Biotech Application of Exopolysaccharides from Curvularia brachyspora: Optimization of Production, Structural Characterization, and Biological Activity
Abstract
:1. Introduction
2. Results and Discussion
2.1. Model Adjustment and Optimization of Production
2.2. Chemical Characterization of Exopolysaccharides Produced by C. brachyspora
Units | 13C Sign a | 1H Sign a | References |
---|---|---|---|
C1/H1 of β-d-Galf-(1→ | 107.7 | 4.70 | [26,32] |
C1/H1 of →X)-β-d-Galf-(1→ b | 105.9 | 4.89 | [26] |
C1/H1 of β-d-Glcp-(1→ | 102.8 | 4.16 | [24,25] |
C1/H1 of →3)-β-d-Glcp-(1→ | 102.6 | 4.25 | [24,25] |
C1/H1 of →3,6)-β-d-Glcp-(1→ | 102.4 | 4.44 | [24,25] |
C1/H1 of →2)-α-d-Manp-(1→ | 101.6 | 4.78 | [30] |
C1/H1 of →6)-α-d-Manp-(1→ | 99.0 | 4.57 | [30] |
C1/H1 of →2,6)-α-d-Manp-(1→ | 97.9 | 4.71 | [30] |
C2/H2 of →2,6)-β-d-Galf-(1→ | 87.4 | 3.85 | [27] |
C3/H3 of →3)-β-d-Glcp-(1→ or →3,6)-β-d-Glcp-(1→ | 86.7 | 3.33 | [24,25] |
C3/H3 of →3)-β-d-Glcp-(1→ or →3,6)-β-d-Glcp-(1→ | 86.2 | 3.38 | [24,25] |
C2/H2 of β-d-Galf-(1→ | 82.5 | 3.64 | [26] |
C2/H2 of →2)-α-d-Manp-(1→ or →2,6)-α-d-Manp-(1→ | 77.3 | 3.61 | [32] |
C2/H2 of →2)-α-d-Manp-(1→ or →2,6)-α-d-Manp-(1→ | 76.7 | 3.74 | [32] |
C5/H5 of →5)-β-d-Galf-(1→ | 74.7 | 3.92 | [35] |
C6/H6 of →3,6)-β-d-Glcp-(1→ | 68.3 c | 3.90/3.50 | [24,25] |
C6/H6 of →6)-α-d-Manp-(1→ or →2,6)-α-d-Manp-(1→ | 65.6 c | 3.60/3.50 | [32] |
C6/H6 of β-d-Galf-(1→ | 62.4 c | 3.58/3.35 | [23,26] |
C6/H6 of →3)-β-d-Glcp-(1→ | 60.9 c | 3.57/3.40 | [24,25] |
2.3. Effects of CB-EPS on Macrophage Activity and Viability
3. Materials and Methods
3.1. Microorganism
3.2. Conditions of Culture and Optimization of EPS Production
3.3. Design of Statistical Experiments
3.4. Polysaccharide Production and Purification
3.5. Determination of Total Sugar
3.6. Monosaccharide Composition
3.7. Glycosidic Linkages Determination by Methylation Analysis
3.8. Determination of Homogeneity of CB-EPS and Molar Mass
3.9. Spectroscopy Analyses
3.10. Macrophage Isolation
3.11. Effect of CB-EPS on Peritoneal Macrophages Cell Viability Assay
3.12. Measurement of Nitric Oxide (NO) Production by CB-EPS Macrophage-Treated
3.13. Measurement of Superoxide Production by CB-EPS Macrophage-Treated
3.14. Superoxide Anion Scavenging Activity
3.15. Quantification of IL-6, IL-10, and TNF-α Production by CB-EPS Macrophage-Treated
3.16. Assay for Phagocytic Activity
3.17. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Yan, J.K.; Wang, W.Q.; Wu, J.Y. Recent advances in Cordyceps sinensis polysaccharides: Mycelial fermentation, isolation, structure, and bioactivities: A review. J. Funct. Foods 2014, 6, 33–47. [Google Scholar] [CrossRef]
- Lata, K.; Rahi, D.K.; Soni, S.K.; Rahi, S. Diversity of exopolysaccharide producing fungi from foot hills of shivalik ranges of Chandigarh Capital Region. Res. Biotechnol. 2012, 3, 11–18. [Google Scholar]
- Li, P.; Xu, L.; Mou, Y.; Shan, T.; Mao, Z.; Lu, S.; Peng, Y.; Zhou, L. Medium optimization for exopolysaccharide production in liquid culture of endophytic fungus Berkleasmium sp. Dzf12. Int. J. Mol. Sci. 2012, 13, 11411–11426. [Google Scholar] [CrossRef]
- Ogidi, C.O.; Ubaru, A.M.; Ladi-Lawal, T.; Thonda, O.A.; Aladejana, O.M.; Malomo, O. Bioactivity assessment of exopolysaccharides produced by Pleurotus pulmonarius in submerged culture with different agro-waste residues. Heliyon 2020, 6, e05685. [Google Scholar] [CrossRef]
- Alsaheb, R.A.; Zjeh, K.Z.; Malek, R.A.; Abdullah, J.K.; El Baz, A.; El Deeb, N.; Dailin, D.; Hanapi, S.Z.; Sukmawati, D.; El Enshasy, H. Bioprocess optimization for exopolysaccharides production by Ganoderma lucidum in semi-industrial scale. Recent Pat. Food. Nutr. Agric. 2020, 11, 211–218. [Google Scholar] [CrossRef]
- Corrêa, R.C.G.; Brugnari, T.; Bracht, A.; Peralta, R.M.; Ferreira, I.C.F.R. Biotechnological, nutritional and therapeutic uses of Pleurotus spp. (Oyster mushroom) related with its chemical composition: A review on the past decade findings. Trends Food Sci. Technol. 2016, 50, 103–117. [Google Scholar] [CrossRef]
- Chaisuwan, W.; Phimolsiripol, Y.; Chaiyaso, T.; Techapun, C.; Leksawasdi, N.; Jantanasakulwong, K.; Rachtanapun, P.; Wangtueai, S.; Sommano, S.R.; You, S.; et al. The antiviral activity of bacterial, fungal, and algal polysaccharides as bioactive ingredients: Potential uses for enhancing immune systems and preventing viruses. Front. Nutr. 2021, 8, 772033. [Google Scholar] [CrossRef] [PubMed]
- Hamidi, M.; Okoro, O.V.; Milan, P.B.; Khalili, M.R.; Samadian, H.; Nie, L.; Shavandi, A. Fungal exopolysaccharides: Properties, sources, modifications, and biomedical applications. Carbohydr. Polym. 2022, 284, 119152. [Google Scholar] [CrossRef]
- Mahapatra, S.; Banerjee, D. Optimization of a bioactive exopolysaccharide production from endophytic Fusarium solani SD5. Carbohydr. Polym. 2013, 97, 627–634. [Google Scholar] [CrossRef]
- Rodrigues Marcondes, N.; Ledesma Taira, C.; Cirena Vandresen, D.; Estivalet Svidzinski, T.I.; Kadowaki, M.K.; Peralta, R.M. New feather-degrading filamentous fungi. Microb. Ecol. 2008, 56, 13–17. [Google Scholar] [CrossRef] [PubMed]
- Hamad, A.A.; Moubasher, H.A.; Moustafa, Y.M.; Mohamed, N.H.; Abd-el rhim, E.H. Petroleum hydrocarbon bioremediation using native fungal isolates and consortia. Sci. World J. 2021, 2021, 6641533. [Google Scholar] [CrossRef] [PubMed]
- Redman, R.S.; Kim, Y.O.; Cho, S.; Mercer, M.; Rienstra, M.; Manglona, R.; Biaggi, T.; Zhou, X.G.; Chilvers, M.; Gray, Z.; et al. A Symbiotic Approach to Generating Stress Tolerant Crops. Microorganisms 2021, 9, 920. [Google Scholar] [CrossRef] [PubMed]
- Suthiphasilp, V.; Raksat, A.; Maneerat, T.; Hadsadee, S.; Jungsuttiwong, S.; Pyne, S.G.; Chomnunti, P.; Jaidee, W.; Charoensup, R.; Laphookhieo, S. Cytotoxicity and nitric oxide production inhibitory activities of compounds isolated from the plant pathogenic fungus Curvularia sp. J. Fungi 2021, 7, 408. [Google Scholar] [CrossRef] [PubMed]
- Mahapatra, S.; Banerjee, D. Fungal exopolysaccharide: Production, composition, and applications. Microbiol Insights 2013, 6, MBI-S10957. [Google Scholar] [CrossRef]
- Nehad, E.; El-Shamy, A. Physiological studies on the production of exopolysaccharide by Fungi. Agric. Biol. J. N. Am. 2010, 1, 1303–1308. [Google Scholar] [CrossRef]
- Bae, J.T.; Jayanta SInha, J.P.; Park, C.-H.S.; Yun, J.W. Optimization of submerged culture conditions for exo-biopolymer production by Paecilomyces japonica. J. Microbiol. Biotechnol. 2000, 10, 482–487. [Google Scholar]
- Yoon, S.; Hong, E.; Kim, S.; Lee, P.; Kim, M.; Yang, H.; Ryu, Y. Optimization of culture medium for enhanced production of exopolysaccharide from Aureobasidium pullulans. Bioprocess Biosyst. Eng. 2012, 35, 167–172. [Google Scholar] [CrossRef]
- Sudhakaran, V.K.; Shewale, J.G. Exopolysaccharide production by Nigrospora oryzae var. glucanicum. Enzyme Microb. Technol. 1988, 10, 547–551. [Google Scholar] [CrossRef]
- Luna, W.N.S.; Santos, V.A.Q.; Teixeira, S.D.; Barbosa-Dekker, A.M.; Dekker, R.F.H.; Cunha, M.A.A. O-Acetylated (1→6)-β-D-Glucan (Lasiodiplodan): Chemical derivatization, characterization and antioxidant activity. J. Pharm. Pharmacol. 2018, 6, 320–332. [Google Scholar]
- Synytsya, A.; Novak, M. Structural analysis of glucans. Ann. Transl. Med. 2014, 2, 17. [Google Scholar]
- Liu, G.; Li, N.; Song, S.; Zhang, Y.; Wang, J. Three exopolysaccharides from the liquid fermentation of Polyporus umbellatus and their bioactivities. Int. J. Biol. Macromol. 2019, 132, 629–640. [Google Scholar] [CrossRef]
- Neffa, M.; Taourirte, M.; Ouazzani, N.; Hanine, H. Eco-friendly approach for elimination of olive mill wastewaters (OMW) toxicity using cactus prickly pears juice as a coagulant. Water Pract. Technol. 2020, 15, 1050–1067. [Google Scholar] [CrossRef]
- Sassaki, G.L.; Czelusniak, P.A.; Vicente, V.A.; Zanata, S.M.; Souza, L.M.; Gorin, P.A.J.; Iacomini, M. Some biomolecules and a partially O-acetylated exo-galactomannan containing β-Galf units from pathogenic Exophiala jeanselmei, having a pronounced immunogenic response. Int. J. Biol. Macromol. 2011, 48, 177–182. [Google Scholar] [CrossRef] [PubMed]
- Zavadinack, M.; de Lima Bellan, D.; da Rocha Bertage, J.L.; da Silva Milhorini, S.; da Silva Trindade, E.; Simas, F.F.; Sassaki, G.L.; Cordeiro, L.M.C.; Iacomini, M. An α-D-galactan and a β-D-glucan from the mushroom Amanita muscaria: Structural characterization and antitumor activity against melanoma. Carbohydr. Polym. 2021, 274, 118647. [Google Scholar] [CrossRef]
- Smiderle, F.R.; Olsen, L.M.; Carbonero, E.R.; Baggio, C.H.; Freitas, C.S.; Marcon, R.; Santos, A.R.S.; Gorin, P.A.J.; Iacomini, M. Anti-inflammatory and analgesic properties in a rodent model of a (1→3),(1→6)-linked β-glucan isolated from Pleurotus pulmonarius. Eur. J. Pharmacol. 2008, 597, 86–91. [Google Scholar] [CrossRef]
- Giménez-Abián, M.I.; Bernabé, M.; Leal, J.A.; Jiménez-Barbero, J.; Prieto, A. Structure of a galactomannan isolated from the cell wall of the fungus Lineolata rhizophorae. Carbohydr. Res. 2007, 342, 2599–2603. [Google Scholar] [CrossRef] [PubMed]
- Bernabé, M.; Salvachúa, D.; Jiménez-Barbero, J.; Leal, J.A.; Prieto, A. Structures of wall heterogalactomannans isolated from three genera of entomopathogenic fungi. Fungal Biol. 2011, 115, 862–870. [Google Scholar] [CrossRef]
- Shibata, N.; Okawa, Y. Chemical structure of beta-galactofuranose-containing polysaccharide and O-linked oligosaccharides obtained from the cell wall of pathogenic dematiaceous fungus Fonsecaea pedrosoi. Glycobiology 2011, 21, 69–81. [Google Scholar] [CrossRef] [PubMed]
- Perry, M.B.; MacLean, L.L. Structural characterization of the antigenic O-polysaccharide in the lipopolysaccharide produced by Actinobacillus pleuropneumoniae serotype 14. Carbohydr. Res. 2004, 339, 1399–1402. [Google Scholar] [CrossRef]
- Viccini, G.; Martinelli, T.R.; Cognialli, R.C.R.; de Faria, R.O.; Carbonero, E.R.; Sassaki, G.L.; Mitchell, D.A. Exopolysaccharide from surface-liquid culture of Clonostachys rosea originates from autolysis of the biomass. Arch. Microbiol. 2009, 191, 369–378. [Google Scholar] [CrossRef]
- Domenech, J.; Prieto, A.; Bernabe, M.; Ahrazem, O. Structure of fungal polysaccharides isolated from the cell-wall of three strains of Verticillium fungicola. Carbohydr. Polym. 2002, 50, 209–212. [Google Scholar] [CrossRef]
- Smiderle, F.R.; Sassaki, G.L.; Van Griensven, L.J.L.D.; Iacomini, M. Isolation and chemical characterization of a glucogalactomannan of the medicinal mushroom Cordyceps militaris. Carbohydr. Polym. 2013, 97, 74–80. [Google Scholar] [CrossRef] [PubMed]
- Ahrazem, O.; Prieto, A.; Leal, J.A.; Jiménez-Barbero, J.; Bernabé, M. Fungal cell wall galactomannan isolated from Apodus deciduus. Carbohydr. Res. 2002, 337, 1503–1506. [Google Scholar] [CrossRef] [PubMed]
- Omarsdottir, S.; Olafsdottir, E.S.; Freysdottir, J. Immunomodulating effects of lichen-derived polysaccharides on monocyte-derived dendritic cells. Int. Immunopharmacol. 2006, 6, 1642–1650. [Google Scholar] [CrossRef] [PubMed]
- Leitao, E.A.; Bittencourt, V.C.B.; Haido, R.M.T.; Valente, A.P.; Peter-Katalinic, J.; Letzel, M.; de Souza, L.M.; Barreto-Bergter, E. Beta-galactofuranose-containing O-linked oligosaccharides present in the cell wall peptidogalactomannan of Aspergillus fumigatus contain immunodominant epitopes. Glycobiology 2003, 13, 681–692. [Google Scholar] [CrossRef]
- Yoon, Y.D.; Han, S.B.; Kang, J.S.; Lee, C.W.; Park, S.K.; Lee, H.S.; Kang, J.S.; Kim, H.M. Toll-like receptor 4-dependent activation of macrophages by polysaccharide isolated from the radix of Platycodon grandiflorum. Int. Immunopharmacol. 2003, 3, 1873–1882. [Google Scholar] [CrossRef]
- Gantner, B.N.; Simmons, R.M.; Canavera, S.J.; Akira, S.; Underhill, D.M. Collaborative induction of inflammatory responses by dectin-1 and Toll-like receptor 2. J. Exp. Med. 2003, 197, 1107–1117. [Google Scholar] [CrossRef]
- Kim, H.S.; Kim, Y.J.; Lee, H.K.; Ryu, H.S.; Kim, J.S.; Yoon, M.J.; Kang, J.S.; Hong, J.T.; Kim, Y.; Han, S.-B. Activation of macrophages by polysaccharide isolated from Paecilomyces cicadae through toll-like receptor 4. Food Chem. Toxicol. 2012, 50, 3190–3197. [Google Scholar] [CrossRef]
- Kim, G. Purification and characterization of acidic proteo-heteroglycan from the fruiting body of Phellinus linteus (Berk. & M.A. Curtis) Teng. Bioresour. Technol. 2003, 89, 81–87. [Google Scholar]
- Liu, T.; Liu, F.; Peng, L.-W.; Chang, L.; Jiang, Y.-M. The peritoneal macrophages in inflammatory diseases and abdominal cancers. Oncol. Res. Featur. Preclin. Clin. Cancer Ther. 2018, 26, 817–826. [Google Scholar] [CrossRef]
- Herb, M.; Schramm, M. Functions of ROS in macrophages and antimicrobial immunity. Antioxidants 2021, 10, 313. [Google Scholar] [CrossRef] [PubMed]
- Box, G.E.P.; Behnken, D.W. Some new three level designs for the study of variables quantitative. Technometrics 1960, 2, 455–475. [Google Scholar] [CrossRef]
- Atkinson, A.C.; Donev, A.N.; Tobias, R.D. Optimum Experimental Designs, with SAS; Oxford University Press: Oxford, UK, 2007; pp. 72–87. [Google Scholar]
- DuBois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Ciucanu, I.; Kerek, F. A simple and rapid method for the permethylation of carbohydrates. Carbohydr. Res. 1984, 131, 209–217. [Google Scholar] [CrossRef]
- Sassaki, G.L.; Gorin, P.A.J.J.; Souza, L.M.; Czelusniak, P.A.; Iacomini, M. Rapid synthesis of partially O-methylated alditol acetate standards for GC–MS: Some relative activities of hydroxyl groups of methyl glycopyranosides on Purdie methylation. Carbohydr. Res. 2005, 340, 731–739. [Google Scholar] [CrossRef]
- Noleto, G.R.; Mercê, A.L.R.; Iacomini, M.; Gorin, P.A.J.; Soccol, V.T.; Oliveira, M.B.M. Effects of a lichen galactomannan and its vanadyl (IV) complex on peritoneal macrophages and leishmanicidal activity. Mol. Cell. Biochem. 2002, 233, 73–83. [Google Scholar] [CrossRef] [PubMed]
- Reilly, T.P.; Bellevue, F.H.; Woster, P.M.; Svensson, C.K. Comparison of the in vitro cytotoxicity of hydroxylamine metabolites of sulfamethoxazole and dapsone. Biochem. Pharmacol. 1998, 55, 803–810. [Google Scholar] [CrossRef] [PubMed]
- Green, L.C.; Wagner, D.A.; Glogowski, J.; Skipper, P.L.; Wishnok, J.S.; Tannenbaum, S.R. Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids. Anal. Biochem. 1982, 126, 131–138. [Google Scholar] [CrossRef]
- Santana-Filho, A.P.; Noleto, G.R.; Gorin, P.A.J.; de Souza, L.M.; Iacomini, M.; Sassaki, G.L. GC–MS detection and quantification of lipopolysaccharides in polysaccharides through 3-O-acetyl fatty acid methyl esters. Carbohydr. Polym. 2012, 87, 2730–2734. [Google Scholar] [CrossRef]
- Bonatto, S.J.R.; Oliveira, H.H.P.; Nunes, E.A.; Pequito, D.; Iagher, F.; Coelho, I.; Naliwaiko, K.; Kryczyk, M.; Brito, G.A.P.; Repka, J.; et al. Fish oil supplementation improves neutrophil function during cancer chemotherapy. Lipids 2012, 47, 383–389. [Google Scholar] [CrossRef]
- Costa, C.R.L.M.; Menolli, R.A.; Osaku, E.F.; Tramontina, R.; Melo, R.H.; Amaral, A.E.; Duarte, P.A.D.; Carvalho, M.M.; Smiderle, F.R.; Silva, J.L.C.; et al. Exopolysaccharides from Aspergillus terreus: Production, chemical elucidation and immunoactivity. Int. J. Biol. Macromol. 2019, 139, 654–664. [Google Scholar] [CrossRef] [PubMed]
- Melo, R.H.; Amaral, A.E.; Menolli, R.A.; Ayala, T.S.; Simão, R.C.G.; Santana-Filho, A.P.; Sassaki, G.L.; Kadowaki, M.K.; Silva, J.L.C.; Melo, R.H.; et al. β-(1→3)-glucan of the southern bracket mushroom, Ganoderma australe (Agaricomycetes), stimulates phagocytosis and interleukin-6 production in mouse peritoneal macrophages. Int. J. Med. Mushrooms 2016, 18, 313–320. [Google Scholar] [CrossRef] [PubMed]
Run | X1 (pH) | X2 (Time hs) | X3 (Urea %) | % Total Sugar |
---|---|---|---|---|
1 | −1 (7.4) | −1 (139) | −1 (0.1) | 29.56 |
2 | +1 (8.6) | −1 (139) | −1 (0.1) | 21.60 |
3 | −1 (7.4) | +1 (197) | −1 (0.1) | 75.05 |
4 | +1 (8.6) | +1 (197) | −1 (0.1) | 27.54 |
5 | −1 (7.4) | −1 (139) | +1 (0.35) | 20.37 |
6 | +1 (8.6) | −1 (139) | +1 (0.35) | 31.08 |
7 | −1 (7.4) | +1 (197) | +1 (0.35) | 36.38 |
8 | +1 (8.6) | +1 (197) | +1 (0.35) | 29.09 |
9 | −1.68 (7) | 0 (168) | 0 (0.25) | 36.31 |
10 | +1.68 (9) | 0 (168) | 0 (0.25) | 7.26 |
11 | 0 (8) | 1.68 (120) | 0 (0.25) | 20.55 |
12 | 0 (8) | +1.68 (216) | 0 (0.25) | 44.84 |
13 | 0 (8) | 0 (168) | −1.68 (0) | 24.8 |
14 | 0 (8) | 0 (168) | +1.68 (0.5) | 17.60 |
15 | 0 (8) | 0 (168) | 0 (0.25) | 30.96 |
16 | 0 (8) | 0 (168) | 0 (0.25) | 32.11 |
17 | 0 (8) | 0 (168) | 0 (0.25) | 33.13 |
SS | df | MS | p * | F | |
---|---|---|---|---|---|
(pH) | 855.915 | 1 | 855.9147 | 0.004003 | 17.69460 |
42.827 | 1 | 42.8268 | 0.378063 | 0.88537 | |
(Time (hs)) | 900.433 | 1 | 900.4330 | 0.003504 | 18.61495 |
39.915 | 1 | 39.9150 | 0.393870 | 0.82518 | |
(Urea (%)) | 158.375 | 1 | 158.3753 | 0.113304 | 3.27414 |
61.190 | 1 | 61.1898 | 0.297790 | 1.26500 | |
414.000 | 1 | 414.0003 | 0.022165 | 8.55876 | |
405.790 | 1 | 405.7904 | 0.023105 | 8.38904 | |
177.226 | 1 | 177.2262 | 0.097167 | 3.66385 | |
Error | 338.601 | 7 | 48.3715 | ||
Total SS | 3300.182 | 16 |
Partially O-Methylated Alditol Acetates a | Rt (min) b | Mol % | Linkage Type c |
---|---|---|---|
2,3,4,6-Me4-Glcp | 13.335 | 38.0 | Glcp-(1→ |
2,3,5,6-Me4-Galf | 13.475 | 0.6 | Galf-(1→ |
2,3,4,6-Me4-Galp | 13.715 | 0.9 | Galp-(1→ |
3,4,6-Me3-Manp | 14.910 | 8.7 | 2→)-Manp-(1→ |
2,4,6-Me3-Glcp | 14.975 | 3.7 | 3→)-Glcp-(1→ |
2,3,6-Me3-Hex | 15.030 | 1.8 | 4→)-Hex-(1→ |
2,3,6-Me3-Galf | 15.170 | 8.6 | 5→)-Galf-(1→ |
2,3,4-Me3-Manp | 15.495 | 15.7 | 6→)-Manp-(1→ |
2,3,5-Me3-Galf | 15.925 | 3.7 | 6→)-Galf-(1→ |
3,4-Me2-Manp | 17.295 | 6.3 | 2,6→)-Manp-(1→ |
2,4-Me2-Glcp | 17.580 | 3.1 | 3,6→)-Glcp-(1→ |
3,5-Me2-Galf | 17.940 | 8.9 | 2,6→)-Galf-(1→ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Menolli, R.A.; Tessaro, F.H.G.; do Amaral, A.E.; de Melo, R.H.; dos Santos, J.F.; Iacomini, M.; Smiderle, F.R.; Mello, R.G. Biotech Application of Exopolysaccharides from Curvularia brachyspora: Optimization of Production, Structural Characterization, and Biological Activity. Molecules 2023, 28, 4356. https://doi.org/10.3390/molecules28114356
Menolli RA, Tessaro FHG, do Amaral AE, de Melo RH, dos Santos JF, Iacomini M, Smiderle FR, Mello RG. Biotech Application of Exopolysaccharides from Curvularia brachyspora: Optimization of Production, Structural Characterization, and Biological Activity. Molecules. 2023; 28(11):4356. https://doi.org/10.3390/molecules28114356
Chicago/Turabian StyleMenolli, Rafael Andrade, Fernando Henrique Galvão Tessaro, Alex Evangelista do Amaral, Renan Henrique de Melo, Jean Felipe dos Santos, Marcello Iacomini, Fhernanda Ribeiro Smiderle, and Rosiane Guetter Mello. 2023. "Biotech Application of Exopolysaccharides from Curvularia brachyspora: Optimization of Production, Structural Characterization, and Biological Activity" Molecules 28, no. 11: 4356. https://doi.org/10.3390/molecules28114356
APA StyleMenolli, R. A., Tessaro, F. H. G., do Amaral, A. E., de Melo, R. H., dos Santos, J. F., Iacomini, M., Smiderle, F. R., & Mello, R. G. (2023). Biotech Application of Exopolysaccharides from Curvularia brachyspora: Optimization of Production, Structural Characterization, and Biological Activity. Molecules, 28(11), 4356. https://doi.org/10.3390/molecules28114356