Effects of Torrefaction Pretreatment on the Structural Features and Combustion Characteristics of Biomass-Based Fuel
Abstract
:1. Introduction
2. Results and Discussion
2.1. Clarification of Componential Variation
2.1.1. Characteristics of Change in Organic Contents during Torrefaction Process
2.1.2. Effects of Torrefaction Conditions on Elemental and Compositional Distribution
2.2. Fuel Quality Identification
2.3. Analysis of Surface Chemical Structure
2.3.1. Effects of Reaction Condition on the Distribution of C(N)
2.3.2. Effects of Reaction Condition on the Distribution of C(O)
2.4. Surface Physical Structure Determination
2.5. TGA Investigation
2.5.1. Combustion Characteristic Parameters of Each Upgraded Sample
2.5.2. Combustion Kinetics of Each Torrefied Sample
3. Experimental
3.1. Sample Preparation
3.2. Fuel Quality Identification
3.3. XPS Analysis
3.4. Pore Structure Determination
3.5. TGA Test
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
A | Pre-exponential factor (min−1) |
a | Conversion ratio (%) |
C(N) | Nitrogen-containing functional groups |
C(O) | Oxygen-containing functional groups |
DFG | Dry flue gas |
da/dt | Conversion rate (%/min) |
Ea | Activation energy (kJ/mol) |
EMCI | Energy–mass co-benefit index (%) |
f(a) | Reaction model function |
G(a) | Integrated form of f(a) |
HHV | Higher heating value (MJ/kg) |
R | Universal gas constant (8.314 J mol−1 K−1) |
R2 | Correlation coefficient |
RFG | Raw flue gas |
Tb | Burnout temperature (K) |
Ti | Ignition temperature (K) |
Tmax | Maximum weigh loss temperature (K) |
YE | Energy yield (%) |
YM | Mass yield (%) |
β | Heating rate (K/min) |
References
- Qiao, H.; Zheng, F.T.; Jiang, H.D.; Dong, K.Y. The greenhouse effect of the agriculture-economic growth-renewable energy nexus: Evidence from G20 countries. Sci. Total Environ. 2019, 671, 722–731. [Google Scholar] [CrossRef]
- Rago, Y.P.; Collard, F.-X.; Görgens, J.F.; Surroop, D.; Mohee, R. Co-combustion of torrefied biomass-plastic waste blends with coal through TGA: Influence of synergistic behaviour. Energy 2022, 239, 121859. [Google Scholar] [CrossRef]
- Simonic, M.; Goricanec, D.; Urbancl, D. Impact of torrefaction on biomass properties depending on temperature and operation time. Sci. Total Environ. 2020, 740, 140086. [Google Scholar] [CrossRef] [PubMed]
- Kwon, G.; Bhatnagar, A.; Wang, H.; Kwon, E.E.; Song, H. A review of recent advancements in utilization of biomass and industrial wastes into engineered biochar. J. Hazard. Mater. 2020, 400, 123242. [Google Scholar] [CrossRef]
- Kongto, P.; Palamanit, A.; Chaiprapat, S.; Tippayawong, N. Enhancing the fuel properties of rubberwood biomass by moving bed torrefaction process for further applications. Renew. Energy 2021, 170, 703–713. [Google Scholar] [CrossRef]
- Chen, W.-H.; Lin, B.-J.; Lin, Y.-Y.; Chu, Y.-S.; Ubando, A.T.; Show, P.L.; Ong, H.C.; Chang, J.-S.; Ho, S.-H.; Culaba, A.B.; et al. Progress in biomass torrefaction: Principles, applications and challenges. Prog. Energy Combust. Sci. 2021, 82, 100887. [Google Scholar] [CrossRef]
- Ma, J.; Feng, S.; Zhang, Z.; Wang, Z.; Kong, W.; Yuan, P.; Shen, B.; Mu, L. Effect of torrefaction pretreatment on the combustion characteristics of the biodried products derived from municipal organic wastes. Energy 2022, 239, 122358. [Google Scholar] [CrossRef]
- Castells, B.; Amez, I.; Medic, L.; García-Torrent, J. Torrefaction influence on combustion kinetics of Malaysian oil palm wastes. Fuel Process. Technol. 2021, 218, 106843. [Google Scholar] [CrossRef]
- Wei, J.; Gong, Y.; Guo, Q.; Chen, X.; Ding, L.; Yu, G. A mechanism investigation of synergy behaviour variations during blended char co-gasification of biomass and different rank coals. Renew. Energy 2019, 131, 597–605. [Google Scholar] [CrossRef]
- Cahyanti, M.N.; Doddapaneni, T.R.K.C.; Kikas, T. Biomass torrefaction: An overview on process parameters, economic and environmental aspects and recent advancements. Bioresour. Technol. 2020, 301, 122737. [Google Scholar] [CrossRef]
- Cen, K.; Zhuang, X.; Gan, Z.; Ma, Z.; Li, M.; Chen, D. Effect of the combined pretreatment of leaching and torrefaction on the production of bio-aromatics from rice straw via the shape selective catalytic fast pyrolysis. Energy Rep. 2021, 7, 732–739. [Google Scholar] [CrossRef]
- Quéméner, B.; Vigouroux, J.; Rathahao, E.; Tabet, J.C.; Dimitrijevic, A.; Lahaye, M. Negative electrospray ionization mass spectrometry: A method for sequencing and determining linkage position in oligosaccharides from branched hemicelluloses. J. Mass Spectrom. 2015, 50, 247–264. [Google Scholar] [CrossRef] [PubMed]
- Hinterstoisser, B.; Salmén, L. Application of dynamic 2D FTIR to cellulose. Vib. Spectrosc. 2000, 22, 111–118. [Google Scholar] [CrossRef]
- Plomion, C.; LeProvost, G.; Stokes, A. Wood Formation in Trees. Plant Physiol. 2001, 127, 1513–1523. [Google Scholar] [CrossRef]
- Chen, W.-H.; Peng, J.; Bi, X.T. A state-of-the-art review of biomass torrefaction, densification and applications. Renew. Sustain. Energy Rev. 2015, 44, 847–866. [Google Scholar] [CrossRef]
- Chen, D.; Gao, A.; Cen, K.; Zhang, J.; Cao, X.; Ma, Z. Investigation of biomass torrefaction based on three major components: Hemicellulose, cellulose, and lignin. Energy Convers. Manag. 2018, 169, 228–237. [Google Scholar] [CrossRef]
- Zhu, X.; Li, S.; Zhang, Y.; Li, J.; Zhang, Z.; Sun, Y.; Zhou, S.; Li, N.; Yan, B.; Chen, G. Flue gas torrefaction of municipal solid waste: Fuel properties, combustion characterizations, and nitrogen/sulfur emissions. Bioresour. Technol. 2022, 351, 126967. [Google Scholar] [CrossRef]
- Zhu, X.; Zhou, S.; Zhang, Z.; Zhang, Y.; Li, J.; Ahmed, S.; Yan, B.; Chen, G.; Li, N. Flue gas torrefaction of distilled spirit lees and the effects on the combustion and nitrogen oxide emission. Bioresour. Technol. 2021, 342, 125975. [Google Scholar] [CrossRef]
- Onsree, T.; Tippayawong, N. Analysis of reaction kinetics for torrefaction of pelletized agricultural biomass with dry flue gas. Energy Rep. 2020, 6, 61–65. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, C.; Cao, G.; Chen, W.-H.; Ho, S.-H. Comparison and characterization of property variation of microalgal biomass with non-oxidative and oxidative torrefaction. Fuel 2019, 246, 375–385. [Google Scholar] [CrossRef]
- Ong, H.C.; Yu, K.L.; Chen, W.-H.; Pillejera, M.K.; Bi, X.; Tran, K.-Q.; Pétrissans, A.; Pétrissans, M. Variation of lignocellulosic biomass structure from torrefaction: A critical review. Renew. Sustain. Energy Rev. 2021, 152, 111698. [Google Scholar] [CrossRef]
- Chen, W.-H.; Lu, K.-M.; Liu, S.-H.; Tsai, C.-M.; Lee, W.-J.; Lin, T.-C. Biomass torrefaction characteristics in inert and oxidative atmospheres at various superficial velocities. Bioresour. Technol. 2013, 146, 152–160. [Google Scholar] [CrossRef] [PubMed]
- Kanwal, S.; Chaudhry, N.; Munir, S.; Sana, H. Effect of torrefaction conditions on the physicochemical characterization of agricultural waste (sugarcane bagasse). Waste Manag. 2019, 88, 280–290. [Google Scholar] [CrossRef]
- Sarker, T.R.; Azargohar, R.; Dalai, A.K.; Venkatesh, M. Physicochemical and Fuel Characteristics of Torrefied Agricultural Residues for Sustainable Fuel Production. Energy Fuels 2020, 34, 14169–14181. [Google Scholar] [CrossRef]
- Zhang, C.; Ho, S.-H.; Chen, W.-H.; Fu, Y.; Chang, J.-S.; Bi, X. Oxidative torrefaction of biomass nutshells: Evaluations of energy efficiency as well as biochar transportation and storage. Appl. Energy 2019, 235, 428–441. [Google Scholar] [CrossRef]
- Da Silva, C.M.S.; Vital, B.R.; Carneiro, A.D.C.O.; Costa, E.V.; de Magalhães, M.A.; Trugilho, P.F. Structural and compositional changes in eucalyptus wood chips subjected to dry torrefaction. Ind. Crop. Prod. 2017, 109, 598–602. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, Y.; Ma, J.; Yang, J.; Xu, L.; Kong, W.; Shen, B.; Sun, R. Evolution characteristics of structural nitrogen and the microstructure of anthracite particles in the process of O2/Ar and O2/H2O pre-oxidation. Fuel 2021, 289, 119860. [Google Scholar] [CrossRef]
- Álvarez, A.; Migoya, S.; Menéndez, R.; Gutiérrez, G.; Pizarro, C.; Bueno, J.L. Torrefaction of Short Rotation Coppice Willow. Characterization, hydrophobicity assessment and kinetics of the process. Fuel 2021, 295, 120601. [Google Scholar] [CrossRef]
- Tian, X.; Dai, L.; Wang, Y.; Zeng, Z.; Zhang, S.; Jiang, L.; Yang, X.; Yue, L.; Liu, Y.; Ruan, R. Influence of torrefaction pretreatment on corncobs: A study on fundamental characteristics, thermal behavior, and kinetic. Bioresour. Technol. 2020, 297, 122490. [Google Scholar] [CrossRef]
- Szwaja, S.; Magdziarz, A.; Zajemska, M.; Poskart, A. A torrefaction of Sida hermaphrodita to improve fuel properties. Advanced analysis of torrefied products. Renew. Energy 2019, 141, 894–902. [Google Scholar] [CrossRef]
- Barbanera, M.; Muguerza, I. Effect of the temperature on the spent coffee grounds torrefaction process in a continuous pilot-scale reactor. Fuel 2020, 262, 116493. [Google Scholar] [CrossRef]
- Silveira, E.A.; Luz, S.; Candelier, K.; Macedo, L.A.; Rousset, P. An assessment of biomass torrefaction severity indexes. Fuel 2021, 288, 119631. [Google Scholar] [CrossRef]
- Li, X.; Lu, Z.; Chen, J.; Chen, X.; Jiang, Y.; Jian, J.; Yao, S. Effect of oxidative torrefaction on high temperature combustion process of wood sphere. Fuel 2021, 286, 119379. [Google Scholar] [CrossRef]
- Yang, X.; Luo, Z.; Yan, B.; Wang, Y.; Yu, C. Evaluation on nitrogen conversion during biomass torrefaction and its blend co-combustion with coal. Bioresour. Technol. 2021, 336, 125309. [Google Scholar] [CrossRef]
- Liu, X.; Luo, Z.; Yu, C.; Xie, G. Conversion mechanism of fuel-N during pyrolysis of biomass wastes. Fuel 2019, 246, 42–50. [Google Scholar] [CrossRef]
- Wang, Z.; Sun, R.; Zhao, Y.; Li, Y.; Ren, X. Effect of steam concentration on demineralized coal char surface behaviors and structural characteristics during the oxy-steam combustion process. Energy 2019, 174, 339–349. [Google Scholar] [CrossRef]
- Li, N.; Wang, Y.; Cui, S.; Sun, D. Investigations on NO reduction with biomass char: Char structural changes during the heat treatment in N2 and subsequent NO/O2 gasification. Fuel 2021, 287, 119564. [Google Scholar] [CrossRef]
- Wang, Z.-Z.; Xu, J.; Sun, R.; Zhao, Y.-Y.; Li, Y.-P.; Ismail, T.M. Investigation of the NO Reduction Characteristics of Coal Char at Different Conversion Degrees under an NO Atmosphere. Energy Fuels 2017, 31, 8722–8732. [Google Scholar] [CrossRef]
- Wang, Z.; Li, Y.; Zhu, W.; Sun, R.; Zhao, Y.; Ren, X. Effects of Reaction Condition on the Emission Characteristics of Fuel-N during the O2/H2O Combustion Process of Demineralized Coal. Energy Fuels 2019, 33, 6187–6196. [Google Scholar] [CrossRef]
- Chen, H.; Chen, X.; Qin, Y.; Wei, J.; Liu, H. Effect of torrefaction on the properties of rice straw high temperature pyrolysis char: Pore structure, aromaticity and gasification activity. Bioresour. Technol. 2017, 228, 241–249. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wu, J.; Chen, Y.; Pattiya, A.; Yang, H.; Chen, H. Comparative study of wet and dry torrefaction of corn stalk and the effect on biomass pyrolysis polygeneration. Bioresour. Technol. 2018, 258, 88–97. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Zhao, G.; Sun, R.; Liu, H.; Wang, Z.; Sihyun, L.; Kong, M. Effect of the COMBDry Dewatering Process on Combustion Reactivity and Oxygen-Containing Functional Groups of Dried Lignite. Energy Fuels 2017, 31, 4488–4498. [Google Scholar] [CrossRef]
- Barzegar, R.; Yozgatligil, A.; Olgun, H.; Atimtay, A.T. TGA and kinetic study of different torrefaction conditions of wood biomass under air and oxy-fuel combustion atmospheres. J. Energy Inst. 2020, 93, 889–898. [Google Scholar] [CrossRef]
- Zhang, Z.; Duan, H.; Zhang, Y.; Guo, X.; Yu, X.; Zhang, X.; Rahman, M.; Cai, J. Investigation of kinetic compensation effect in lignocellulosic biomass torrefaction: Kinetic and thermodynamic analyses. Energy 2020, 207, 118290. [Google Scholar] [CrossRef]
- Alonso, E.R.; Dupont, C.; Heux, L.; Perez, D.D.S.; Commandre, J.-M.; Gourdon, C. Study of solid chemical evolution in torrefaction of different biomasses through solid-state 13C cross-polarization/magic angle spinning NMR (nuclear magnetic resonance) and TGA (thermogravimetric analysis). Energy 2016, 97, 381–390. [Google Scholar] [CrossRef]
- Zhao, Z.; Feng, S.; Zhao, Y.; Wang, Z.; Ma, J.; Xu, L.; Yang, J.; Shen, B. Investigation on the fuel quality and hydrophobicity of upgraded rice husk derived from various inert and oxidative torrefaction conditions. Renew. Energy 2022, 189, 1234–1248. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, Z.; Ma, J.; Kong, W.; Yuan, P.; Sun, R.; Shen, B. Analysis of functionality distribution and microstructural characteristics of upgraded rice husk after undergoing non-oxidative and oxidative torrefaction. Fuel 2021, 11, 122477. [Google Scholar] [CrossRef]
- GB/T 30725-2014; Determination of Ash Composition in Solid Biofuels. China Coal Industry Association: Beijing, China, 2014.
- Liu, L.-L.; Cui, Z.-H.; Wang, J.-J.; Xia, Z.-H.; Duan, L.-J.; Yang, Y.; Li, M.; Li, T. Pore Size Distribution Characteristics of High Rank Coal with Various Grain Sizes. ACS Omega 2020, 31, 19785–19795. [Google Scholar] [CrossRef]
- Li, Y.; Sun, R.; Wang, M.; Wang, Z.; Xu, J.; Ren, X. Reaction kinetics of char-O2/H2O combustion under high-temperature entrained flow conditions. Fuel 2019, 243, 172–184. [Google Scholar] [CrossRef]
- Mian, I.; Li, X.; Dacres, O.D.; Wang, J.; Wei, B.; Jian, Y.; Zhong, M.; Liu, J.; Ma, F.; Rahman, N. Combustion kinetics and mechanism of biomass pellet. Energy 2020, 205, 117909. [Google Scholar] [CrossRef]
- Singh, R.K.; Sarkar, A.; Chakraborty, J.P. Effect of torrefaction on the physicochemical properties of pigeon pea stalk (Cajanus cajan) and estimation of kinetic parameters. Renew. Energy 2019, 138, 805–819. [Google Scholar] [CrossRef]
Sample Abbreviation | Ultimate Analysis (daf) | Proximate Analysis (db) | HHV (MJ/kg) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
C | H | N | S | O a | Mar | Volatile | Cfixed | Ash | ||
(wt%) | (wt%) | (wt%) | (wt%) | (wt%) | (wt%) | (wt%) | (wt%) | (wt%) | ||
Raw sample | 49.44 | 4.37 | 1.82 | 0.51 | 43.86 | 7.44 | 56.13 | 20.45 | 15.98 | 12.88 |
S1 | 60.38 | 5.45 | 0.84 | 0.16 | 33.17 | 3.09 | 25.01 | 41.77 | 30.13 | 13.67 |
S2 | 63.01 | 5.32 | 1.37 | 0.11 | 30.19 | 3.34 | 20.08 | 43.01 | 33.57 | 13.95 |
S3 | 62.66 | 5.15 | 0.82 | 0.08 | 31.29 | 3.81 | 18.58 | 43.44 | 34.17 | 13.78 |
S4 | 65.06 | 4.77 | 1.34 | 0.07 | 28.76 | 3.35 | 10.77 | 49.37 | 36.51 | 14.14 |
S5 | 65.89 | 2.87 | 1.41 | 0.07 | 29.76 | 3.77 | 9.22 | 50.37 | 36.64 | 14.49 |
S6 | 70.98 | 2.59 | 1.07 | 0.05 | 25.31 | 3.63 | 5.54 | 51.94 | 38.89 | 15.26 |
S7 | 70.96 | 1.62 | 0.93 | 0.24 | 26.25 | 3.37 | 7.27 | 51.57 | 37.79 | 15.31 |
S8 | 72.69 | 1.01 | 0.99 | 0.2 | 25.11 | 2.59 | 4.21 | 53.98 | 39.22 | 16.08 |
Ash content determination (ad) | ||||||||||
SiO2 (wt.%) | Al2O3 (wt.%) | Fe2O3 (wt.%) | CaO (wt.%) | Na2O (wt.%) | K2O (wt.%) | MgO (wt.%) | Total (wt.%) | Others (wt.%) | ||
Ash | 38.0 | 7.5 | 4.7 | 11.4 | 5.3 | 7.1 | 7.2 | 81.2 | 18.8 | Ash |
Atmosphere | 543 K | 573 K | ||||
---|---|---|---|---|---|---|
α | Ea (kJ/mol) | R2 | α | Ea (kJ/mol) | R2 | |
Ar | 0.1 | 140.83 | 0.9943 | 0.1 | 167.88 | 0.9962 |
0.2 | 138.51 | 0.9975 | 0.2 | 164.75 | 0.9945 | |
0.3 | 133.89 | 0.9997 | 0.3 | 178.03 | 0.9980 | |
0.4 | 144.17 | 0.9995 | 0.4 | 194.00 | 0.9963 | |
0.5 | 149.51 | 0.9999 | 0.5 | 185.51 | 0.9872 | |
0.6 | 131.57 | 0.9953 | 0.6 | 159.20 | 0.9102 | |
Average | 139.75 | Average | 174.89 | |||
6 vol.% O2 | 0.1 | 89.24 | 0.9721 | 0.1 | 145.58 | 0.9972 |
0.2 | 124.67 | 0.9974 | 0.2 | 166.71 | 0.9535 | |
0.3 | 145.30 | 0.9988 | 0.3 | 178.48 | 0.9072 | |
0.4 | 158.70 | 0.9969 | 0.4 | 168.64 | 0.9753 | |
0.5 | 152.99 | 0.9985 | 0.5 | 147.60 | 0.9994 | |
Average | 134.18 | Average | 161.40 | |||
DFG | 0.1 | 89.99 | 0.9765 | 0.1 | 106.43 | 0.9973 |
0.2 | 128.42 | 0.9979 | 0.2 | 138.56 | 0.9973 | |
0.3 | 154.70 | 0.9998 | 0.3 | 159.55 | 0.9984 | |
0.4 | 171.09 | 0.9976 | 0.4 | 143.13 | 0.993 | |
0.5 | 150.36 | 0.9879 | 0.5 | 107.30 | 0.9797 | |
Average | 138.91 | Average | 130.99 | |||
RFG | 0.1 | 115.84 | 0.9999 | 0.1 | 99.21 | 0.9929 |
0.2 | 127.94 | 0.9998 | 0.2 | 128.91 | 0.9992 | |
0.3 | 136.29 | 0.9982 | 0.3 | 145.58 | 0.9972 | |
0.4 | 138.51 | 0.9975 | 0.4 | 146.80 | 0.9998 | |
0.5 | 136.37 | 0.9908 | 0.5 | 125.99 | 0.9999 | |
Average | 130.99 | Average | 129.30 |
Abbreviation | Temperature | Atmosphere |
---|---|---|
1 | 543 K | 100 vol.% Ar |
2 | 573 K | 100 vol.% Ar |
3 | 543 K | 6 vol.% O2 balanced Ar |
4 | 573 K | 6 vol.% O2 balanced Ar |
5 | 543 K | 6 vol.% O2 + 10 vol.% CO2 balanced Ar |
6 | 573 K | 6 vol.% O2 + 10 vol.% CO2 balanced Ar |
7 | 543 K | 6 vol.% O2 + 10 vol.% CO2 + 6 vol.% H2O balanced Ar |
8 | 573 K | 6 vol.% O2 + 10 vol.% CO2 + 6 vol.% H2O balanced Ar |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, X.; Zhao, Y.; Zhang, L.; Wang, Z.; Zhao, Z.; Zhu, W.; Ma, J.; Shen, B. Effects of Torrefaction Pretreatment on the Structural Features and Combustion Characteristics of Biomass-Based Fuel. Molecules 2023, 28, 4732. https://doi.org/10.3390/molecules28124732
Yang X, Zhao Y, Zhang L, Wang Z, Zhao Z, Zhu W, Ma J, Shen B. Effects of Torrefaction Pretreatment on the Structural Features and Combustion Characteristics of Biomass-Based Fuel. Molecules. 2023; 28(12):4732. https://doi.org/10.3390/molecules28124732
Chicago/Turabian StyleYang, Xu, Yaying Zhao, Lei Zhang, Zhuozhi Wang, Zhong Zhao, Wenkun Zhu, Jiao Ma, and Boxiong Shen. 2023. "Effects of Torrefaction Pretreatment on the Structural Features and Combustion Characteristics of Biomass-Based Fuel" Molecules 28, no. 12: 4732. https://doi.org/10.3390/molecules28124732
APA StyleYang, X., Zhao, Y., Zhang, L., Wang, Z., Zhao, Z., Zhu, W., Ma, J., & Shen, B. (2023). Effects of Torrefaction Pretreatment on the Structural Features and Combustion Characteristics of Biomass-Based Fuel. Molecules, 28(12), 4732. https://doi.org/10.3390/molecules28124732