The Role of the Mannich Reaction in Nitrogen Migration during the Co-Hydrothermal Carbonization of Bovine Serum Albumin and Lignin with Various Forms of Acid–Alcohol Assistance
Abstract
:1. Introduction
2. Results and Discussion
2.1. Nitrogen Distribution in Acid–Alcohol-Assisted Co-HTC Products
2.2. Properties of Hydrochar and N-Species in Hydrochar
2.3. Nitrogen Distribution in Aqueous and Oil Products
2.4. Other Organic Components in Oil
2.5. Possible Path of Nitrogen Migration in Various Acid–Alcohol-Assisted Co-HTC Experiments
3. Materials and Methods
3.1. Materials
3.2. Co-HTC of BSA and Lignin
3.3. Analysis of Products from Co-HTC
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Karakurt, I.; Aydin, G. Development of regression models to forecast the CO2 emissions from fossil fuels in the BRICS and MINT countries. Energy 2023, 263, 125650. [Google Scholar] [CrossRef]
- Yu, S.Y.; Yang, X.X.; Li, Q.H.; Zhang, Y.G.; Zhou, H. Breaking the temperature limit of hydrothermal carbonization of lignocellulosic biomass by decoupling temperature and pressure. Green Energy Environ. 2023; in press. [Google Scholar] [CrossRef]
- Chiaramonti, D.; Prussi, M.; Buffi, M.; Rizzo, A.M.; Pari, L. Review and experimental study on pyrolysis and hydrothermal liquefaction of microalgae for biofuel production. Appl. Energy 2017, 185, 963–972. [Google Scholar] [CrossRef]
- Wang, T.; Zhai, Y.; Peng, C.; Xu, B.; Wang, T.; Li, C.; Zeng, G. Influence of temperature on nitrogen fate during hydrothermal carbonization of food waste. Bioresour. Technol. 2018, 247, 182–189. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Liu, H.; Lu, G.; Yi, L.L.; Hu, H.Y.; Chi, H.T.; Yao, H. Mechanism of conditioner CaO on NOx precursors evolution during sludge steam gasification. Proc. Combust. Inst. 2016, 36, 4003–4010. [Google Scholar] [CrossRef]
- Cao, Y.; He, M.; Dutta, S.; Luo, G.; Zhang, S.; Tsang, D.C.W. Hydrothermal carbonization and liquefaction for sustainable production of hydrochar and aromatics. Renew. Sust. Energ. Rev. 2021, 152, 111722. [Google Scholar] [CrossRef]
- Zhuang, X.Z.; Liu, J.G.; Ma, L.L. Facile synthesis of hydrochar-supported catalysts from glucose and its catalytic activity towards the production of functional amines. Green Energy Environ. 2022; in press. [Google Scholar] [CrossRef]
- Leng, L.J.; Yang, L.H.; Leng, S.Q.; Zhang, W.J.; Zhou, Y.Y.; Peng, H.Y.; Li, H.; Hu, Y.C.; Jiang, S.J.; Li, H.L. A review on nitrogen transformation in hydrochar during hydrothermal carbonization of biomass containing nitrogen. Sci. Total Environ. 2021, 756, 143679. [Google Scholar] [CrossRef]
- Liu, H.; Basar, I.A.; Nzihou, A.; Eskicioglu, C. Hydrochar derived from municipal sludge through hydrothermal processing: A critical review on its formation, characterization, and valorization. Water Res. 2021, 199, 117186. [Google Scholar] [CrossRef]
- Wang, Z.Q.; Huang, J.C.; Wang, B.; Hu, W.; Xie, D.; Liu, S.; Qiao, Y. Co-hydrothermal carbonization of sewage sludge and model compounds of food waste: Influence of mutual interaction on nitrogen transformation. Sci. Total Environ. 2022, 807, 150997. [Google Scholar] [CrossRef]
- He, C.; Zhang, Z.; Ge, C.F.; Liu, W.; Tang, Y.T.; Zhuang, X.Z.; Qiu, R.L. Synergistic effect of hydrothermal co-carbonization of sewage sludge with fruit and agricultural wastes on hydrochar fuel quality and combustion behavior. Waste Manag. 2019, 100, 171–181. [Google Scholar] [CrossRef]
- Liu, X.M.; Fan, Y.W.; Zhai, Y.B.; Liu, X.P.; Wang, Z.X.; Zhu, Y.; Shi, H.R.; Li, C.T.; Zhu, Y. Co-hydrothermal carbonization of rape straw and microalgae: pH-enhanced carbonization process to obtain clean hydrochar. Energy 2022, 257, 124733. [Google Scholar] [CrossRef]
- Zhang, X.J.; Zhang, L.; Li, A.M. Hydrothermal co-carbonization of sewage sludge and pinewood sawdust for nutrient-rich hydrochar production: Synergistic effects and products characterization. J. Environ. Manag. 2017, 201, 52–62. [Google Scholar] [CrossRef] [PubMed]
- Falco, C.; Sevilla, M.; White, R.J.; Rothe, R.; Titirici, M.M. Renewable nitrogen-doped hydrothermal carbons derived from microalgae. ChemSusChem 2012, 5, 1834–1840. [Google Scholar] [CrossRef] [PubMed]
- Lang, Q.; Guo, Y.; Zheng, Q.; Liu, Z.; Gai, C. Co-hydrothermal carbonization of lignocellulosic biomass and swine manure: Hydrochar properties and heavy metal transformation behavior. Bioresour. Technol. 2018, 266, 242–248. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liu, H.; Xiao, K.; Liu, X.; Hu, H.; Li, X.; Yao, H. Correlations between the physicochemical properties of hydrochar and specific components of waste lettuce: Influence of moisture, carbohydrates, proteins and lipids. Bioresour. Technol. 2019, 272, 482–488. [Google Scholar] [CrossRef] [PubMed]
- Du, X.; Li, J.; Lindström, M.E. Modification of industrial softwood kraft lignin using Mannich reaction with and without phenolation pretreatment. Ind. Crops Prod. 2014, 52, 729–735. [Google Scholar] [CrossRef]
- Madsen, R.B.; Bernberg, R.Z.K.; Biller, P.; Becker, J.; Iversen, B.B.; Glasius, M. Hydrothermal co-liquefaction of biomasses-quantitative analysis of bio-crude and aqueous phase composition. Sustain. Energy Fuels 2017, 1, 789–805. [Google Scholar] [CrossRef]
- Croce, A.; Battistel, E.; Chiaberge, S.; Spera, S.; De Angelis, F.; Reale, S. A model study to unravel the complexity of bio-oil from organic wastes. ChemSusChem 2017, 9, 171–181. [Google Scholar] [CrossRef]
- Kim, D.; Prawisudha, P.; Yoshikawa, K. Hydrothermal upgrading of Korean MSW for solid fuel production: Effect of MSW composition. J. Combust. 2012, 2012, 781659. [Google Scholar] [CrossRef]
- Yang, C.; Wang, S.; Yang, J.; Xu, D.; Li, Y.; Li, J.; Zhang, Y. Hydrothermal liquefaction and gasification of biomass and model compounds: A review. Green Chem. 2020, 22, 8210–8232. [Google Scholar] [CrossRef]
- Nicolae, S.A.; Au, H.; Modugno, P.; Luo, H.; Szego, A.E.; Qiao, M.; Li, L.; Yin, W.; Heeres, H.J.; Berge, N.; et al. Recent advances in hydrothermal carbonisation: From tailored carbon materials and biochemicals to applications and bioenergy. Green Chem. 2020, 22, 4747–4800. [Google Scholar] [CrossRef]
- Chen, X.F.; Peng, X.W.; Ma, X.Q.; Wang, J.J. Investigation of Mannich reaction during co-liquefaction of microalgae and sweet potato waste. Bioresour. Technol. 2019, 284, 286–292. [Google Scholar] [CrossRef] [PubMed]
- Abdelmoez, W.; Yoshida, H.; Nakahasi, T. Amino acid transformation and decomposition in saturated subcritical water conditions. Ind. Eng. Chem. Res. 2007, 8, 5286–5294. [Google Scholar] [CrossRef]
- Djandja, O.S.; Liew, R.K.; Liu, C.; Liang, J.H.; Yuan, H.H.; He, W.X.; Feng, Y.F.; Lougou, B.G.; Duan, P.G.; Lu, X.B.; et al. Catalytic hydrothermal carbonization of wet organic solid waste: A review. Sci. Total Environ. 2023, 873, 162119. [Google Scholar] [CrossRef] [PubMed]
- He, M.J.; Zhu, X.F.; Dutta, S.; Khanal, S.K.; Lee, K.T.; Masek, O.; Tsang, D.C.W. Catalytic co-hydrothermal carbonization of food waste digestate and yard waste for energy application and nutrient recovery. Bioresour. Technol. 2022, 344, 126395. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.F.; Zhai, Y.B.; Zhu, Y.; Li, C.T.; Zeng, G.G. A review of the hydrothermal carbonization of biomass waste for hydrochar formation: Process conditions, fundamentals, and physicochemical properties. Renew. Sust. Energ. Rev. 2018, 90, 223–247. [Google Scholar] [CrossRef]
- Muller, S. Peptide-carrier conjugation. Lab. Tech. Biochem. Mol. Biol. 1988, 19, 95–130. [Google Scholar]
- Xiao, H.; Zhai, Y.B.; Xie, J.; Wang, T.F.; Wang, B.; Li, S.H.; Li, C.T. Speciation and transformation of nitrogen for spirulina hydrothermal carbonization. Bioresour. Technol. 2019, 286, 121385. [Google Scholar] [CrossRef] [PubMed]
- Wilson, C.A.; Novak, J.T. Hydrolysis of macromolecular components of primary and secondary wastewater sludge by thermal hydrolytic pretreatment. Water Res. 2009, 43, 4489–4498. [Google Scholar] [CrossRef]
- Klingler, D.; Berg, J.; Vogel, H. Hydrothermal reactions of alanine and glycine in sub- and supercritical water. J. Supercrit. Fluids 2007, 43, 112–119. [Google Scholar] [CrossRef]
- Xu, H.; Shen, L.; Xu, L.; Yang, Y. Low-temperature crosslinking of proteins using non-toxic citric acid in neutral aqueous medium: Mechanism and kinetic study. Ind. Crops Prod. 2015, 74, 234–240. [Google Scholar] [CrossRef]
- Wang, Q.; Wu, S.; Cui, D.; Zhou, H.Y.; Wu, D.Y.; Pan, S.; Xu, F.X.; Wang, Z.Y. Co-hydrothermal carbonization of organic solid wastes to hydrochar as potential fuel: A review. Sci. Total Environ. 2022, 850, 158034. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Yang, J.T.; Li, L.M.; Qian, J.Q.; Zhao, Y.; Wang, T.F. Nitrogen distribution and evolution during persulfate assisted hydrothermal carbonization of spirulina. Bioresour. Technol. 2021, 342, 125980. [Google Scholar] [CrossRef] [PubMed]
- Yao, C.H.; Pan, Y.F.; Lu, H.B.; Wu, P.C.; Meng, Y.Y.; Cao, X.P.; Xue, S. Utilization of recovered nitrogen from hydrothermal carbonization process by Arthrospira platensis. Bioresour. Technol. 2016, 212, 26–34. [Google Scholar] [CrossRef] [PubMed]
Sample | One Ring | Two Rings | Three Rings | Cyclobenzene | Branched | Oxygen |
---|---|---|---|---|---|---|
SW-433 | 18.79 | 53.91 | 13.35 | 28.38 | 52.22 | 83.54 |
SE-433 | 39.84 | 23.37 | 16.79 | 6.72 | 60.80 | 65.82 |
SAE-433 | 8.01 | 4.65 | 2.02 | 4.03 | 11.75 | 14.68 |
SOE-433 | 28.03 | 30.61 | 3.41 | 34.42 | 59.23 | 54.21 |
SCE-433 | 17.31 | 44.06 | 1.54 | 20.10 | 58.65 | 62.91 |
SW-473 | 18.50 | 28.04 | - | 9.36 | 33.95 | 43.36 |
SE-473 | 31.89 | 28.22 | - | 21.30 | 43.89 | 56.93 |
SAE-473 | 31.89 | 22.53 | - | 13.16 | 42.79 | 54.42 |
SOE-473 | 41.49 | 29.87 | - | 16.48 | 58.89 | 68.93 |
SCE-473 | 22.04 | 47.10 | - | 13.58 | 51.19 | 67.98 |
SW-513 | 23.58 | 19.53 | 0.20 | 8.37 | 26.93 | 40.52 |
SE-513 | 27.34 | 36.42 | - | 22.59 | 50.46 | 50.49 |
SAE-513 | 7.42 | 4.15 | 0.14 | 2.54 | 10.33 | 11.45 |
SOE-513 | 32.04 | 15.68 | - | 8.80 | 39.65 | 42.18 |
SCE-513 | 52.51 | 17.27 | 2.80 | 5.95 | 45.01 | 72.08 |
Sample | Hydrolysis Efficiency (%) | Ultimate Analysis (wt%) | ||||||
---|---|---|---|---|---|---|---|---|
433 K | 473 K | 513 K | C | H | N | S | O a | |
BSA | 28.6 | 75.5 | 100 | 48.98 | 7.01 | 14.50 | 1.28 | 28.23 |
Lignin | 30.1 | 37.8 | 42.9 | 56.91 | 5.44 | 1.10 | 0.20 | 36.35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Q.; Mu, K.; Zhao, B.; Yi, L. The Role of the Mannich Reaction in Nitrogen Migration during the Co-Hydrothermal Carbonization of Bovine Serum Albumin and Lignin with Various Forms of Acid–Alcohol Assistance. Molecules 2023, 28, 4408. https://doi.org/10.3390/molecules28114408
Zhang Q, Mu K, Zhao B, Yi L. The Role of the Mannich Reaction in Nitrogen Migration during the Co-Hydrothermal Carbonization of Bovine Serum Albumin and Lignin with Various Forms of Acid–Alcohol Assistance. Molecules. 2023; 28(11):4408. https://doi.org/10.3390/molecules28114408
Chicago/Turabian StyleZhang, Qiang, Kai Mu, Bo Zhao, and Linlin Yi. 2023. "The Role of the Mannich Reaction in Nitrogen Migration during the Co-Hydrothermal Carbonization of Bovine Serum Albumin and Lignin with Various Forms of Acid–Alcohol Assistance" Molecules 28, no. 11: 4408. https://doi.org/10.3390/molecules28114408