Impact of Fermentation Conditions on Physicochemical Properties, Antioxidant Activity, and Sensory Properties of Apple–Tomato Pulp
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optimization and Analysis
2.1.1. Response Surface Methodology (RSM) Model
2.1.2. Determination and Verification of Fermentation Process Parameters
2.2. Changes in the Physicochemical Properties of Fermented Apple–Tomato Pulp
2.2.1. Viable Cell Count, pH, and Total Titratable Acid (TTA)
2.2.2. Total Sugar and Reducing Sugar
2.3. Total Phenolic Content, Total Flavonoid Content, and Antioxidant Capacity Analysis
2.4. HS-SPME/GC–MS Analysis
3. Materials and Methods
3.1. Materials
3.2. Apple–Tomato Pulp Preparation
3.3. Fermentation Experiments
3.4. Experimental Design
3.5. Sensory Analysis
3.6. Analysis of Nutrients
3.6.1. Viable Cell Count, pH, and Total Titratable acid (TTA)
3.6.2. Total Sugar and Reducing Sugar
3.7. Antioxidant Capacity
3.7.1. Determination of Total Phenolic Content (TPC)
3.7.2. Determination of Total Flavonoid Content (TFC)
3.7.3. DPPH· Radical Scavenging Activity
3.7.4. ABTS Free-Radical Scavenging Assay
3.7.5. Ferric-Ion-Reducing Antioxidant Power (FRAP)
3.8. Composition of Volatiles
3.9. Data Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Szutowska, J. Functional properties of lactic acid bacteria in fermented fruit and vegetable juice: A systematic literature review. Eur. Food Res. Technol. 2020, 246, 357–372. [Google Scholar] [CrossRef]
- Shi, H.; Zhang, M.; Wang, W.; Devahastin, S. Solid-state fermentation with probiotics and mixed yeast on properties of okara. Food Biosci. 2020, 36, 100610. [Google Scholar] [CrossRef]
- Filannino, P.; Di, C.R.; Gobbetti, M. Metabolic and functional paths of lactic acid bacteria in plant foods: Get out of the labyrinth. Curr. Opin. Biotechnol. 2018, 49, 64–72. [Google Scholar] [CrossRef] [PubMed]
- Pereira, A.; Maciel, T.C.; Rodrigues, S. Probiotic beverage from cashew apple juice fermented with Lactobacillus casei. Food Res. Int. 2011, 44, 1276–1283. [Google Scholar] [CrossRef]
- Kober, M.M.; Bowe, W.P. The effect of probiotics on immune regulation, acne, and Photoaging. Int. J. Women’s Dermatol. 2015, 1, 85–89. [Google Scholar] [CrossRef]
- Masakazu, T.; Saya, H.; Ai, T.; Nobuaki, S.; Yasuo, H.; Keisei, A.; Takeshi, N.; Yutaka, T.; Norikazu, M. Probiotic Beverage with Soy Isoflavone Consumption for Breast Cancer Prevention: A Case-control Study. Curr. Nutr. Food Sci. 2013, 9, 194–200. [Google Scholar]
- Xu, Y.; Hlaing, M.M.; Glagovskaia, O.; Augustin, M.A.; Terefe, N.S. Fermentation by Probiotic Lactobacillus gasseri Strains Enhances the Carotenoid and Fibre Contents of Carrot Juice. Foods 2020, 9, 1803. [Google Scholar] [CrossRef]
- Kowalska, E.; Ziarno, M. Characterization of Buckwheat Beverages Fermented with Lactic Acid Bacterial Cultures and Bifidobacteria. Foods 2020, 9, 1771. [Google Scholar] [CrossRef]
- Mukerji, P.; Roper, J.M.; Buffy, S.; Smith, A.B.; Burns, F.; Rae, J.C.; Yeung, N.; Lyra, A.; Laura, S.; Markku, T.; et al. Safety evaluation of AB-LIFE (Lactobacillus plantarum CECT 7527, 7528 and 7529): Antibiotic resistance and 90-day repeated-dose study in rats. Food Chem. Toxicol. 2016, 92, 117–128. [Google Scholar] [CrossRef]
- Badel, S.; Bernardi, T.; Michaud, P. New perspectives for Lactobacilli exopolysaccharides. Biotechnol. Adv. 2011, 29, 54–66. [Google Scholar] [CrossRef]
- Oskar, L.; Minna, K.; Alexis, M.V.; Lucia, B.; Yang, B. Impact of lactic acid fermentation on sensory and chemical quality of dairy analogues prepared from lupine (Lupinus angustifolius L.) seeds. Food Chem. 2020, 346, 128852. [Google Scholar]
- Vong, W.C.; Hua, X.Y.; Liu, S.Q. Solid-state fermentation with Rhizopus oligosporus and Yarrowia lipolytica improved nutritional and flavour properties of okara. LWT-Food Sci. Technol. 2018, 90, 316–322. [Google Scholar] [CrossRef]
- Silanikove, N.; Leitner, G.; Merin, U. The Interrelationships between Lactose Intolerance and the Modern Dairy Industry: Global Perspectives in Evolutional and Historical Backgrounds. Nutrients 2015, 7, 7312–7331. [Google Scholar] [CrossRef]
- Perjéssy, J.; Hegyi, F.; Nagy-Gasztonyi, M.; Zalán, Z. Effect of the lactic acid fermentation by probiotic strains on the sour cherry juice and its bioactive compounds. Food Sci. Technol. Int. 2021, 28, 408–420. [Google Scholar] [CrossRef]
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. Expert consensus document: The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef]
- Lu, K.; Dong, S.W.; Wu, X.Y.; Jin, R.M.; Chen, H.B. Probiotics in Cancer. Front. Oncol. 2021, 11, 638148. [Google Scholar] [CrossRef]
- Fijan, S. Microorganisms with claimed probiotic properties: An overview of recent literature. Int. J. Environ. Res. 2014, 11, 4745–4767. [Google Scholar] [CrossRef]
- Sevindik, O.; Guclu, G.; Agirman, B.; Selli, S.; Kadiroglu, P.; Bordiga, M.; Capanoglu, E.; Kelebek, H. Impacts of selected lactic acid bacteria strains on the aroma and bioactive compositions of fermented gilaburu (Viburnum opulus) juices. Food Chem. 2022, 378, 132079. [Google Scholar] [CrossRef]
- Ren, Y.; Li, L. The influence of protease hydrolysis of lactic acid bacteria on the fermentation induced soybean protein gel: Protein molecule, peptides and amino acids. Food Res. Int. 2022, 156, 111284. [Google Scholar] [CrossRef]
- Leonard, W.; Zhang, P.Z.; Ying, D.Y.; Adhikari, B.; Fang, Z.X. Fermentation transforms the phenolic profiles and bioactivities of plant-based foods. Biotechnol. Adv. 2021, 49, 107763. [Google Scholar] [CrossRef]
- Shu, W.X.; Wu, Z.F.; Weng, P.F.; Zhang, X. Comparison of quality characteristics and antioxidant activity of the fruit juice of Citrus paradisi cv. Changshan Huyou fermented by Lactobacillus plantarum and Lactobacillus fermentum. Food Sci. 2019, 40, 152–158. [Google Scholar]
- Yang, J.; Sun, Y.; Gao, T.Q.; Wu, Y.; Sun, H.; Zhu, Q.Z.; Liu, C.S.; Zhou, C.; Han, Y.B.; Tao, Y. Fermentation and Storage Characteristics of “Fuji” Apple Juice Using Lactobacillus acidophilus, Lactobacillus casei and Lactobacillus plantarum: Microbial Growth, Metabolism of Bioactives and in vitro Bioactivities. Front. Nutr. 2022, 9, 833906. [Google Scholar] [CrossRef] [PubMed]
- Yoon, K.Y.; Woodams, E.E.; Hang, Y.D. Probiotication of tomato juice by lactic acid bacteria. J. Microbiol. 2004, 42, 315–318. [Google Scholar]
- Giordano, I.; Abuqwider, J.; Altamimi, M.; Monaco, D.R.; Puleo, S.; Mauriello, G. Application of ultrasound and microencapsulation on Limosilactobacillus reuteri DSM 17938 as a metabolic attenuation strategy for tomato juice probiotication. Heliyon 2022, 8, e10969. [Google Scholar] [CrossRef] [PubMed]
- Pimentel, T.C.; Madrona, G.S.; Garcia, S.; Prudencio, S.H. Probiotic viability, physicochemical characteristics and acceptability during refrigerated storge of clarifiled apple juice supplemented with Lactobacillus paracasei ssp. paracasei oligofructose in different package type. LWT Food Sci. Technol. 2015, 63, 415–422. [Google Scholar] [CrossRef]
- Boua, Y.J.; Hoffmann, L.; Bohn, T. Total phenolics, flavonoids, anthocyanins and antioxidant activity following simulated gastro-intestinal digestion and dialysis of apple varieties: Bioaccessibility and potential uptake. Food Chem. 2011, 128, 14–21. [Google Scholar]
- Liu, L.L. The Pharmacokinetics of Procyanidin B2, Catechin and Epicatechin in Apple Polyphenol in Rats; Shandong University: Jinan, China, 2010; pp. 20–24. [Google Scholar]
- Zhao, Y.; Qiu, P.C.; Wu, L.B.; Wang, L.; Liu, J.L.; Tao, S.R.L. Evaluation of sensory qualities of different tomato varieties. J. N. Agric. 2022, 50, 87–95. [Google Scholar]
- Ojha, K.S.; Tiwari, B.K. Novel Food Fermentation Technologies; Food Engineering Series; Springer International Publishing: Cham, Switzerland, 2016. [Google Scholar]
- Liao, W.H.; Shen, J.; Manickam, S.; Li, S.J.; Tao, Y.; Li, D.D.; Liu, D.F.; Han, Y.B. Investigation of blueberry juice fermentation by mixed probiotic strains: Regression modeling, machine learning optimization and comparison with fermentation by single strain in the phenolic and volatile profiles. Food Chem. 2022, 405, 134982. [Google Scholar] [CrossRef]
- Yuan, L.; Li, G.F.; Yan, N.; Wu, J.H.; Due, J.J. Optimization of fermentation conditions for fermented green jujube wine and its quality analysis during winemaking. Food Sci. Technol. 2022, 59, 288–299. [Google Scholar] [CrossRef]
- Ren, T.T.; Yue, T.L.; Wei, X.; Wang, X.; Yuan, Y.H. Process Optimization for Production of Fermented Apple Pulp with Probiotics and Analysis of Volatile Flavor Components before and after Fermentation. Food Sci. 2019, 40, 87–93. [Google Scholar]
- Mousavi, Z.E.; Mousavi, S.M.; Razavi, S.H.; Emam-Djomeh, Z.; Kiani, H. Fermentation of pomegranate juice by probiotic lactic acid bacteria. World J. Microbiol. Biotechnol. 2011, 27, 123–128. [Google Scholar] [CrossRef]
- Fonteles, T.V.; Costa, M.G.M.; Tibério de Jesus, A.L.T.; Rodrigues, S. Optimization of the Fermentation of Cantaloupe Juice by Lactobacillus casei NRRL B-442. Food Bioprocess Technol. 2012, 5, 2819–2826. [Google Scholar] [CrossRef]
- Zhang, J.M.; Wu, Z.F.; Weng, P.F. Changes of Quality and Volatile Flavor Compounds of Elderberry Juice Fermented by Lactic Acid Bacteria. J. Chin. Inst. Food Sci. Technol. 2022, 22, 291–299. [Google Scholar]
- Ana Lúcia, F.P.; Wallaff, S.C.F.; Virgínia Kelly Gonçalves, A.; Tatiana de Oliveira, L.; Gomes, W.F.; Narain, N.; Rodrigues, S. Impact of fermentation conditions on the quality and sensory properties of a probiotic cupuassu (Theobroma grandiflorum) beverage. Food Res. Int. 2017, 100, 603–611. [Google Scholar]
- Sun, X.; Zhang, Y.; Li, F.; Xu, J.; Ma, D.H.; Zhang, L.Y.; Yang, B.J.; Zhao, J.; Han, J.H.; Li, Q. Effects of lactic acid bacteria fermentation on chemical compounds, antioxidant capacities and hypoglycemic properties of pumpkin juice. Food Biosci. 2022, 50, 102126. [Google Scholar] [CrossRef]
- Wang, Y.C.; Yu, R.C.; Yang, H.Y.; Chou, C.C. Sugar and acid contents in soymilk fermented with lactic acid bacteria alone or simultaneously with Bifidobacteria. Food Microbiol. 2003, 20, 333–338. [Google Scholar] [CrossRef]
- Minervini, F.; Calasso, M. Lactobacillus casei group. In Encyclopedia of Dairy Sciences, 3rd ed.; McSweeney, P.L.H., McNamara, J.P., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 275–286. [Google Scholar]
- Wu, Y.; Li, S.J.; Tao, Y.; Li, D.D.; Han, Y.B.; Show, P.L.; Wen, G.Z.; Zhou, J.Z. Fermentation of blueberry and blackberry juices using Lactobacillus plantarum, Streptococcus thermophilus and Bifidobacterium bifidum: Growth of probiotics, metabolism of phenolics, antioxidant capacity in vitro and sensory evaluation. Food Chem. 2021, 348, 129083. [Google Scholar] [CrossRef]
- Gao, H.; Wen, J.J.; Hu, J.L.; Nie, Q.X.; Chen, H.H.; Nie, S.P.; Xiong, T.; Xie, M.Y. Momordica charantia juice with Lactobacillus plantarum fermentation: Chemical composition, antioxidant properties and aroma profile. Food Biosci. 2019, 29, 62–72. [Google Scholar] [CrossRef]
- Qi, J.; Huang, H.; Wang, J.; Liu, N.; Chen, X.F.; Jiang, T.; Xu, H.D.; Lei, H.J. Insights into the improvement of bioactive phytochemicals, antioxidant activities and flavor profiles in Chinese wolfberry juice by select lactic acid bacteria. Food Biosci. 2021, 43, 101264. [Google Scholar] [CrossRef]
- Rehman, M.U.; Jawaid, P.; Uchiyama, H.; Kondo, T. Comparison of free radicals formation induced by cold atmospheric plasma, ultrasound, and ionizing radiation. Arch. Biochem. Biophys. 2016, 605, 19–25. [Google Scholar] [CrossRef]
- Oh, B.T.; Jeong, S.Y.; Velmurugan, P.; Park, J.H.; Jeong, D.Y. Probioticmediated blueberry (Vaccinium corymbosum L.) fruit fermentation to yield functionalized products for augmented antibacterial and antioxidant activity. J. Biosci. Bioeng. 2017, 124, 542–550. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.F. Changes of Basic Components and Antioxidant Activity during Lactic Acid Bacteria Fermentation of Apple Pulp; Zhejiang University of Technology: Hangzhou, China, 2019; pp. 34–36. [Google Scholar]
- Erel, O. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin. Biochem. 2004, 37, 277–285. [Google Scholar] [CrossRef] [PubMed]
- Nayak, B.; Liu, R.H.; Tang, J. Effect of processing on phenolic antioxidants of fruits, vegetables, and grains–A review. Crit. Rev. Food Sci. Nutr. 2015, 55, 887–919. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Zhou, Y.; Chen, J.H.; Lei, H.J. Effect of lactic acid bacteria fermentation on physicochemical properties, phenolic compounds, antioxidant activity and volatile components of hawthorn juice. Food Sci. 2022, 43, 97–106. [Google Scholar]
- Li, W.N.; Guo, C.F.; Zhang, Y.X.; Wei, J.P.; Yue, T.L. GC-MS Analysis of Aroma Components of Apple Juice Fermented with Lactic Acid Bacteria. Food Sci. 2017, 38, 146–154. [Google Scholar]
- GB4789.35-2016; Standard for National Food Safety Microbiological Examination of Food—Examination of Lactic Acid Bacteria. Standardization Administration of the People’s Republic of China: Beijing, China, 2016.
- GB12456-2021; Standard for National Food Safety Determination of Total Acid In Foods. Standardization Administration of the People’s Republic of China: Beijing, China, 2021.
- Peng, W.Y.; Meng, D.Q.; Yue, T.L.; Wang, Z.L.; Gao, Z.P. Effect of the apple cultivar on cloudy apple juice fermented by a mixture of Lactobacillus acidophilus, Lactobacillus plantarum, and Lactobacillus fermentum. Food Chem. 2021, 340, 127922. [Google Scholar] [CrossRef]
- Cheung, J.K.H.; Li, J.; Cheung, A.W.H.; Zhu, Y.; Zheng, K.Y.Z.; Bi, C.W.C.; Duan, R. Cordysinocan, a polysaccharide isolated from cultured Cordyceps, activates immune responses in cultured T-lymphocytes and macrophages: Signaling cascade and induction of cytokines. J. Ethnopharmacol. 2009, 124, 61–68. [Google Scholar] [CrossRef]
- Bayat, E.; Moosavi-Nasab, M.; Fazaeli, M.; Majdinasab, M.; Mirzapour-Kouhdasht, A.; Garcia-Vaquero, M. Wheat Germ Fermentation with Saccharomyces cerevisiae and Lactobacillus plantarum: Process Optimization for Enhanced Composition and Antioxidant Properties In Vitro. Foods 2022, 11, 1125. [Google Scholar] [CrossRef]
- Zhou, H.L.; Cui, J.M.; Ma, L.H. Effects of Germination and Sweet Fermented Grains Fermentation on Nutritional Quality, Starch Digestion in vitro and Antioxidant Properties of Oat. J. Chin. Cereals Oils Assoc. 2021, 36, 82–86. [Google Scholar]
- Loganayaki, N.; Siddhuraju, P.; Manian, S. Antioxidant activity and free radical scavenging capacity of phenolic extracts from Helicteres isora L. and Ceiba pentandra L. J. Food Sci. Technol. 2011, 50, 687–695. [Google Scholar] [CrossRef]
- Crespo, Y.A.; Naranjo, R.A.; Quitana, Y.G.; Sanchez, C.G.; Sanchez, E.M.S. Optimisation and characterisation of bio-oil produced by Acacia mangium Willd wood pyrolysis. Wood Sci. Technol. 2017, 51, 1155–1171. [Google Scholar] [CrossRef]
- Li, T.L.; Jiang, T.; Liu, N.; Wu, C.Y.; Lei, H.J. Biotransformation of phenolic profiles and improvement of antioxidant capacities in jujube juice by select lactic acid bacteria. Food Chem. 2021, 339, 127859. [Google Scholar] [CrossRef]
Run | Independent Variables (Actual and Coded Values) | Response | |||
---|---|---|---|---|---|
Inoculum Size (X1 %) | Temperature (X2 °C) | Apple: Tomato Ratio (X3 V:V) | Viable Cell Count (Y1 lg(CFU/mL)) | Sensory Evaluation (Y2 Scores) | |
1 | 6(0) | 34(0) | 1:1(0) | 7.87 | 27.68 |
2 | 6(0) | 31(−1) | 1:2(1) | 8.05 | 30.12 |
3 | 6(0) | 34(0) | 1:1(0) | 8.35 | 28.82 |
4 | 6(0) | 37(1) | 1:2(1) | 9.24 | 28.01 |
5 | 8(1) | 37(1) | 1:1(0) | 8.24 | 30.49 |
6 | 6(0) | 31(−1) | 2:1(−1) | 8.79 | 31.87 |
7 | 4(−1) | 34(0) | 1:2(1) | 8.49 | 29.80 |
8 | 4(−1) | 37(1) | 1:1(0) | 9.03 | 29.31 |
9 | 8(1) | 34(0) | 1:2(1) | 8.26 | 30.12 |
10 | 6(0) | 34(0) | 1:1(0) | 8.51 | 29.74 |
11 | 8(1) | 31(−1) | 1:1(0) | 8.11 | 29.52 |
12 | 6(0) | 34(0) | 1:1(0) | 9.06 | 28.58 |
13 | 6(0) | 34(0) | 1:1(0) | 9.00 | 33.90 |
14 | 8(1) | 34(0) | 2:1(−1) | 9.01 | 34.14 |
15 | 6(0) | 37(1) | 2:1(−1) | 8.89 | 34.56 |
16 | 4(−1) | 34(0) | 2:1(−1) | 8.95 | 33.98 |
17 | 4(−1) | 31(−1) | 1:1(0) | 9.06 | 33.69 |
Source | Y1 Viable Cell Count, lg(CFU/mL) | Y2 Sensory Evaluation, Scores | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Sum of Squares | df | Mean Square | F Value | p Value | Sum of Squares | df | Mean Square | F Value | p Value | |
Model | 2.92 | 9 | 0.32 | 50.02 | <0.0001 | 87.07 | 9 | 9.67 | 86.11 | <0.0001 |
Linear | ||||||||||
X1 | 0.58 | 1 | 0.58 | 90.01 | <0.0001 | 0.79 | 1 | 0.79 | 7.07 | 0.0326 |
X2 | 1.03 | 1 | 1.03 | 158.91 | <0.0001 | 0.68 | 1 | 0.66 | 5.83 | 0.0464 |
X3 Interactions | 0.099 | 1 | 0.099 | 15.28 | 0.0058 | 3.14 | 1 | 3.14 | 27.93 | 0.0011 |
XIX2 | 0.13 | 1 | 0.13 | 19.45 | 0.0031 | 2.64 | 1 | 2.64 | 23.51 | 0.0019 |
X1X3 | 2.50 × 10−5 | 1 | 2.50 × 10−5 | 3.858 × 10−3 | 0.9522 | 0.87 | 1 | 0.87 | 7.78 | 0.0269 |
X2X3 | 0.12 | 1 | 0.12 | 18.91 | 0.0034 | 0.078 | 1 | 0.078 | 0.70 | 0.4311 |
Quadratic | ||||||||||
X12 | 0.22 | 1 | 0.22 | 33.19 | 0.0007 | 21.50 | 1 | 21.50 | 191.35 | <0.0001 |
X22 | 0.60 | 1 | 0.60 | 93.10 | <0.0001 | 41.43 | 1 | 41.43 | 368.83 | <0.0001 |
X32 | 0.059 | 1 | 0.059 | 9.13 | 0.0194 | 8.57 | 1 | 8.57 | 76.32 | <0.0001 |
Residual | 0.045 | 7 | 6.479 × 10−3 | 0.79 | 7 | 0.11 | ||||
Lack of Fit | 0.029 | 3 | 9.558 × 10−3 | 2.29 | 0.2200 | 0.36 | 3 | 0.12 | 1.13 | 0.4361 |
Pure Error | 0.017 | 4 | 4.170 × 10−3 | 0.43 | 4 | 0.11 | ||||
R2 | 0.9847 | 0.9910 | ||||||||
Adj. R2 | 0.9650 | 0.9795 | ||||||||
Pred. R2 | 0.8363 | 0.9266 |
TPC | TFC | DPPH | ABTS | FRAP | |
---|---|---|---|---|---|
TPC | 1 | ||||
TFC | 0.96 * | 1 | |||
DPPH | 0.90 * | 0.98 * | 1 | ||
FRAP | 0.97 * | 0.98 * | 0.94 * | 1 | |
ABTS | 0.95 * | 0.94 * | 0.87 * | 0.95 * | 1 |
NO. | Compounds | CAS | Concentration/(μg/L) | |
---|---|---|---|---|
Unfermented | Fermented | |||
Alcohols | ||||
1 | 1-hexanol | 111-27-3 | -- | 189.58 |
2 | 2-ethyl-1-hexanol | 104-76-7 | 50.17 | 59.4 |
3 | phenylethyl alcohol | 60-12-8 | 11.56 | 24.88 |
4 | ethanol | 64-17-5 | 45.39 | 18.11 |
5 | 2-methyl-1-butanol | 137-32-6 | 17.91 | 30.05 |
6 | (E)-2-hexen-1-ol | 928-95-0 | -- | 25.29 |
7 | 6-methyl-5-hepten-2-ol | 1569-60-4 | 23.92 | 37.57 |
8 | (Z)-3-hexen-1-ol | 928-96-1 | -- | 23.09 |
9 | linalool | 78-70-6 | 6.12 | 11.7 |
10 | geraniol | 106-24-1 | -- | 9.38 |
11 | 1-butanol | 71-36-3 | 4.21 | 6.54 |
12 | 2-heptanol | 110-43-0 | 2.95 | 3.87 |
13 | linalool oxide | 1365-19-1 | 1.72 | 3.48 |
14 | 2-methyl-3-octanol | 26533-34-6 | -- | 3.01 |
15 | (S)-à,à,4-trimethyl-3-cyclohexene-1-methanol | 10482-56-1 | 1.26 | 2.98 |
16 | 1-heptanol | 111-70-6 | -- | 2.31 |
17 | 1-octanol | 111-87-5 | -- | 2.1 |
18 | 1-pentanol | 71-41-0 | 1.14 | 1.79 |
19 | 1-dodecanol | 112-53-8 | -- | 1.45 |
Total | 166.35 | 456.58 | ||
Esters | ||||
20 | ethyl acetate | 141-78-6 | -- | 31.27 |
21 | acetic acid-butyl ester | 123-86-4 | -- | 11.03 |
22 | methyl butyrate | 623-42-7 | 9.09 | 9.94 |
23 | dibutyl phthalate | 84-74-2 | 5.83 | 9.62 |
24 | acetic acid-hexyl ester | 142-92-7 | 17.46 | 2.93 |
25 | 1-butanol-2-methyl-acetate | 624-41-9 | 25.16 | 4.48 |
26 | 2-hexanol-acetate | 5953-49-1 | -- | 1.42 |
27 | formic acid-heptyl ester | 112-23-2 | -- | 2.31 |
28 | formic acid-octyl ester | 112-32-3 | -- | 2.1 |
29 | butanoic acid-3-hydroxy-butyl ester | 53605-94-0 | -- | 1.42 |
30 | 2,2,4-trimethyl-1,3-pentanediol diisobutyrate | 6846-50-0 | -- | 5.19 |
Total | 57.54 | 81.71 | ||
Acids | ||||
31 | Acetic acid | 64-19-7 | 2.59 | 35.58 |
32 | Nonanoic acid | 112-05-0 | 1.63 | 5.74 |
33 | Decanoic acid | 334-48-5 | -- | 2.56 |
34 | 2-ethyl-Hexanoic acid | 149-57-5 | -- | 1.78 |
35 | (E)-2-Hexenoic acid | 13419-69-7 | 2.65 | 1.57 |
36 | Octanoic acid | 124-07-2 | 2.57 | 11.62 |
Total | 9.44 | 58.85 | ||
Ketons | ||||
37 | 6-methyl-5-hepten-2-one | 110-93-0 | -- | 2.85 |
38 | (E)-1-(2,6,6-trimethyl-1,3-cyclohexadien-1-yl)-2-buten-1-one | 23726-93-4 | 3.07 | -- |
39 | 2-undecanone | 112-12-9 | -- | 1.74 |
40 | 2-heptanone | 110-43-0 | 2.21 | 3.04 |
41 | 3-octanone | 106-68-3 | 1.54 | -- |
42 | neryl acetone | 3879-26-3 | 2.95 | -- |
43 | á-damascenone | 23726-93-4 | 3.07 | 9.41 |
44 | trans-á-Ionone | 79-77-6 | 1.46 | -- |
Total | 14.30 | 17.04 | ||
Aldehydes | ||||
45 | 2-Hexenal | 6728-26-3 | 15.25 | 45.82 |
46 | Hexanal | 66-25-1 | 11.89 | -- |
Total | 27.14 | 45.82 | ||
Phenols | ||||
47 | 4-ethyl-Phenol | 831-82-3 | -- | 24.02 |
48 | 2-methoxy-Phenol | 90-05-1 | 1.30 | 2.33 |
49 | 2-Methoxy-4-vinylphenol | 7786-61-0 | -- | 1.66 |
Total | 1.30 | 28.01 | ||
Others | ||||
50 | 2,3-dihydro-Benzofuran | 496-16-2 | 1.21 | 60.96 |
51 | 4-Vinylphenol | 2628-17-3 | 2.53 | 40.34 |
52 | 2-Isobutylthiazole | 18640-74-9 | 1.82 | 1.42 |
53 | (2-nitroethyl)-Benzene | 6125-24-2 | 2.33 | 3.30 |
54 | 4-nitrophthalamide | 13138-53-9 | 1.52 | -- |
55 | dodecamethyl-Cyclohexasiloxane | 540-97-6 | -- | 1.55 |
Total | 9.41 | 107.57 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, J.; Zhang, H.; Zeng, C.; Song, J.; Mu, Y.; Kang, S. Impact of Fermentation Conditions on Physicochemical Properties, Antioxidant Activity, and Sensory Properties of Apple–Tomato Pulp. Molecules 2023, 28, 4363. https://doi.org/10.3390/molecules28114363
Yuan J, Zhang H, Zeng C, Song J, Mu Y, Kang S. Impact of Fermentation Conditions on Physicochemical Properties, Antioxidant Activity, and Sensory Properties of Apple–Tomato Pulp. Molecules. 2023; 28(11):4363. https://doi.org/10.3390/molecules28114363
Chicago/Turabian StyleYuan, Jing, Haiyan Zhang, Chaozhen Zeng, Juan Song, Yuwen Mu, and Sanjiang Kang. 2023. "Impact of Fermentation Conditions on Physicochemical Properties, Antioxidant Activity, and Sensory Properties of Apple–Tomato Pulp" Molecules 28, no. 11: 4363. https://doi.org/10.3390/molecules28114363
APA StyleYuan, J., Zhang, H., Zeng, C., Song, J., Mu, Y., & Kang, S. (2023). Impact of Fermentation Conditions on Physicochemical Properties, Antioxidant Activity, and Sensory Properties of Apple–Tomato Pulp. Molecules, 28(11), 4363. https://doi.org/10.3390/molecules28114363