpene antioxidants in rosemary (Rosmarinus officinalis L.) with different methods of extraction and analysis. Phytochem. Anal. 2000, 11, 236–242. [Google Scholar] [CrossRef]
- Vidovic, S.; Vladić, J.; Nastic, N.; Jokić, S. Subcritical and Supercritical Extraction in Food By-product and Food Waste Valorization. In Innovative Food Processing Technologies: A Comprehensive Review; Elsevier: Amsterdam, The Netherlands, 2020; pp. 705–721. [Google Scholar]
- Kim, W.-J.; Kim, J.; Veriansyah, B.; Kim, J.-D.; Lee, Y.-W.; Oh, S.-G.; Tjandrawinata, R.R. Extraction of bioactive components from Centella asiatica using subcritical water. J. Supercrit. Fluids 2009, 48, 211–216. [Google Scholar] [CrossRef]
- Miron, T.L.; Herrero, M.; Ibáñez, E. Enrichment of antioxidant compounds from lemon balm (Melissa officinalis) by pressurized liquid extraction and enzyme-assisted extraction. J. Chromatogr. A 2013, 1288, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ziaková, A.; Brandšteterová, E. Application of different preparation techniques for extraction of phenolic antioxidants from lemon balm (Melissa officinalis) before HPLC analysis. J. Liq. Chromatogr. Relat. Technol. 2002, 25, 3017–3032. [Google Scholar] [CrossRef]
- Marongiu, B.; Piras, A.; Porcedda, S.; Tuveri, E.; Sanjust, E.; Meli, M.; Sollai, F.; Zucca, P.; Rescigno, A. Supercritical CO2 Extract of Cinnamomum zeylanicum: Chemical Characterization and Antityrosinase Activity. J. Agric. Food Chem. 2007, 55, 10022–10027. [Google Scholar] [CrossRef]
- Oniszczuk, A.; Podgórski, R.; Oniszczuk, T.; Żukiewicz-Sobczak, W.; Nowak, R.; Waksmundzka-Hajnos, M. Extraction methods for the determination of phenolic compounds from Equisetum arvense L. herb. Ind. Crops Prod. 2014, 61, 377–381. [Google Scholar] [CrossRef]
- Markom, M.; Hasan, M.; Wan Daud, W.R.; Anuar, N.; Hassan, O.; Singh, H. Chemical profiling and quantification of tannins in Phyllanthus niruri Linn. fractionated by SFE method. Sep. Sci. Technol. 2011, 46, 71–78. [Google Scholar] [CrossRef]
- Topiar, M.; Sajfrtova, M.; Karban, J.; Sovova, H. Fractionation of turmerones from turmeric SFE isolate using semi-preparative supercritical chromatography technique. J. Ind. Eng. Chem. 2019, 77, 223–229. [Google Scholar] [CrossRef]
- Kiamahalleh, M.V.; Najafpour-Darzi, G.; Rahimnejad, M.; Moghadamnia, A.A.; Kiamahalleh, M.V. High performance curcumin subcritical water extraction from turmeric (Curcuma longa L.). J. Chromatogr. B 2016, 1022, 191–198. [Google Scholar] [CrossRef]
- Anaëlle, T.; León, E.S.; Laurent, V.; Elena, I.; Mendiola, J.A.; Stéphane, C.; Nelly, K.; Stéphane, L.B.; Luc, M.; Valérie, S.-P. Green improved processes to extract bioactive phenolic compounds from brown macroalgae using Sargassum muticum as model. Talanta 2013, 104, 44–52. [Google Scholar] [CrossRef]
- Rodríguez-Meizoso, I.; Jaime, L.; Santoyo, S.; Señoráns, F.; Cifuentes, A.; Ibáñez, E. Subcritical water extraction and characterization of bioactive compounds from Haematococcus pluvialis microalga. J. Pharm. Biomed. Anal. 2010, 51, 456–463. [Google Scholar] [CrossRef] [Green Version]
- Andrich, G.; Zinnai, A.; Nesti, U.; Venturi, F. Supercritical fluid extraction of oil from microalga Spirulina (arthrospira) platensis. Acta Aliment. 2006, 35, 195–203. [Google Scholar] [CrossRef]
- Lu, J.; Feng, X.; Han, Y.; Xue, C. Optimization of subcritical fluid extraction of carotenoids and chlorophyll a from Laminaria japonica Aresch by response surface methodology. J. Sci. Food Agric. 2013, 94, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Gouveia, L.; Nobre, B.; Marcelo, F.; Mrejen, S.; Cardoso, M.; Palavra, A.; Mendes, R. Functional food oil coloured by pigments extracted from microalgae with supercritical CO2. Food Chem. 2007, 101, 717–723. [Google Scholar] [CrossRef]
- Morioka, L.R.I.; Matos, Â.P.; Olivo, G.; Sant’Anna, E.S. Floculação de chlorella sp. produzida em concentrado de dessalinização e estudo de método de extração de lipídeos intracelulares. Quim. Nova 2014, 37, 44–49. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharjee, P.; Ranganathan, T.; Singhal, R.S.; Kulkarni, P.R. Comparative aroma profiles using supercritical carbon dioxide and Likens-Nickerson extraction from a commercial brand of Basmati rice. J. Sci. Food Agric. 2003, 83, 880–883. [Google Scholar] [CrossRef]
- Galvão, E.L.; Martínez, J.; de Oliveira, H.N.M.; de Sousa, E.M.B.D. Supercritical Extraction of Linseed Oil: Economic Viability and Modeling Extraction Curves. Chem. Eng. Commun. 2013, 200, 205–221. [Google Scholar] [CrossRef]
- Carvalho, R.H.R.; Galvão, E.L.; Barros, J.Â.C.; Conceição, M.M.; Sousa, E.M.B.D. Extraction, fatty acid profile and antioxidant activity of sesame extract (Sesamum indicum L.). Braz. J. Chem. Eng. 2012, 29, 409–420. [Google Scholar] [CrossRef] [Green Version]
- Constantin, O.E.; Milea, A.; Bolea, C.; Mihalcea, L.; Enachi, E.; Copolovici, D.M.; Copolovici, L.; Munteanu, F.; Bahrim, G.E.; Râpeanu, G. Onion (Allium cepa L.) peel extracts characterization by conventional and modern methods. Int. J. Food Eng. 2020, 17, 485–493. [Google Scholar] [CrossRef]
- Barrales, F.M.; Silveira, P.; Barbosa, P.D.P.M.; Ruviaro, A.R.; Paulino, B.N.; Pastore, G.M.; Macedo, G.A.; Martinez, J. Recovery of phenolic compounds from citrus by-products using pressurized liquids—An application to orange peel. Food Bioprod. Process. 2018, 112, 9–21. [Google Scholar] [CrossRef]
- Sargenti, S.R.; Lanças, F.M. Influence of the extraction mode and temperature in the supercritical fluid extraction of Tangor murcote (Blanco) × Citrus sinensis (Osbeck). J. Microcolumn Sep. 1998, 10, 213–223. [Google Scholar] [CrossRef]
- García, P.; Fredes, C.; Cea, I.; Lozano-Sánchez, J.; Leyva-Jiménez, F.J.; Robert, P.; Vergara, C. Recovery of Bioactive Compounds from Pomegranate (Punica granatum L.) Peel Using Pressurized Liquid Extraction. Foods 2021, 10, 203. [Google Scholar] [CrossRef]
- Rivas, M.; Casquete, R.; Córdoba, M.D.G.; Benito, M.J.; Hernández, A.; Ruiz-Moyano, S.; Martín, A. Functional properties of extracts and residual dietary fibre from pomegranate (Punica granatum L.) peel obtained with different supercritical fluid conditions. LWT 2021, 145, 111305. [Google Scholar] [CrossRef]
- Prado, J.M.; Assis, A.R.; Maróstica-Júnior, M.R.; Meireles, M.A.A. Manufacturing cost of supercritical-extracted oils and carotenoids from amazonian plants. J. Food Process. Eng. 2010, 33, 348–369. [Google Scholar] [CrossRef]
- Figueroa, J.G.; Borrás-Linares, I.; Lozano-Sánchez, J.; Segura-Carretero, A. Comprehensive identification of bioactive compounds of avocado peel by liquid chromatography coupled to ultra-high-definition accurate-mass Q-TOF. Food Chem. 2018, 245, 707–716. [Google Scholar] [CrossRef] [PubMed]
- Ko, M.-J.; Kwon, H.-L.; Chung, M.-S. Pilot-scale subcritical water extraction of flavonoids from satsuma mandarin (Citrus unshiu Markovich) peel. Innov. Food Sci. Emerg. Technol. 2016, 38, 175–181. [Google Scholar] [CrossRef]
- Náthia-Neves, G.; Tarone, A.G.; Tosi, M.M.; Junior, M.R.M.; Meireles, M.A.A. Extraction of bioactive compounds from genipap (Genipa americana L.) by pressurized ethanol: Iridoids, phenolic content and antioxidant activity. Food Res. Int. 2017, 102, 595–604. [Google Scholar] [CrossRef]
- Tunchaiyaphum, S.; Eshtiaghi, M.N.; Yoswathana, N. Extraction of Bioactive Compounds from Mango Peels Using Green Technology. Int. J. Chem. Eng. Appl. 2013, 4, 194–198. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Yu, P.; Chittiboyina, A.G.; Chen, D.; Zhao, J.; Avula, B.; Wang, Y.; Khan, I.A. Characterization, quantification and quality assessment of avocado (Persea americana Mill.) Oils. Molecules 2020, 25, 1453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García-Marino, M.; Rivas-Gonzalo, J.C.; Ibáñez, E.; García-Moreno, C. Recovery of catechins and proanthocyanidins from winery by-products using subcritical water extraction. Anal. Chim. Acta 2006, 563, 44–50. [Google Scholar] [CrossRef]
- Michailidis, D.; Angelis, A.; Nikolaou, P.E.; Mitakou, S.; Skaltsounis, A.L. Exploitation of vitis vinifera, foeniculum vulgare, cannabis sativa and punica granatum by-product seeds as dermo-cosmetic agents. Molecules 2021, 26, 731. [Google Scholar] [CrossRef]
- Rodrigues, L.G.G.; Mazzutti, S.; Vitali, L.; Micke, G.A.; Ferreira, S.R.S. Recovery of bioactive phenolic compounds from papaya seeds agroindustrial residue using subcritical water extraction. Biocatal. Agric. Biotechnol. 2019, 22, 101367. [Google Scholar] [CrossRef]
- Castro-Vargas, H.I.; Baumann, W.; Ferreira, S.R.S.; Parada-Alfonso, F. Valorization of papaya (Carica papaya L.) agroindustrial waste through the recovery of phenolic antioxidants by supercritical fluid extraction. J. Food Sci. Technol. 2019, 56, 3055–3066. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Zhang, X.; Xu, H.; Xu, C.; Yuan, F.; Knez, Ž.; Novak, Z.; Gao, Y. Subcritical water extraction of phenolic compounds from pomegranate (Punica granatum L.) seed residues and investigation into their antioxidant activities with HPLC-ABTS + assay. Food Bioprod. Process. 2012, 90, 215–223. [Google Scholar] [CrossRef]
- Reátegui, J.L.P.; Machado, A.P.D.F.; Barbero, G.F.; Rezende, C.A.; Martínez, J. Extraction of antioxidant compounds from blackberry (Rubus sp.) bagasse using supercritical CO2 assisted by ultrasound. J. Supercrit. Fluids 2014, 94, 223–233. [Google Scholar] [CrossRef]
- Aresta, A.; Cotugno, P.; De Vietro, N.; Massari, F.; Zambonin, C. Determination of Polyphenols and Vitamins in Wine-Making by-Products by Supercritical Fluid Extraction (SFE). Anal. Lett. 2020, 53, 2585–2595. [Google Scholar] [CrossRef]
- Kheirkhah, H.; Baroutian, S.; Quek, S.Y. Evaluation of bioactive compounds extracted from Hayward kiwifruit pomace by subcritical water extraction. Food Bioprod. Process. 2019, 115, 143–153. [Google Scholar] [CrossRef]
- Otero-Pareja, M.J.; Casas, L.; Fernández-Ponce, M.T.; Mantell, C.; de la Ossa, E.J.M. Green Extraction of Antioxidants from Different Varieties of Red Grape Pomace. Molecules 2015, 20, 9686–9702. [Google Scholar] [CrossRef] [Green Version]
- Tacchini, M.; Burlini, I.; Bernardi, T.; De Risi, C.; Massi, A.; Guerrini, A.; Sacchetti, G. Chemical characterisation, antioxidant and antimicrobial screening for the revaluation of wine supply chain by-products oriented to circular economy. Plant Biosyst. Int. J. Deal. All Asp. Plant Biol. 2018, 153, 809–816. [Google Scholar] [CrossRef]
- Paes, J.; Dotta, R.; Barbero, G.F.; Martínez, J. Extraction of phenolic compounds and anthocyanins from blueberry (Vaccinium myrtillus L.) residues using supercritical CO2 and pressurized liquids. J. Supercrit. Fluids 2014, 95, 8–16. [Google Scholar] [CrossRef]
- Albarelli, J.Q.; Santos, D.T.; Meireles, M.A.A. Thermo-economic evaluation of a new approach to extract sugarcane wax integrated to a first and second generation biorefinery. Biomass Bioenergy 2018, 119, 69–74. [Google Scholar] [CrossRef]
- Khaleghipour, L.; Linares-Pastén, J.A.; Rashedi, H.; Siadat, S.O.R.; Jasilionis, A.; Al-Hamimi, S.; Sardari, R.R.R.; Karlsson, E.N. Extraction of sugarcane bagasse arabinoxylan, integrated with enzymatic production of xylo-oligosaccharides and separation of cellulose. Biotechnol. Biofuels 2021, 14, 153. [Google Scholar] [CrossRef]
- Flis, S.; Jastrzebski, Z.; Namiesnik, J.; Arancibia-Avila, P.; Toledo, F.; Leontowicz, H.; Leontowicz, M.; Suhaj, M.; Trakhtenberg, S.; Gorinstein, S. Evaluation of inhibition of cancer cell proliferation in vitro with different berries and correlation with their antioxidant levels by advanced analytical methods. J. Pharm. Biomed. Anal. 2012, 62, 68–78. [Google Scholar] [CrossRef] [PubMed]
- Garzón, G.; Narváez-Cuenca, C.-E.; Riedl, K.; Schwartz, S. Chemical composition, anthocyanins, non-anthocyanin phenolics and antioxidant activity of wild bilberry (Vaccinium meridionale Swartz) from Colombia. Food Chem. 2010, 122, 980–986. [Google Scholar] [CrossRef]
- Tao, J.; Li, Y.; Li, S.; Li, H.-B. Plant foods for the prevention and management of colon cancer. J. Funct. Foods 2018, 42, 95–110. [Google Scholar] [CrossRef]
- Tudor, V.; Manole, C.G.; Teodorescu, R.; Asanica, A.; Barbulescu, I.D. Analysis of Some Phenolic Compounds and Free Radical Scavenging Activity of Strawberry Fruits During Storage Period. Agric. Agric. Sci. Procedia 2015, 6, 157–164. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Ren, Z.; Zhao, L.; Chen, L.; Yu, Y.; Wang, D.; Mao, X.; Cao, G.; Zhao, Z.; Yang, H. Unique roles in health promotion of dietary flavonoids through gut microbiota regulation: Current understanding and future perspectives. Food Chem. 2023, 399, 133959. [Google Scholar] [CrossRef]
- Oteiza, P.I.; Cremonini, E.; Fraga, C.G. Anthocyanin actions at the gastrointestinal tract: Relevance to their health benefits. Mol. Asp. Med. 2023, 89, 101156. [Google Scholar] [CrossRef]
- Topal, M.; Gulcin, I. Evaluation of the in vitro antioxidant, antidiabetic and anticholinergic properties of rosmarinic acid from rosemary (Rosmarinus officinalis L.). Biocatal. Agric. Biotechnol. 2022, 43, 102417. [Google Scholar] [CrossRef]
- Ramlagan, P.; Labib, R.M.; Farag, M.A.; Neergheen, V.S. Advances towards the analysis, metabolism and health benefits of punicalagin, one of the largest ellagitannin from plants, with future perspectives. Phytomedicine Plus 2022, 2, 100313. [Google Scholar] [CrossRef]
- Teng, H.; Chen, L.; Huang, Q.; Wang, J.; Lin, Q.; Liu, M.; Lee, W.Y.; Song, H. Ultrasonic-Assisted Extraction of Raspberry Seed Oil and Evaluation of Its Physicochemical Properties, Fatty Acid Compositions and Antioxidant Activities. PLoS ONE 2016, 11, e0153457. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Zhang, M.; Fang, Z.; Bhandari, B.; Yang, Z. Dehydration of asparagus cookies by combined vacuum infrared radiation and pulse-spouted microwave vacuum drying. Dry. Technol. 2017, 35, 1291–1301. [Google Scholar] [CrossRef]
- Singh, R.; Geetanjali. Asparagus racemosus: A review on its phytochemical and therapeutic potential. Nat. Prod. Res. 2015, 30, 1896–1908. [Google Scholar] [CrossRef] [PubMed]
- Galla, N.R.; Pamidighantam, P.R.; Karakala, B.; Gurusiddaiah, M.R.; Akula, S. Nutritional, textural and sensory quality of biscuits supplemented with spinach (Spinacia oleracea L.). Int. J. Gastron. Food Sci. 2017, 7, 20–26. [Google Scholar] [CrossRef]
- Isleroglu, H.; Sakin-Yilmazer, M.; Kemerli-Kalbaran, T.; Üren, A.; Kaymak-Ertekin, F. Kinetics of colour, chlorophyll, and ascorbic acid content in spinach baked in different types of oven. Int. J. Food Prop. 2017, 20, 2456–2465. [Google Scholar] [CrossRef] [Green Version]
- Junejo, S.A.; Rashid, A.; Yang, L.; Xu, Y.; Kraithong, S.; Zhou, Y. Effects of spinach powder on the physicochemical and antioxidant properties of durum wheat bread. LWT 2021, 150, 112058. [Google Scholar] [CrossRef]
- de Oliveira, V.S.; Chávez, D.W.H.; Paiva, P.R.F.; Gamallo, O.D.; Castro, R.N.; Sawaya, A.C.H.F.; Sampaio, G.R.; da Silva Torres, E.A.F. Parsley (Petroselinum crispum Mill.): A source of bioactive compounds as a domestic strategy to minimize cholesterol oxidation during the thermal preparation of omelets. Food Res. Int. 2022, 156, 111199. [Google Scholar] [CrossRef]
- Ferreira, F.S.; de Oliveira, V.S.; Chávez, D.W.H.; Chaves, D.S.; Riger, C.J.; Sawaya, A.C.H.F.; Guizellini, G.M.; Sampaio, G.R.; Torres, E.A.F.D.S.; Saldanha, T. Bioactive compounds of parsley (Petroselinum crispum), chives (Allium schoenoprasum L) and their mixture (Brazilian cheiro-verde) as promising antioxidant and anti-cholesterol oxidation agents in a food system. Food Res. Int. 2021, 151, 110864. [Google Scholar] [CrossRef]
- Sęczyk, Ł.; Świeca, M.; Gawlik-Dziki, U.; Luty, M.; Czyż, J. Effect of fortification with parsley (Petroselinum crispum Mill.) leaves on the nutraceutical and nutritional quality of wheat pasta. Food Chem. 2016, 190, 419–428. [Google Scholar] [CrossRef]
- Nastić, N.; Borrás-Linares, I.; Lozano-Sánchez, J.; Švarc-Gajić, J.; Segura-Carretero, A. Optimization of the extraction of phytochemicals from black mulberry (Morus nigra L.) leaves. J. Ind. Eng. Chem. 2018, 68, 282–292. [Google Scholar] [CrossRef]
- Cardoso, M.A.P.; Haminiuk, C.W.I.; Pedro, A.C.; de Andrade Arruda Fernandes Fernandes, I.; Yamato, M.A.C. Biological Effects of Goji Berry and the Association with New Industrial Applications: A Review. Food Rev. Int. 2021. [Google Scholar] [CrossRef]
- Sun, Q.; Du, M.; Kang, Y.; Zhu, M.J. Prebiotic Effects of Goji Berry in Protection against Inflammatory Bowel Disease. Crit. Rev. Food Sci. Nutr. 2022, 1–25. [Google Scholar] [CrossRef]
- Ma, R.H.; Zhang, X.X.; Ni, Z.J.; Thakur, K.; Wang, W.; Yan, Y.M.; Cao, Y.L.; Zhang, J.G.; Rengasamy, K.R.R.; Wei, Z.J. Lycium barbarum (Goji) as functional food: A review of its nutrition, phytochemical structure, biological features, and food industry prospects. Crit. Rev. Food Sci. Nutr. 2022, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Da Silva Frasao, B.; Lima dos Santos Rosario, A.I.; Leal Rodrigues, B.; Abreu Bitti, H.; Diogo Baltar, J.; Nogueira, R.I. Impact of juçara (Euterpe edulis) fruit waste extracts on the quality of conventional and antibiotic-free broiler meat. Pollut. Sci. 2021, 100, 101232. [Google Scholar] [CrossRef] [PubMed]
- Jamar, G.; Santamarina, A.B.; Flygare, A.C.; Gagliardi, A.; de Rosso, V.V.; Dourado, V.Z.; Pisani, L.P. Effects of the juçara fruit supplementation on metabolic parameters in individuals with obesity: A double-blind randomized controlled trial. J. Nutr. Biochem. 2020, 83, 108430. [Google Scholar] [CrossRef]
- Silva, F.; De Miranda, D.; Carnier, M.; Maza, P.; Boldarine, V.; Rischiteli, A.S.; Avila, F.; Pontes, L.; Hachul, A.; Neto, N.; et al. Low dose of Juçara pulp (Euterpe edulis Mart.) minimizes the colon inflammatory milieu promoted by hypercaloric and hyperlipidic diet in mice. J. Funct. Foods 2021, 77, 104343. [Google Scholar] [CrossRef]
- Achour, M.; Bravo, L.; Sarriá, B.; Ben Fredj, M.; Nouira, M.; Mtiraoui, A.; Saguem, S.; Mateos, R. Bioavailability and nutrikinetics of rosemary tea phenolic compounds in humans. Food Res. Int. 2021, 139, 109815. [Google Scholar] [CrossRef] [PubMed]
- Grace, M.H.; Hoskin, R.; Xiong, J.; Lila, M.A. Whey and soy proteins as wall materials for spray drying rosemary: Effects on polyphenol composition, antioxidant activity, bioaccessibility after in vitro gastrointestinal digestion and stability during storage. LWT 2021, 149, 111901. [Google Scholar] [CrossRef]
- Caleja, C.; Barros, L.; Barreira, J.C.; Ciric, A.; Sokovic, M.; Calhelha, R.C.; Beatriz, M.; Oliveira, P.; Ferreira, I.C. Suitability of lemon balm (Melissa officinalis L.) extract rich in rosmarinic acid as a potential enhancer of functional properties in cupcakes. Food Chem. 2018, 250, 67–74. [Google Scholar] [CrossRef] [Green Version]
- Sik, B.; Lakatos, E.H.; Kapcsándi, V.; Székelyhidi, R.; Ajtony, Z. Exploring the rosmarinic acid profile of dark chocolate fortified with freeze-dried lemon balm extract using conventional and non-conventional extraction techniques. LWT 2021, 147, 111520. [Google Scholar] [CrossRef]
- Mushtaq, Z.; Nadeem, M.T.; Arshad, M.U.; Saeed, F.; Ahmed, M.H.; Ain, H.B.U.; Javed, A.; Anjum, F.M.; Hussain, S. Exploring the biochemical and antioxidant potential of ginger (Adric) and turmeric (Haldi). Int. J. Food Prop. 2019, 22, 1642–1651. [Google Scholar] [CrossRef] [Green Version]
- da Silva, S.C.; Fernandes, I.P.; Barros, L.; Fernandes, A.; Alves, M.J.; Calhelha, R.C.; Pereira, C.; Barreira, J.C.; Manrique, Y.; Colla, E.; et al. Spray-dried Spirulina platensis as an effective ingredient to improve yogurt formulations: Testing different encapsulating solutions. J. Funct. Foods 2019, 60, 103427. [Google Scholar] [CrossRef] [Green Version]
- Moradi, D.; Ramezan, Y.; Eskandari, S.; Mirsaeedghazi, H.; Javanmard Dakheli, M. Plasma-treated LDPE film incorporated with onion and potato peel extract—A food packaging for shelf life extension on chicken thigh. Food Packag. Shelf Life. 2023, 35, 101012. [Google Scholar] [CrossRef]
- Otieno, D.; Lee, E.J.; Gil Lee, S.; Richard, C.; Kang, H.W. Optimizing process of brewing onion peel tea using a response surface methodology. NFS J. 2020, 20, 22–27. [Google Scholar] [CrossRef]
- Darwesh, O.M.; Mahmoud, R.H.; Abdo, S.M.; Marrez, D.A. Isolation of Haematococcus lacustris as source of novel anti-multi-antibiotic resistant microbes agents; fractionation and identification of bioactive compounds. Biotechnol. Rep. 2022, 35, e00753. [Google Scholar] [CrossRef] [PubMed]
- Mohsin, A.; Hussain, M.H.; Zaman, W.Q.; Mohsin, M.Z.; Zhang, J.; Liu, Z.; Tian, X.; Salim-ur-Rehman; Khan, I.M.; Niazi, S.; et al. Advances in sustainable approaches utilizing orange peel waste to produce highly value-added bioproducts. Crit. Rev. Biotechnol. 2022, 42, 1284–1303. [Google Scholar] [CrossRef] [PubMed]
- Khojah, S.M. Bio-based Coating from Fish Gelatin, K-Carrageenan and Extract of Pomegranate Peels for Maintaining the Overall Qualities of Fish Fillet. J. Aquat. Food Prod. Technol. 2020, 29, 810–822. [Google Scholar] [CrossRef]
- Ranjha, M.M.A.N.; Amjad, S.; Ashraf, S.; Khawar, L.; Safdar, M.N.; Jabbar, S.; Nadeem, M.; Mahmood, S.; Murtaza, M.A. Extraction of Polyphenols from Apple and Pomegranate Peels Employing Different Extraction Techniques for the Development of Functional Date Bars. Int. J. Fruit Sci. 2020, 20, S1201–S1221. [Google Scholar] [CrossRef]
- Marçal, S.; Pintado, M. Mango peels as food ingredient/additive: Nutritional value, processing, safety and applications. Trends Food Sci. Technol. 2021, 114, 472–489. [Google Scholar] [CrossRef]
- Marcillo-Parra, V.; Anaguano, M.; Molina, M.; Tupuna-Yerovi, D.S.; Ruales, J. Characterization and quantification of bioactive compounds and antioxidant activity in three different varieties of mango (Mangifera indica L.) peel from the Ecuadorian region using HPLC-UV/VIS and UPLC-PDA. NFS J. 2021, 23, 1–7. [Google Scholar] [CrossRef]
- Jimenez, P.; Garcia, P.; Quitral, V.; Vasquez, K.; Parra-Ruiz, C.; Reyes-Farias, M.; Garcia-Diaz, D.F.; Robert, P.; Encina, C.; Soto-Covasich, J. Pulp, Leaf, Peel and Seed of Avocado Fruit: A Review of Bioactive Compounds and Healthy Benefits. Food Rev. Int. 2020, 37, 619–655. [Google Scholar] [CrossRef]
- Villarreal-Lara, R.; Rodríguez-Sánchez, D.G.; De La Garza, R.I.D.; García-Cruz, M.I.; Castillo, A.; Pacheco, A.; Hernández-Brenes, C. Purified avocado seed acetogenins: Antimicrobial spectrum and complete inhibition of Listeria monocytogenes in a refrigerated food matrix. CyTA J. Food 2019, 17, 228–239. [Google Scholar] [CrossRef] [Green Version]
- Tundis, R.; Tenuta, M.C.; Loizzo, M.R.; Bonesi, M.; Finetti, F.; Trabalzini, L.; Deguin, B. Vaccinium Species (Ericaceae): From Chemical Composition to Bio-Functional Activities. Appl. Sci. 2021, 11, 5655. [Google Scholar] [CrossRef]
- Eroglu, A.; Al’abri, I.S.; Kopec, R.E.; Crook, N.; Bohn, T. Carotenoids and Their Health Benefits as Derived via Their Interactions with Gut Microbiota. Adv. Nutr. Int. Rev. J. 2023, 14, 238–255. [Google Scholar] [CrossRef] [PubMed]
- Sadeghian, M.; Rahmani, S.; Jamialahmadi, T.; Johnston, T.P.; Sahebkar, A. The effect of oral curcumin supplementation on health-related quality of life: A systematic review and meta-analysis of randomized controlled trials. J. Affect. Disord. 2020, 278, 627–636. [Google Scholar] [CrossRef]
- El Barnossi, A.; Moussaid, F.; Housseini, A.I. Tangerine, banana and pomegranate peels valorisation for sustainable environment: A review. Biotechnol. Rep. 2020, 29, e00574. [Google Scholar] [CrossRef] [PubMed]
- Jimenez-Lopez, C.; Pereira, A.; Lourenço-Lopes, C.; Garcia-Oliveira, P.; Cassani, L.; Fraga-Corral, M.; Prieto, M.; Simal-Gandara, J. Main bioactive phenolic compounds in marine algae and their mechanisms of action supporting potential health benefits. Food Chem. 2020, 341, 128262. [Google Scholar] [CrossRef]
- Koyande, A.K.; Chew, K.W.; Rambabu, K.; Tao, Y.; Chu, D.-T.; Show, P.-L. Microalgae: A potential alternative to health supplementation for humans. Food Sci. Hum. Wellness 2019, 8, 16–24. [Google Scholar] [CrossRef]
- Halim, H.H.; Dek, M.S.P.; Hamid, A.A.; Saari, N.; Lazim, M.I.M.; Abas, F.; Ngalim, A.; Ismail, A.; Jaafar, A.H. Novel sources of bioactive compounds in coconut (Cocos nucifera L.) water from different maturity levels and varieties as potent skin anti-aging strategies and anti-fatigue agents. Food Biosci. 2023, 51, 102326. [Google Scholar] [CrossRef]
- Turola Barbi, R.C.; Silveira Hornung, P.; Ávila, S.; da Silva Bambirra Alves, F.E.; Beta, T.; Hoffmann Ribani, R. Ripe and unripe inajá (Maximilia maripa) fruit: A new high source of added value bioactive compounds. Food Chem. 2020, 331, 127333. [Google Scholar] [CrossRef]
- De Souza Silva, G.; da Silva Campelo Borges, G.; Pinho da Costa Castro, C.D.; de Tarso Aidar, S.; Telles Biasoto Marques, A.; Tonetto de Freitas, S.; Rybka, A.C.P.; Cardarelli, H.R. Physicochemical quality, bioactive compounds and in vitro antioxidant activity of a new variety of passion fruit cv. BRS Sertão Forte (Passiflora cincinnata Mast.) from Brazilian Semiarid region. Sci Hortic. 2020, 272, 109595. [Google Scholar] [CrossRef]
- Ukwubile, C.; Ikpefan, E.; Malgwi, T.; Bababe, A.; Odugu, J.; Angyu, A.; Otalu, O.; Bingari, M.; Nettey, H. Cytotoxic effects of new bioactive compounds isolated from a Nigerian anticancer plant Melastomastrum capitatum Fern. leaf extract. Sci. Afr. 2020, 8, e00421. [Google Scholar] [CrossRef]
- León-Vaz, A.; León, R.; Vigara, J.; Funk, C. Exploring Nordic microalgae as a potential novel source of antioxidant and bioactive compounds. New Biotechnol. 2023, 73, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Wang, H.; Lin, Z.; Hu, J.; Wu, Y.; Shi, L.; Wang, J.; Xiu, Y.; Lin, S. Enzymatic and non-enzymatic bioactive compounds, and antioxidant and antimicrobial activities of the extract from one selected wild berry (Rubus coreanus) as novel natural agent for food preservation. LWT 2022, 171, 114133. [Google Scholar] [CrossRef]
- Kumar, M.; Barbhai, M.D.; Hasan, M.; Punia, S.; Dhumal, S.; Radha; Rais, N.; Chandran, D.; Pandiselvam, R.; Kothakota, A.; et al. Onion (Allium cepa L.) peels: A review on bioactive compounds and biomedical activities. Biomed. Pharmacother. 2021, 146, 112498. [Google Scholar] [CrossRef] [PubMed]
- Chamorro, F.; Carpena, M.; Fraga-Corral, M.; Echave, J.; Rajoka, M.S.R.; Barba, F.J.; Cao, H.; Xiao, J.; Prieto, M.; Simal-Gandara, J. Valorization of kiwi agricultural waste and industry by-products by recovering bioactive compounds and applications as food additives: A circular economy model. Food Chem. 2021, 370, 131315. [Google Scholar] [CrossRef]
- Mateus, A.R.S.; Pena, A.; Sendón, R.; Almeida, C.; Nieto, G.A.; Khwaldia, K.; Silva, A.S. By-products of dates, cherries, plums and artichokes: A source of valuable bioactive compounds. Trends Food Sci. Technol. 2023, 131, 220–243. [Google Scholar] [CrossRef]
- de Aquino Gondim, T.; Guedes, J.A.C.; Silva, M.F.S.; da Silva, A.C.; Dionísio, A.P.; Souza, F.V.D.; a do Ó Pessoa, C. Assessment of metabolic, mineral, and cytotoxic profile in pineapple leaves of different commercial varieties: A new eco-friendly and inexpensive source of bioactive compounds. Food Res. Int. 2023, 164, 112439. [Google Scholar] [CrossRef]
- Fraga, S.; Nasário, F.D.; Gonçalves, D.; Cabral, F.A.; Maximo, G.J.; Meirelles, A.J.D.A.; Marsaioli, A.J.; Sampaio, K.A. Caferana seeds (Bunchosia glandulifera) as a new source of nutrients: Evaluation of the proximal composition, solvent extraction, bioactive compounds, and δ-lactam isolation. Food Chem. X 2021, 12, 100161. [Google Scholar] [CrossRef]
- Lee, K.H.; Jeong, S.Y.; Park, K.H.; Kim, S.; Ko, Y.-J.; Kim, J.-C.; Kim, J.K.; Kim, K.H. Ginkgonitroside, a new nitrophenyl glycoside and bioactive compounds from Ginkgo biloba leaves controlling adipocyte and osteoblast differentiation. Bioorganic Med. Chem. Lett. 2021, 50, 128322. [Google Scholar] [CrossRef]
- Sumere, B.R.; de Souza, M.C.; dos Santos, M.P.; Bezerra, R.M.N.; da Cunha, D.T.; Martinez, J.; Rostagno, M.A. Combining pressurized liquids with ultrasound to improve the extraction of phenolic compounds from pomegranate peel (Punica granatum L. ). Ultrason Sonochem. 2018, 48, 151–162. [Google Scholar] [CrossRef]
- Duarte, K.; Justino, C.I.L.; Gomes, A.M.; Rocha-Santos, T.; Duarte, A.C. Green analytical methodologies for preparation of extracts and analysis of bioactive compounds. Compr. Anal. Chem. 2014, 65, 59–78. [Google Scholar]
- Chemat, F.; Rombaut, N.; Meullemiestre, A.; Turk, M.; Perino, S.; Fabiano-Tixier, A.-S.; Abert-Vian, M. Review of Green Food Processing techniques. Preservation, transformation, and extraction. Innov. Food Sci. Emerg. Technol. 2017, 41, 357–377. [Google Scholar] [CrossRef]
- Herrero, M.; Cifuentes, A.; Ibanez, E. Sub- and supercritical fluid extraction of functional ingredients from different natural sources: Plants, food-by-products, algae and microalgae: A review. Food Chem. 2006, 98, 136–148. [Google Scholar] [CrossRef] [Green Version]
- Toledo-Merma, P.R.; Cornejo-Figueroa, M.H.; Crisosto-Fuster, A.D.R.; Strieder, M.M.; Chañi-Paucar, L.O.; Náthia-Neves, G.; Rodríguez-Papuico, H.; Rostagno, M.A.; Meireles, M.A.A.; Alcázar-Alay, S.C. Phenolic Compounds Recovery from Pomegranate (Punica granatum L.) By-Products of Pressurized Liquid Extraction. Foods 2022, 11, 1070. [Google Scholar] [CrossRef] [PubMed]
- Villanueva-Bermejo, D.; Calvo, M.V.; Castro-Gómez, P.; Fornari, T.; Fontecha, J. Production of omega 3-rich oils from underutilized chia seeds. Comparison between supercritical fluid and pressurized liquid extraction methods. Food Res. Int. 2018, 115, 400–407. [Google Scholar] [CrossRef]
- Basegmez, H.I.O.; Povilaitis, D.; Kitrytė, V.; Kraujalienė, V.; Šulniūtė, V.; Alasalvar, C.; Venskutonis, P.R. Biorefining of blackcurrant pomace into high value functional ingredients using supercritical CO2, pressurized liquid and enzyme assisted extractions. J. Supercr. Fluids 2017, 124, 10–19. [Google Scholar] [CrossRef]
- Saravana, P.S.; Ummat, V.; Bourke, P.; Tiwari, B.K. Emerging green cell disruption techniques to obtain valuable compounds from macro and microalgae: A review. Crit. Rev. Biotechnol. 2022, 1–16. [Google Scholar] [CrossRef]
- Khadhraoui, B.; Ummat, V.; Tiwari, B.; Fabiano-Tixier, A.; Chemat, F. Review of ultrasound combinations with hybrid and innovative techniques for extraction and processing of food and natural products. Ultrason. Sonochemistry 2021, 76, 105625. [Google Scholar] [CrossRef]
- Soh, S.H.; Lee, L.Y. Microencapsulation and Nanoencapsulation Using Supercritical Fluid (SCF) Techniques. Pharmaceutics 2019, 11, 21. [Google Scholar] [CrossRef] [Green Version]
- Abuzara, S.M.; Hyun, S.-M.; Kim, J.-H.; Park, H.J.; Kim, M.-S.; Park, J.-S.; Hwang, S.-J. Enhancing the solubility and bioavailability of poorly water-soluble drugs using supercritical antisolvent (SAS) process. Int. J. Pharm. 2018, 538, 1–13. [Google Scholar] [CrossRef]
- Buranachokpaisan, K.; Muangrat, R. Evaluation of Encapsulation of Residual Oil from Pressed Sesame Seed Cake by Coacervation and Subsequent Spray- and Freeze-Drying Method. Food Bioprocess Technol. 2023, 0123456789. [Google Scholar] [CrossRef]
- Verma, V.; Ryan, K.M.; Padrela, L. Pharmaceutical nanoparticle isolation using CO2-assisted dynamic bed coating. Int. J. Pharm. 2020, 592, 120032. [Google Scholar] [CrossRef] [PubMed]
- Ferro, D.M.; Müller, C.M.O.; Ferreira, S.R.S. Photostability and characterization of spray-dried maltodextrin powders loaded with Sida rhombifolia extract. Biocatal. Agric. Biotechnol. 2020, 27, 101716. [Google Scholar] [CrossRef]
- Osorio-Tobón, J.F.; Carvalho, P.I.; Rostagno, M.A.; Petenate, A.J.; Meireles, M.A.A. Precipitation of curcuminoids from an ethanolic turmeric extract using a supercritical antisolvent process. J. Supercrit. Fluids 2016, 108, 26–34. [Google Scholar] [CrossRef]
Food Matrices and Residues | Group and Bioactive Compound of Interest (PLE) | Optimal Extraction Parameters (PLE) | Group and Bioactive Compound of Interest (SFE) | Optimal Extraction Parameters (SFE) | References |
---|---|---|---|---|---|
Vegetables and fruit | |||||
Asparagus (Asparagus officinalis L.) | Phenolic compounds (APM) Phenolic acids (3-O-feruloylquinic acid) | S = Water/Ethanol (1:1) T = 65 °C and t = 30 min P = 100 MPa FR = 2 mL/min | Phenolic contents (BPM) Phenolic acids (3-O-feruloylquinic acid) | S = CO2 + cosolvent - (1:1) T = 65 °C and t = 60 min P = 15 MPa FR = 0.25 kg/h | [23] |
Spinach (Spinacia oleracea L.) | Polyphenols Phenolic compounds | S = Water/Ethanol (1:1) T = 80 °C and t = 10 min P = 10.3 MPa | Carotenoids Phenolic compounds | S = CO2 T = 70 °C and t = 6 h P = 25 MPa FR = 60 g/min | [35] |
Parsley and seeds (Petroselinum crispum) | Phenolic compounds (Apin and Malonyl-apin) | S = 50% Ethanol T = 70 °C (Malonyl-apin), 160 °C (Apin) and t = 5 min P = 6.9 MPa PS = <0.425 mm S/RM = 40 | Phenylpropanoids (Apiol) (82.1%) Myristicin (11.4%) Essential fatty acid | S = CO2 T = 40 °C P = 90–300 bar | [36] |
Blackberries and leaves (Morus nigra L.) | Anthocyanins | S = Water T = 60 °C and t = 60 min P = 15 MPa FR = 2 mL/min | Phenolic acids Flavonoids | S = CO2 + cosolvent T = 40 °C and t = 120 min P = 150–300 bar FR = 22 g/min | [37] |
Goji berry (Lycium barbarum L.) | Flavonols Phenolic acids | S = 86% Ethanol T = 180 °C and t = 5–20 min P = 10 MPa | --- | --- | [38] |
Juçara and its residues (Euterpe edulis Mart.) | Anthocyanins | S = Water/Ethanol (50:50) T = 30 °C and t = 5–11 min P = 2 MPa S/RM = 8.5 | Anthocyanins Phenolic compounds | S = CO2 + cosolvent T = 60 °C P = 20 MPa FR = 2.08 × 10−4 kg/s S/RM = 90 | [39] |
Herbs or spices | |||||
Rosemary (Rosmarinus officinalis L.) | Phenolic diterpenes (carnosol, scutellarein) Flavonoids (genkwanin) | S = Water T = 100 °C and t = 15 min P = 6 MPa FR = 1 mL/min | Diterpenes (PDA) Carnosic acid Carnosol. a-pinene, 1,8-cineole, verbenone, camphor, borneol, and others | S = CO2 + cosolvent T = 60 °C and t = 45 min P = 250 atm FR = 1 mL/min | [40,41] |
Felty germander (Teucrium montanum L.) | Flavanone (naringin) Flavonoids Flavan-3-ols (catechins and epicatechins) Flavonol (routine) Gallic acid | S = Water T = 160 °C and t = 30 min P = 1 MPa S/RM = 10 | --- | --- | [42] |
Gotu kola (Centella asiatica) | Asiatic acid and asiaticoside | S = Water T = 250 °C and t = 300 min P = 40 MPa | --- | --- | [43] |
Lemon balm (Melissa officinalis) | Rosmarinic acid and its derivatives | S = Water T = 150 °C and t = 20 min P = 6.9 MPa | Rosmarinic acid and its derivatives | S = CO2 + cosolvent T = 60 °C and t = 60 min P = 40 MPa | [44,45] |
Cinnamon (Cinnamomum zeylanicum) | Phenolic acids (caffeic, ferulic, p-coumaric, protocatechuic, and vanillic) | S = Water T = 200 °C and t = 60 min P = 6 MPa FR = 3 mL/min | (E)-cinnamaldehyde, (E)-β-caryophyllene, α-terpineol, and eugenol. | S = CO2 T = 50 °C and t = 60 min P = 90 bar FR = 6 kg/h | [46] |
Horsetail (Equisetum arvense L.) | Phenolic acids (chlorogenic, caffeic, ferulic) Flavonoids (isoquercitrin, 5-glucoside luteolin) | S = 80% Methanol T = 80 °C and t = 30 min (3 cycles/10 min) P = 6 MPa | --- | --- | [47] |
Chanca piedra (Phyllanthus) amarus) | Gallic acid Hydrolysable tannins Flavonoids Lignans | S = Water T = 192.4 °C and t = 15 min P = 11 ± 0.7 MPa S/RM = 24 | Ellagitannins (hydrolysable tannins) Flavonoids (condensed tannins) | S = CO2 + cosolvent T = 60 °C and t = 4 h P = 200 bar FR = 1.5 mL/min S/RM = 72 | [48] |
Turmeric (Curcuma longa L.) | Curcumin | S = Water T = 140 °C and t = 14 min P = 1 MPa PS = 0.71 mm | Turmerones (turmerone, ar-turmerone, curlone) | S = CO2 T = 40 °C P = 9–66 MPa FR = 1.8 g/min | [49,50] |
Microalgae or macroalgae | |||||
Brown macroalga: Japanese wireweed (Sargassum muticum) | Phenolic compounds (phlorotannins) | S = Ethanol/Water (75:25) T = 120 °C and t = 20 min P = 10.3 MPa | Phenolic compounds (mannitol) | S = CO2 + cosolvent T = 60 °C and t = 90 min P = 15.2 MPa | [51] |
Green microalga (Haematococcus pluvialis) | Short-chain fatty acids (vitamin E) Simple phenols (gallic acid) | S = Water T = 200 °C and t = 20 min P = 10.3 MPa | Astaxanthin Omega-6 and omega-3 Unsaturated fatty acids (UFA) | S = CO2 T = 50 °C and t = 95 min P = 50 MPa FR = 4 L/min | [52] |
Spirulina microalga: (Spirulina platensis) | Carotenoids (zeaxanthin and β-carotene) Phenolic compounds Chlorophyll | S = Ethanol T = 115 °C and t = 15 min P = 6.9 MPa | Carotenoids Gamma-linolenic acid | S = CO2 T = 40–50 °C and t = 4 h P = 25–70 MPa FR = 10 kg/h | [10,53] |
Royal Kombu (Laminaria japonica Areschoug) | Carotenoids Chlorophyll | S = Ethanol with 4.73% R134a T = 51 °C and t = 15–50 min P = 17 MPa FR = 10 g/min | --- | --- | [54] |
Green microalga (Chlorella vulgaris) | β-Carotene Chlorophyll a and b | S = 90% Ethanol T = 116.8 °C and t = 25.1 min T = 160–173 °C and t = 14.7 min P = 10.3 MPa | Carotenoids | S = CO2 + cosolvent T = 40 °C and t = 30 min P = 300 bar FR = 0.34 L/min | [55] |
Microalgae Chlorella spp. | Phenolic acids (p-coumaric, ferulic, and caffeic) | S = Water T = 163 °C and t = 5 min Microalga concentration = 20% | Lipids Palmitic acid | S = CO2 T = 60 °C P = 306 bar | [56] |
Grains | |||||
Rice (Oryza sativa) | Protocatechuic, vanillic, ellagic, and guaiacol acids | S = 60% Acetic acid and ethyl acetate in methanol T = 190 °C and t = 10 min P = 20 MPa | Volatile aromatic components | S = CO2 T = 50 °C and t = 120 min P = 120 bar FR = 0.1 to 0.4 L/min | [57] |
Flaxseed (Linum Usitatissimum L.) | Phenolic compounds Lignans (SDG) Flavonoids | S = Water T = 180 °C and t = 15 min P = 10.3 MPa | Fatty acids (linolenic and oleic acid) | S = CO2 + cosolvent T = 323 K and t = 5 h P = 25 MPa PS = 0.42 × 10−3 FR = 1.7 × 10−5 kg/s | [58] |
Sesame (Sesamum indicum L.) Husks | Phenolic compounds Lignans | S = 63.5% Ethanol T = 220 °C and t = 50 min P = 8 MPa FR = 5 g/min | Essential oils (Oleic, linoleic, stearic, and palmitic acids) | S = CO2 T = 35 °C and t = 210 min P = 20 MPa FR = 2.5 g/min | [59] |
Onion peel (Allium cepa) | Flavonols (quercetin) | S = Water T = 165 °C and t = 15 min P = 9–13.1 MPa | Polyphenols (gallic acid) Flavonoids | [60] | |
Orange peel (Citrus x sinensis) | Flavonoids Glycosylated (hesperidin) | S = 75% Ethanol T = 65 °C and t = 40 min P = 10 MPa FR = 2.37 g/min S/RM = 47 | β-myrcene, 1,8-cineole, D limonene, dihydrocarveol, and caryophyllene. | S = CO2 + cosolvents T = 60–75 °C and t = 90 min P = 90 MPa FR = 34.5 cm/s | [61,62] |
Pomegranate peel (Punica granatum L.) | Punicalagin | S = Ethanol T = 200 °C and t = 20 min P = 10.3 MPa | Phenolic compounds | S = CO2 T = 46.5 °C and t = 2.5 h P = 291 bar FR = 2 L/min | [63,64] |
Aguaje peel (Mauritia flexuosa L.) | Carotenoids Polyphenols | S = 92.43% Ethanol T = 37.7 °C and t = 90 min P = 10 MPa FR = 3 mL/min | Essential oil Carotenoids | S = CO2 T = 45 °C P = 300 bar | [65] |
Avocado peel (Persea americana Mill.) | Procyanidins Flavonols Hydroxybenzoic and hydroxycinnamic acids | S = Water/Ethanol (1:1) T = 200 °C and t = 20 min P = 11 MPa | Thirteen compounds identified in essential oil | S = CO2 T = 50 °C and t = 40 min P = 250 bar FR = 10 mL/min | [66] |
Tangerine peel (Citrus unshiu Marcow) | Flavonoids (hesperidin, naringin, naringenin) | S = Water T = 130 °C and t = 15 min P = 3 MPa S/RM = 34 | Flavonoids (naringin, hesperidin, sinensetin, nobiletin, and tangeretin) | S = CO2 + cosolvents T = 80 °C and t = 210 min P = 22 MPa FR = 9 g/min | [67] |
Genipap peel (Genipa americana L.) | Iridoids (genipin and geniposide) | S = Ethanol T = 50 °C and t = 5 min P = 0.2 MPa S/RM = 5 | Fatty acids (palmitic, stearic, linoleic, and linolenic acids) | S = CO2 + cosolvents T = 333 K P = 30 MPa FR = 2.5 ± 0.5 g/min S/RM = 20 g | [68] |
Mango peel (Mangifera indica L.) | Phenolic compounds | S = Water T = 180 °C and t = 90 min P = 10 MPa FR = 6.67 g/min S/F = 40 | Bioactive compounds (gallotannins, flavonoids, xanthones, gallic acid, etc.) | S = CO2 + cosolvents T = 50 °C and t = 20 min P = 20 MPa FR = 2 L/h | [69] |
Passion fruit peel (Passiflora edulis) | Phenolic compounds (Isoorientin, vicenin, vitexin, orientin, and isovitexin) | S = 70% Ethanol T = 60 °C and t = 30 min P = 10 ± 0.5 MPa FR = 2.7 mL/min | Fatty acids Carotenoids Tocols (tocopherols and tocotrienols) | S = CO2 + cosolvents T = 40 °C and t = 30 min P = 35 MPa FR = 0.63 kg/h S/RM = 46 | [1] |
Seeds | |||||
Avocado seed (Persea americana) | Phenolic compounds Condensed tannins Phenolic acids Flavonoids | S = Water/Ethanol (1:1) T = 200 °C P = 11 MPa | Thirteen compounds identified in essential oil | S = CO2 T = 50 °C and t = 40 min P = 250 bar FR = 10 mL/min | [66,70] |
Grape seed (Vitis vinifera) | Catechins Proanthocyanidins | S = Water T = 150 °C and t = 30 min P = 10.3 MPa | Essential oils (α-tocopherol) | S = CO2 + cosolvents T = 80 °C and t = 7 h P = 300 bar FR = 15 g/min PS = 300–425 μm | [71,72] |
Papaya seed (Carica papaya L.) | Phenolic acids (Ferulic, mandelic, and vanillic) | S = Water T = 150 °C and t = 5 min P = 10 MPa FR = 4 mL/min | Phenolic compounds | S = CO2 + cosolvents T = 50 °C and t = 180 min P = 320 MPa FR = 0.50 ± 0.05 kg/h PS = 0.300 and 0.850 mm | [73,74] |
Pomegranate seeds (Punica granatum L.) | Phenolic compounds (Caffeic acid derivatives and kaempferol 3-O-rutinoside) | S = Water T = 220 °C and t = 30 min P = 6 MPa S/RM = 40 | Fatty acids (palmitic, stearic, oleic, linoleic, and punic acids) | S = CO2 T = 47 °C and t = 2 h P = 38 MPa FR = 21 L/h TP = 0.3mm | [75] |
Genipap seeds (Genipa americana L.) | Iridoids (Genipin and geniposide) | S = Ethanol T = 50 °C and t = 5 min P = 1.2 MPa S/RM = 5 | Fatty acids (palmitic, stearic, linoleic, and linolenic acids) | S = CO2 + cosolvents T = 333 K P = 30 MPa FR = 2.5 ± 0.5 g/min S/RM = 20 g | [68] |
Bagasse | |||||
Blackberry bagasse (Rubus spp.) | Phenolic compounds Monomeric anthocyanins | S = 50% Ethanol T = 100 °C and t = 30 min P = 7.5 MPa S/RM = 18 FR = 3.35 mL/min | Phenolic compounds Monomeric anthocyanins | S = CO2 + cosolvent T = 40–60 °C and t = 120 min P = 15 MPa S/RM = 400 FR = 2.77 × 10 −4 kg/s PS = 0.34 mm | [76] |
Grape pomace (Vitis vinifera L. ‘Carménère’) | Phenolic acids Flavanols Stilbenes | S = 15% Ethanol (acids), 32.5% (flavanols), and 50% (stilbenes) T = 150 °C and t = 30 min P = 10.3 MPa | Polyphenols and Vitamins (trans-resveratrol, β-sitosterol, α-tocopherol, and ascorbic acid) | S = CO2 + cosolvent T = 60 °C and t = 15 min P = 250 bar FR = 2 mL/min and 0.4 mL/min | [77] |
Green kiwi bagasse (Actinidia deliciosa ‘Hayward’) | Phenolic compounds (catechin, chlorogenic acid, p-coumaric acid, protocatechuic acid, and caffeic acid) | S = Water T = 200 °C and t = 90 min P = 5 MPa | S = CO2 T = 80 °C and t = 5 min P = 300 atm FR = 3 mL/min | [78] | |
Red wine grape bagasse (Vitis palmata ‘Petit Verdot’) | Phenolic compounds | S = 50% Ethanol T = 120 °C and t = 90 min P = 9 MPa FR = 5 g/min | Phenolic compounds | S = CO2 + cosolvent T = 55 °C and t = 3 h P = 100 bar FR = 25 g/min | [79,80] |
Blueberry bagasse (Vaccinium myrtillus L.) | Anthocyanins | S = Acidified water T = 40 °C and t = 15 min P = 20 MPa FR = 10 mL/min | Phenolic compounds Anthocyanins | S = CO2 T = 40 °C P = 25 MPa FR = 1.05 × 10−4 kg/s | [81] |
Sugarcane bagasse (Saccharum officinarum) | Arabinoxylan Xylan | S = Water/0.1M NaOH T = 150 °C and t = 22 min P = 100 bar | Cane wax, oil, and resin (policosanol and octacosanol) | S = CO2 T = 323–333 °K and t = 0.5–2 h P = 20–35 MPa FR = 1.05 × 10−4 kg/s | [82,83] |
Food Matrices and Residues | Bioactive Compounds | Applications | Effects | References |
---|---|---|---|---|
Vegetables and fruits | ||||
Asparagus (Asparagus officinalis L. and Asparagus racemosus) | Phenolic compounds (APM) Phenolic acids (3-O-feruloylquinic acid) | Cookies and pharmaceutical products | -Antimicrobial, antiulcer, anti-diarrhoeal, and antioxidant activity -Neuroprotective and antipyretic effect | [92,93,94] |
Spinach (Spinacia oleracea L.) | Polyphenols Phenolic compounds Carotenoids | Snacks and powders | Antioxidant activity | [95,96,97] |
Parsley and seeds (Petroselinum crispum) | Phenolic compounds (Apin and Malonyl-apin) | Fortification wheat pasta and omelets. | -Protective effect against lipid and cholesterol Oxidation -Antiproliferative effect on carcinoma cells and antioxidant activity | [98,99,100] |
Blackberries and leaves (Morus nigra L.) | Anthocyanins | Tea beverages | -Excellent antiadipogenic and inhibitory activity of lipid accumulation -Good cytotoxic and anti-inflammatory activity -Analgesic for symptoms of premenstrual tension as an infusion or decoction | [101] |
Goji berry (Lycium barbarum L.) | Flavonols Phenolic acids | Tea beverages, juices, powders and dairy products | -Prebiotic effect -Anticarcinogenic, antioxidant, anti-inflammatory and anti-neurodegenerative effect -Reduce de risk of ocular, nephrological, and liver diseases. | [102,103,104] |
Juçara and its residues (Euterpe edulis Mart.) | Anthocyanins | Uses as meat and poultry additives, beverages, and powders | -Antibiotic effect -Obesity and weight control -Anti-inflammatory effect | [105,106,107] |
Herbs or species | ||||
Rosemary (Rosmarinus officinalis L.) | Phenolic diterpenes (carnosol, scutellarein) Flavonoids (genkwanin) | Food coating materials, tea beverages, powders, additive for meat and fish products | -Antioxidant, antitumor, and anti-inflammatory activity | [30,108,109] |
Lemon balm (Melissa officinalis) | Rosmarinic acid and its derivatives | Uses as additive in bakery and chocolate products | -Potential to prevent and manage mental, gastrointestinal disorders, and sleep disturbance -Antioxidant and antimicrobial properties | [110,111] |
Turmeric (Curcuma longa L.) | Curcumin | Pickles, sauces, and mixtures with mustard | -Potential to prevent and manage noncommunicable diseases related to oxidative stress, anti-inflammatory, carminative, antiseptic, and antioxidant properties | [112] |
Microalgae or macroalgae | ||||
Spirulina microalga: (Spirulina platensis) | Carotenoids (zeaxanthin and β-carotene) Phenolic compounds Chlorophyll | Fortified yogurt | -Antioxidant, anti-inflammatory, and antibacterial activity -Good action of active ingredients in specific sites of the human body | [113] |
Onion peel (Allium cepa) | Flavonols (quercetin) | Tea beverages, application in food package | -Cardioprotective and neuroprotective effect. -Antiobesity, antioxidant, antidiabetic, anticancer and antimicrobial activity. | [114,115,116] |
Orange peel (Citrus x sinensis) | Flavonoids Glycosylated (hesperidin) | -Uses as supplementary ingredient in functional food products such as: beverages, dairy, and extruded products -Coloring and flavoring agent for food products | -Antioxidant and antimicrobial activity | [117] |
Pomegranate peel (Punica granatum L.) | Punicalagin | Food coating, additive for date bars | -Antioxidant activity | [118,119] |
Avocado peel (Persea americana Mill.) | Procyanidins Flavonols Hydroxybenzoic and hydroxycinnamic acids | Special culinary oil | -Used to treat hypercholesterolemia, hypertension, diabetes, and fatty liver disease -Reduces cardiometabolic risk and has anticancer and antimicrobial properties | [70] |
Mango peel (Mangifera indica L.) | Phenolic compounds | Fortification of dairy and bakery products | -Antioxidant activity -Glycemic index control | [120,121] |
Seeds | ||||
Avocado seed (Persea americana) | Phenolic compounds Condensed tannins Phenolic acids Flavonoids | Food additive in meat products | -Antioxidant and antimicrobial activity | [122,123] |
Grape seed (Vitis vinifera) | Catechins Proanthocyanidins | Special oils | -Strong antioxidants to combat oxidative stress -Inhibit tyrosinase activity -Prevent skin disorders due to hyperpigmentation | [72] |
Bagasse | ||||
Blueberry bagasse (Vaccinium myrtillus L.) | Anthocyanins | Food supplements | -Consumption protects against the development of cardiovascular diseases, diabetes, cancer, and neurodegenerative diseases -Powerful antioxidant activity and ability to modulate signaling pathways | [124] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fraguela-Meissimilly, H.; Bastías-Monte, J.M.; Vergara, C.; Ortiz-Viedma, J.; Lemus-Mondaca, R.; Flores, M.; Toledo-Merma, P.; Alcázar-Alay, S.; Gallón-Bedoya, M. New Trends in Supercritical Fluid Technology and Pressurized Liquids for the Extraction and Recovery of Bioactive Compounds from Agro-Industrial and Marine Food Waste. Molecules 2023, 28, 4421. https://doi.org/10.3390/molecules28114421
Fraguela-Meissimilly H, Bastías-Monte JM, Vergara C, Ortiz-Viedma J, Lemus-Mondaca R, Flores M, Toledo-Merma P, Alcázar-Alay S, Gallón-Bedoya M. New Trends in Supercritical Fluid Technology and Pressurized Liquids for the Extraction and Recovery of Bioactive Compounds from Agro-Industrial and Marine Food Waste. Molecules. 2023; 28(11):4421. https://doi.org/10.3390/molecules28114421
Chicago/Turabian StyleFraguela-Meissimilly, Horacio, José Miguel Bastías-Monte, Claudia Vergara, Jaime Ortiz-Viedma, Roberto Lemus-Mondaca, Marcos Flores, Pamela Toledo-Merma, Sylvia Alcázar-Alay, and Manuela Gallón-Bedoya. 2023. "New Trends in Supercritical Fluid Technology and Pressurized Liquids for the Extraction and Recovery of Bioactive Compounds from Agro-Industrial and Marine Food Waste" Molecules 28, no. 11: 4421. https://doi.org/10.3390/molecules28114421
APA StyleFraguela-Meissimilly, H., Bastías-Monte, J. M., Vergara, C., Ortiz-Viedma, J., Lemus-Mondaca, R., Flores, M., Toledo-Merma, P., Alcázar-Alay, S., & Gallón-Bedoya, M. (2023). New Trends in Supercritical Fluid Technology and Pressurized Liquids for the Extraction and Recovery of Bioactive Compounds from Agro-Industrial and Marine Food Waste. Molecules, 28(11), 4421. https://doi.org/10.3390/molecules28114421