Seaweeds and Corals from the Brazilian Coast: Review on Biotechnological Potential and Environmental Aspects
Abstract
:1. Introduction
2. Results and Discussion
2.1. Seaweeds along the Brazilian Coast: Bioactive Compounds and Microelements
2.1.1. Ochrophyta
2.1.2. Chlorophyta
2.1.3. Rhodophyta
Reference | Seaweed | Class | Site of Collection | Biological Activity | Isolated Compounds |
---|---|---|---|---|---|
Schmitz et al., 2018 [28] | Asteronema breviarticulatum Bachelotia antillarum Canistrocarpus cervicornis Chnoospora minima Colpomenia sinuosa Dictyopteris delicatula Dictyopteris justii Dictyopteris plagiogramma Dictyota ciliolate Dictyota mertensii Levringia brasiliensis Lobophora variegate Padina boergesenii Padina gymnospora Padina sanctae-crucis Rosenvingia sp. Sargassum spp. Spatoglossum schroederii | Ochrophyta | Twenty-three sites distributed along the coastline of Brazil | Photoprotective (UVCi, UVB + Ai and PARi) | Dichloromethane:methanol extract (1:1) |
Vasconcelos et al., 2019 [29] | Sargassum furcatum | Ochrophyta | Enseada dos Corais Beach—Pernambuco (8°18′44.7″ S; 34°56′49.8″ W) | Antioxidant (DPPH, ABTS, Metal chelator activity, Folin-Ciocalteu, and FRAP) | Dichloromethane:methanol extract (2:1) |
Bryothamnion triquetrum Osmundaria obtusiloba | Rhodophyta | ||||
Santos et al., 2019 [30] | Sargassum vulgare | Ochrophyta | Morro de Pernambuco beach—Bahia (14°48′21.6″ S, 39°01′25.6″ W) | Antioxidant (DPPH, β-carotene/linoleic acid system, ABTS, FRAP, metal chelating, and Folin-Ciocalte) and anti-HIV | Methanolic, aqueous, and hot aqueous extracts |
Palisada flagellifera | Rhodophyta | ||||
Ulva fasciata | Chlorophyta | ||||
Harb et al., 2021 [31] | Dictyopteris jolyana Dictyopteris polypodioides Zonaria tournefortii | Ochrophyta | Pontal Beach-Espirito Santo (20°58′22.5″ S; 40°48′38.6″ W) Coqueirinho Beach-Paraiba (07°17′58″ S; 34°47′54″ W) Ponta do Cabo Branco Beach—Paraiba (07°08′43.6″ S; 34°48′20.7″ W) | Antioxidant (DPPH, ABTS, Metal chelator activity, and FRAP) | Methanolic extracts |
Agardhiella ramosissima Alsidium seaforthii Alsidium triquetrum Botryocladia occidentalis Gracilaria domingensis Osmundaria obtusiloba Spyridia clavata | Rhodophyta | Itaoca Beach—Espirito Santo (20°54′18.0″ S; 40°46′42.3″ W) Piúma Beach—Espirito Santo (20°50′31.5″ S; 40°43′46.0″ W) Emboaca Beach—Ceara (3°12′23.5″ S; 39°18′37.1” W) Ponta do Cabo Branco Beach—Paraiba (7°08′43.6″ S; 34°48′20.7″ W) | |||
Codium isthmocladum | Chlorophyta | Itaoca Beach—Espirito Santo (20°54′18.0″ S; 40°46′42.3″ W) | |||
Harb et al., 2022 [32] | Dictyopteris jolyana Dictyopteris polypodioides Zonaria tournefortii | Ochrophyta | Pontal Beach—Espirito Santo (20°58′22.5″ S; 40°48′38.6″ W) Coqueirinho Beach—Paraiba (07°17′58″S; 34°47′54″ W) Ponta do Cabo Banco Beach—Paraiba (07°08′43.6″ S; 34°48′20.7″ W) Pontal—Espirito Santo (20°58′22.5″ S; 40°48′38.6″ W) | Antioxidant (ABTS and Folin-Ciocalteu), photoprotection (ESAR and EPI), and cytotoxicity (HCT116, HL60, HGF1, and HaCat) | Alkaline aqueous and hydroethanolic extracts |
Alsidium seaforthii Osmundaria obtusiloba | Rhodophyta | Piuma—Espirito Santo (20°50′31.5″ S; 40°43′46.0″ W) Ponta do Cabo Branco—Paraiba (7°08′43.6″ S; 4°48′20.7″ W) | |||
Codium isthmocladum | Chlorophyta | Itoca—Espirito Santo (20°54′18.0″ S; 40°46′42.3″ W) | |||
Urrea-Victoria et al., 2022 [33] | Pyropia spiralis | Rhodophyta | Cibratel Beach—Sao Paulo (24°13′31” S and 46°51′7” W) | Antioxidant (ABTS, DPPH, FRAP, metal chelating, Folin-Ciocalteau, and TAC) | Methanolic extracts |
Sargassum stenophyllum | Ochrophyta | ||||
Cirne-Santos et al., 2019 [42] | Dictyota menstrualis | Ochrophyta | Enseada do Forno—Rio de Janeiro (22°44′00″ S; 41°57′25″ W) | Antiviral (Zika Virus) | 5-acetoxy-1,6-cycloxenia-2,13-diene-16,17-dial (1), 5-hydroxy-1,6-cycloxenia-2,13-diene-16,17-dial (2), 6-hydroxy-dichotoma-2,13-diene-16,17-dial (3), 6-acetoxydichotoma-2,13-diene-16,17-dial (4) |
Cirne-Santos et al., 2020 [43] | Dictyota menstrualis | Ochrophyta | Enseada do Forno—Rio de Janeiro (22°44′00″ S; 41°57′25″ W) | Antiviral (Chikungunya Virus) | Pachydictyol A (5) |
Cirne-Santos et al., 2020 [44] | Canistrocarpus cervicornis | Ochrophyta | Praia do Velho—Rio de Janeiro (23°01′ S, 44°00′ W) | Antiviral (Zika and Chikungunya Virus) | Dolastane (6) |
Philippus et al., 2018 [45] | Dictyopteris plagiogramma Dictyopteris jolyana Dictyota mertensii Canistrocarpus cervicornis | Ochrophyta | Rocas Atoll—Rio Grande do Norte Fernando de Noronha—Pernambuco Trindade Island—Espirito Santo Sao Pedro and Sao Paulo Archipelago—Pernambuco | - | Pachydictol A (5) Compounds annotated (LC-MS): Dictyoxide (7), 4β-hydroxydictyodial (8), 4β-acetoxydictyodial A (9), 18,4-dihydroxydictyo-19-al A (10), 18-acetoxy-4-hydroxydictyo-19-al (11), and dictyol B (12), dictyol B acetate (13), and dictyotadiol (14) |
Laurencia catarinensis Laurencia dendroidea Laurencia intricata | Rhodophyta | Xavier, Arvoredo Island, and Bombinhas—Santa Catarina Rocas Atoll—Rio Grande do Norte | Prepacifenol epoxide (30), johnstonol (31), and pacifenol (32) Compounds annotated (LC-MS): Laucapyranoids B (33) and C (34), laurendecumallenes A (35) and B (36), laureepoxide (37), (3E)-elatenyne (38), elatenyne (39), kumausallene (40), and laurobtusin (41) | ||
Teixeira et al., 2019 [46] | Plocamium brasiliense | Rhodophyta | Enseada do Forno—Rio de Janeiro (22°44′49″ S and 41°52′54″ W) | Antiparasitic (Trypanosoma cruzi) | 5-chloro-1-(E)-chlorovinyl-2,4-dibromo-1,5-dimethylcyclohexane (25) |
Stypopodium zonale | Ochrophyta | Atomaric acid (15) | |||
Plouguerné et al., 2020 [49] | Sargassum vulgare | Ochrophyta | Itacuruca Island—Rio de Janeiro (22°56′ S, 43°52′ W) | Antibacterial (Pseudoalteromonas elyakovii, Halomonas marina, Shewanella putrefaciens, and Polaribacter irgensii) and Anti-microalgal (Chlorarachnion reptans, Pleurochrysis roscoffensis, Exanthemachrysis gayraliae, Cylindrotheca closterium, and Navicula jeffreyi) | Monogalactosyldiacylglycerols—MGDG (16), digalactosyldiacylglycerols—DGDG (17), and sulfoquinovosyldiacylglycerols—SQDG (18) |
Menezes-Silva et al., 2020 [50] | Sargassum polyceratium | Ochrophyta | Joao Pessoa—Paraiba | Antibacterial (Staphylococcus aureus) | 132-hydroxy-(132-R)-pheophytin-a (19) |
Stein et al., 2021 [51] | Amphiroa fragilissima Bostrychia tennela Botryocladia occidentalis Bryothamnion seaforthii Ceratodictyon variabile Cryptonenia crenulata Cryptonenia seminervis Dichotomaria marginata Gracilaria cf. intermedia Gracilaria domingensis Hypnea nigrescens Jania rubens Laurencia aldingensis Laurencia catarinensis Laurencia dendroidea Octhodes secundiramea Palisada perforata Palisada flagellifera Porphyra spiralis Pterocladiella capillacea Solieria filiformis Spyridia aculeata Tricleocarpa cylindrica Vidalia obtusiloba | Rhodophyta | Intertidal zone—Espirito Santo | Antiparasitic (Schistosoma mansoni) and molluscicidal (Biomphalaria glabrata) | Dichloromethane, chloroform, hexane, and methanol extracts Compounds annotated (CG-MS): dictyol B (13), dictyotadiol (14), 9-acetoxydichotoma-2,13-diene-16,17-dial (20), dictyol C (21), isopachydictyol A (22), Silphiperfolan-7β-ol (28) |
Canistrocarpus cervicornis Colpomenia sinuosa Dictyota ciliolata Dictyota mertensii Padina tetrastomatica Sargassum vulgare Zonaria tournefortii | Ochrophyta | ||||
Caulerpa cupressoides Caulerpa racemosa Caulerpa sertularioides Codium isthmocladum | Chlorophyta | ||||
Esteves et al., 2019 [52] | Caulerpa racemosa | Chlorophyta | Archipelago of Sao Pedro and Sao Paulo Pernambuco (00°55′ S, 29°21′ W) | Antiviral (Chikungunya Virus) | Caulerpin (23) |
Chaves-Filho et al., 2018 [53] | Caulerpa prolifera | Chlorophyta | Natal—Rio Grande do Norte | Genotoxicity and osteogenic | Sulfated polysaccharide (SP)-enriched extract |
Chaves-Filho et al., 2019 [54] | Caulerpa sertularioides | Chlorophyta | Coast Rio Grande do Norte | Osteogenic | Sulfated polysaccharide (SP)-enriched extract |
Marques et al., 2019 [58] | Caulerpa cupressoides Caulerpa sertulariodes Caulerpa prolifera Caulerpa racemosa Codium isthmocladum Udotea flabellum Ulva lactuca | Chlorophyta | Buzios Beach—Rio Grande do Norte (05°58′23″ S, 35°04′97″ W) Rio do Fogo Beach—Rio Grande do Norte (05°16′22″ S, 35°22′58″ W) Camapum beach—Rio Grande do Norte (05°06′54″ S, 36°38′02″ W) | Anti-Thrombin, Anti-Adhesive, Anti-Migratory, and Anti-Proliferative | Sulfated polysaccharide (SP)-enriched extract |
Lobophora variegata Sargassum vulgare Padina gymnospora Sargassum felipendula Spatglossum schröederi Dictyota mertensii Dictyopteris delicatula Dictyota menstrualis Canistrocarpus cervicornis Dictyopteris justii Dictyota ciliolata | Ochrophyta | ||||
Gracilaria birdiae Gracilaria caudata Amansia. multifida Achantophora especifera | Rhodophyta | ||||
Bezerra et al., 2018 [59] | Gracilaria cervicornis | Rhodophyta | Flecheiras Beach—Ceara | Antidiarrheal | Sulfated polysaccharide (SP)-enriched extract |
Monturil et al., 2020 [60] | Digenea simplex | Rhodophyta | Flexeiras Beach—Ceara (03°13′25″ S and 39°16′65″ W) | Anti-inflammatory | Sulfated polysaccharide (24) |
Fontenelle et al., 2018 [61] | Bryothamnion triquetrum | Rhodophyta | Flecheiras Beach—Ceara | Anti-inflammatory | Lectin |
Araújo et al., 2020 [63] | Kappaphycus alvarezii | Rhodophyta | Fisheries Institute—Sao Paulo (23°27.134′ S, 45°02.817′ W) | Antioxidant (Folin–Ciocalteu, DPPH, ABTS and FRAP | Methanolic and aqueous extracts |
Sudatti et al., 2020 [66] | Laurencia dendroidea | Rhodophyta | Forno Beach (22°58′0003.3″ S, 42°00′56.2″ W) and Azeda Beach—Rio de Janeiro (22°44′33.6″ S, 41°52′055.6″ W) | Allelopathy and autotoxicity | (+)-elatol (25) and obtusol (27) |
Dos Santos et al., 2022 [67] | Laurencia dendroidea | Rhodophyta | Ubu and Castelhanos beach (20°48′6″ S, 40°35′37″ W) and Praia Brava—Sao Paulo (24°37′47″ S, 45°12′6″ W) | Antiparasitic (Schistosoma mansoni) and molluscicidal (Biomphalaria glabrata) | (+)-obtusol (27), (−)-elatol (26), and (−)-rogiolol (29) |
2.1.4. Seaweed Essential Elements
2.1.5. Patents Registered for Seaweed-Derived Products in Brazil
INPI Number/Reference | Seaweed | Patent Title | Summary | Depositor’s Country of Origin |
---|---|---|---|---|
BR 11 2019 015051 0 [136] | Not specified | System and method for growing algae | Aspects of the invention are directed to a system and method for homogenizing an algae cultivation vessel. The method may include controlling at least one first homogenizer to deliver a first fluid into the vessel at a first operating flow rate; and controlling at least one-second homogenizer for dispensing a second fluid into the vessel at a second operating flow rate. The first flow rate of operation can be adapted to allow the mixing of the algae in the culture vessel, and the second flow rate of operation can be adapted to allow the assimilation of materials into a liquid within the culture vessel. | United States of America (USA) |
BR 11 2020 015303 6 [100] | Ascophyllum nodosum, Laminaria sp., Fucus sp., Macrocystis pyrifera, Ecklonia maxima or Durvillea sp. | Bioreactor and seaweed culture method | The present invention relates to a bioreactor, which includes a first compartment designed to retain seaweed sporophytes, a second compartment in fluid communication with the first compartment, which includes one or more seating surfaces, and a first porous barrier between the first and first compartments. The second compartment allows seaweed spores to pass from the first to the second compartment, and to systems comprising the bioreactor. Also provided herein are methods of culturing seaweed, for example by using a bioreactor. | United States of America (USA) |
BR 11 2019 017483 4 [117] | Not specified | Oil/fat compositions containing fine food particles, methods for producing said compositions, and methods for increasing the water absorption index, increasing an opacity value, enhancing the extent of flavor, enhancing the sensation of swallowing, and to enhance the stability, toimprove the smoothness, and to improve an initial taste of said compositions | It has a composition that allows various vegetables, fruits, seaweeds, and the like to be stably present in the composition and has a wide utility in that the composition can be used in various applications. An oil/fat composition containing fine food particles comprising fine particles of at least one food selected from the group consisting of a vegetable, a fruit, and a seaweed; and an oil/fat, and having: (1) a food particle content of 2% by mass or more and 98% by mass or less, (2) a total oil/fat ratio of 10% by mass or more and 98% by mass or less, (3) a modal diameter in an ultrasonicated state of 0.3 µm or more and 200 µm or less, and (4) a water content of less than 20% by mass. | Japan (JP) |
BR 11 2019 019497 5 [115] | Not specified | Innovative process for extracting protein from plant or algal matter | This is a method for separating proteins from plant materials or algae. The method comprises mixing the protein-containing material with a solvent, preferably water; extracting the material containing protein at pH > 7; and acidifying the mixture, thereby precipitating proteins and fibers together. In some embodiments of the invention, the separation further involves decanting the mixture to recover a protein/fiber solid; adding water to the protein/fiber solid; adding a predetermined amount of base to the protein/fiber/water system, thereby precipitating the fiber, separating the fiber from the protein in a decanter, and drying the protein solution. In other embodiments, the protein/fiber solid is processed directly, for example by passing it through an extruder. The use of fiber as a carrier for the protein makes the inventive method more efficient than methods known in the art; the inventive method does not require the use of a clarifying centrifuge. | United States of America (USA) |
BR 11 2019 023615 5 [101] | Phymatolithon, Lithothamnium, Ascophyllum. | Water-disintegratable granular composition, process for preparing the water-disintegratable granular composition, method of fortifying crops and plants, use of the water-disintegratable granular composition, and method of improving plant health | The invention relates to a water-disintegratable granular composition, wherein the granules include, at least, one culture/algae nutrient, or an active water-insoluble pesticide. | India (IN) |
BR 10 2018 013380 2 [130] | Not specified | Antimicrobial bioactive film based on carrageenan and olive leaf extract | The product is a biodegradable film or biofilm that is produced based on carrageenan and enhanced with olive leaf extract for the purpose of food packaging. Carrageenan is a biopolymer extracted from red algae with the potential to form good films. Already, the olive leaf extract can be considered a plant antimicrobial compound with a possible application as a food preservative. In this context, the proposed biodegradable film is an active packaging alternative, as in addition to protecting the food against undesirable external actions, it interacts with it for its conservation, since an antimicrobial auxiliary component is added to its constitution, which improves the performance of the packaging system. | Brazil (BR) |
BR 11 2020 000675 0 [102] | Green algae, red algae, golden algae, brown algae, golden-brown algae, blue algae, blue-green algae. | New fortification, crop nutrition, and crop protection composition | The invention relates to an algae composition in the form of an aqueous suspension. More particularly, the invention relates to the aqueous suspension composition including one or more algae selected from green algae, red algae, golden algae, brown algae, golden-brown algae, blue algae, blue-green algae, or aspecies thereof in the range of 0.1% to 65% by weight with one or more surfactants in the range of 0.1% to 50% by weight; with one or more structuring agents in the range of 0.01% to 5% by weight, wherein the composition has a particle size range of 0.1 microns to 60 microns. Furthermore, the invention relates to a process for preparing a seaweed composition comprising at least one seaweed and at least one agrochemically acceptable excipient in the form of an aqueous suspension. The invention also relates to a method of treating plants. | India (IN) |
BR 11 2020 001535 0 [103] | Green algae, red algae, golden algae, brown algae, golden-brown algae, blue algae, blue-green algae. | Agricultural water-dispersible granular composition, process of preparing the same, its use and method of plant protection or improvement of health or yield | The invention relates to a granular seaweed composition comprising at least one seaweed and at least one agrochemically acceptable excipient selected from one or more surfactants, binders, or disintegrants having a weight ratio of seaweed to at least one surfactant, binder, or disintegrant in the range of 99:1 to 1:99. The seaweed comprises 0.1% to 90% by weight of the total composition. The composition has a particle size in the range of 0.1 microns to 60 microns. Furthermore, the invention relates to a process for preparing the granular seaweed composition comprising at least one seaweed and at least one agrochemically acceptable excipient. The invention further relates to a method of treating the plants, seeds, crops, plant propagation material, site, parts thereof, or the soil with the granular composition of seaweed. | India (IN) |
BR 10 2018 072892 0 [129] | Seaweed red grapes of the phylum Rhodophyta. | Production process of edible, recyclable, disposable and biodegradable bio-cups and bio-utensils from agar-agar (hydrocolloid) extracted from Brazilian red marine algae of the phylum Rhodophyta | In the last two decades, disposable polystyrene cups made from petroleum have become widely consumed by companies due to their practicality, hygiene, and low price. This daily use represents an additional problem for the environment. The destination of this type of material is common garbage, as there is no recycling for disposable cups. The objective of the invention is to provide the food and biodegradable plastics industries with an innovative process for the production of edible, recyclable, disposable and biodegradable bio-cups and bio-utensils from agar-agar (hydrocolloid) extracted from Brazilian red grapes of the phylum Rhodophyta. It is intended for total or partial replacement of disposable and biodegradable utensils available on the market, such as cups, bowls, etc. Therefore, the type of technology described here is part of the development of new biodegradable materials, with a strong environmental appeal and with the objective of achieving environmental sustainability. When disposed of in the environment, bio-cups and bio-utensils suffer from natural degradation by microorganisms, as they are biodegradable products with superior characteristics to traditional products on the market, and which reduce the direct impact on the environment. | Brazil (BR) |
BR 10 2018 075813 6 [122] | Red seaweed | Biodegradable organic bandages as an option in the treatment of burns or wounds and the respective process for obtaining | This application is aimed at the hospital sector, and refers to the development of a low-cost organic and biodegradable dressing capable of meeting healing needs, allowing wound monitoring and providing a viable product to health units, hospitals, and intradomiciles. The organic and biodegradable dressing is based on agar-agar, which is a hydrocolloid extracted from red algae, and an essential oil of Melaleuca that has antibacterial and antifungal activity. Thus, it is expected to provide the dressing with the necessary transparency for wound analysis, ideal consistency, as well as a more accessible cost. | Brazil (BR) |
BR 11 2020 012394 3 [124] | Rhodophyceae, Phaeophyceae, and Ascophyllum nodosum | Identification and isolation method of bioactive compounds from seaweed extracts | It is a method of isolating and purifying bioactive compounds in an extract obtained from seaweed. The method involves the steps of: (a) circulating the extract through an ultrafiltration membrane that has an adequate molecular weight cut-off; (b) collecting filtrate from the extract to obtain a first filtrate fraction and a retentate; and (c) rinsing the retentate to obtain one or more additional filtrate fractions. The bioactivity of the first filtrate fraction and additional filtrate fractions can then be evaluated to determine their effectiveness on plant growth. One or more bioactive molecules isolated from an algal species are also described wherein one or more bioactive molecules have a molecular weight in the range of about 0.15 kDa to about 1 kDa. | France (FR) |
BR 10 2019 003343 6 [104] | Lithothamnium calcareum | Compositions comprising seaweed and methods of using seaweed to increase animal product production | The present invention generally relates to a method for determining red algae inclusion rates in livestock feed and livestock supplements. | United States of America (USA) |
BR 10 2019 003936 1 [125] | Kappaphycus alvarezii | Base mass/gel extraction process from seaweed while maintaining its properties. | The present invention consists of a manufacturing process for a base mass extracted in the form of a gel from the red macroalgae (Kappaphycus alvarezii) for application in food and cosmetics; the integral extraction of a polysaccharide with thiol groups has gelling and thickening properties at pH 4.5, promotes stable gel in a wide temperature range (0 to 60 °C), has an aqueous base with a slight odor and characteristic flavor, and is 100% natural. It has hydrating and healing properties (on burnt skin or under small cuts), in addition to humectant and refreshing characteristics, a matte effect, and a whitening effect, which can be used as a natural and safe raw material for the consumption as food, cosmetics, preparations for baths and the like, maintaining its stability at room temperature. It is a product free of preservatives, and maintainsits organoleptic characteristics for a period of up to one year in sealed packaging, without the addition of preservatives of any kind. | Brazil (BR) |
BR 11 2020 021196 6 [128] | Not specified | Film forming system with a barrier effect, namely anti-atmospheric pollution, of natural origin and for use in cosmetics. | The subject of the application is a film-forming system, preferably for cosmetic use, consisting of at least one pregelatinized starch, and at least one starch-free polysaccharide chosen from gums of vegetable origin, preferably seaweed or seaweed gums plants, gums of microbial origin, and cellulosic derivatives. According to the invention, the film-forming system provides a barrier effect, namely anti-air pollution. The application also relates to a manufacturing process for such a film-forming system and to cosmetic compositions, namely topical ones, containing the said film-forming systems, such as skin care products, hair care products, make-up products, sun protection products, hygiene products, and fragrances. | France (FR) |
BR 11 2020 021993 2 [132] | Not specified | Seaweed-elastomer composite, footwear component comprising the seaweed-elastomer composite and method for preparing a seaweed-based elastomer composite | An algae-elastomer composition that includes an elastomer matrix, algae, and a mixing additive sufficient to achieve a desired property. The algae may be present in a ground condition, having a particle size value between about 10 and 120 microns. The algae are mixed with the elastomer matrix in a dry condition having a moisture content of less than about 10%. A method for preparing the algae-based elastomer composite is provided, which includes the steps of pre-mixing an elastomer matrix; adding a load of seaweed; adding a mixing additive that includes a plasticizer; forming an elastomer-algae blend by blending the algae and elastomer at a temperature sufficient to be mixed further, wherein the temperature is about 10 °C higher than sufficient temperature for the elastomer alone; adding and mixing a curing or vulcanizing agent to the elastomer dispersing the elastomer-algae blend; and heating and curing the elastomer-algae blend into a final form. | United States of America (USA) |
BR 10 2019 009021 9 [131] | Not specified | Simultaneous production of bio-hydrogen and bioethanol from algae carried off in discontinuous anaerobic reactors | The simultaneous production of biohydrogen and bioethanol from seaweeds in discontinuous anaerobic reactors. Faced with the awareness that the planet has finite resources and acknowledging the damage caused by pollution, alternative sources of energy that can compete with and/or replace the use of fossil fuels are sought. For the simultaneous production of hydrogen and ethanol by anaerobic fermentation, the residues of the macroalgae were used as a substrate, chemically pre-treated with an acid solution (H2SO4) at 1.0%, 1.5%, and 2.0% (v/v), with a pretreatment exposure time of 60 min, and without chemical pretreatment. The experimental procedure was carried out in reactors operated in batches maintained at mesophilic temperature (35 ± 1 °C) through the use of a rotating shaker incubator at 120 rpm, inoculated with UASB reactor sludge, and with the pH of the medium initially adjusted to 7.00. For higher acid concentrations, lower amounts of glucose and specific hydrogen production were quantified. The results for the crude reactors at 1.0%, 1.5%, and 2.0% H2SO4 (v/v) were 28.21, 97.42, 90.39, and 38.72 (mg/g of dried seaweed), and 5.80, 24.03, 1.99, and 2.53 mLH2/gSSVh, respectively. | Brazil (BR) |
BR 11 2020 025226 3 [118] | Saccharina latissimi, Laminaria saccharina, Laminaria digitate, Ascophyllum nodosum, and Laminaria hyperborean | Antiparasitic composition, food product, and use of the antiparasitic composition | The present invention relates to an antiparasitic composition comprising at least one algal material, at least one plant material, or a combination of at least one algal material and at least one plant material for inhibiting, reducing, and/or suppressing the growth of at least one parasite. | Denmark (KB) |
BR 11 2021 000776 8 [111] | Not specified | Method for improving water use efficiency and/or water productivity in plants and/or water management in agriculture. | The present invention relates to a composition based on seaweed and/or plant extracts for use in agriculture. It is objective improve water use efficiency, and the productivity in soil management, and water, resulting in an increased yield of cultivated plants per unit of water used. | Italy (IT) |
BR 11 2021 002969 9 [109] | Saccharina latissima (Laminaria saccharina), Laminaria digitate, Ascophyllum nodosum, and Laminaria hyperborean. | Animal feed product and use of an animal feed product | The object of the present invention relates to an improved animal feed product comprising a seaweed material and/or a plant material with a reduced level of medicinal zinc. | Denmark (KB) |
BR 10 2019 018113 3 [119] | Prasiola crispa | Pharmaceutical composition with fractions derived from seaweed and its use as a Leishmanicidal Agent | The present invention reveals the use of seaweed derivatives, with applications in the area of new leishmanicidal agents of natural origin. The invention describes the use of fractions of Prasiola crispa with a highly effective leishmanicidal effect, which provides a new non-toxic alternative for the treatment of this neglected disease, since it does not have cytotoxic effects on human cells. | Brazil (BR) |
BR 11 2021 006877 5 [108] | Phaeophytes | Animal feed to enhance growth performance | Condensed soluble algae residues have been shown to be a beneficial feed ingredient for animal feed, in particular to enhance the growth of beef cattle. | European Patent Office (EPO); United States of America (USA) |
BR 11 2021 007506 2 [120] | Ulvales | Use of a seaweed extract from the order Ulvales | The present invention refers to an extract of seaweeds of the order Ulvales that comprises sulfated and non-sulfated polyanionic polysaccharides, the molecular weight of which is less than or equal to 50 kDa, for use in the prevention and/or treatment of complications induced by post-traumatic immunosuppression. | France (FR) |
BR 10 2019 026291 5 [110] | Not specified | Biodegradable glue for fixing small plants and uses | This technology deals with a non-toxic and biodegradable glue for fixing small plants, comprising corn starch (2 to 3% w/v); maltodextrin (2 to 3% w/v); gums (4 to 25% w/v); and 0.2 to 0.32% w/v montmorillonite clay. The glue may comprise one or more preservatives, such as potassium sorbate (0.01 to 0.05% w/v), sodium chloride (0.01 to 0.05% w/v), or abscisic acid (5 to 10 µM). Its composition may also contain the inoculum of small plants, such as propagules of bryophytes, cyanobacteria, algae, and mycorrhizal fungi; in addition to nutrients. The glue allows the plants to adhere to the substrate, retains moisture during transplantation, and can be used in landscaping or in the reintroduction of small plants in a natural habitat by fixing them on rocks, trunks, and other substrates. | Brazil (BR) |
BR 10 2019 027698 3 [123] | Hypnea e Dictyopteris | Dilutor for cryoprotection and freezing of gametes based on seaweed | The present invention deals with an algal plant extract as a cryoprotective extender as a substitute for an animal origin extender, which can be used in animal reproduction programs of utility in research and commercial interest. The present invention is in the field of Biotechnology and natural products for veterinary or human use. Its use may be preferred in the process of cryopreservation of both fresh and frozen gametes. | Brazil (BR) |
BR 11 2022 004774 6 [116] | Seaweed selected from the families of Gigartinaceae, Bangiophyceae, Palmariaceae, Hypneaceae, Cystocloniaceae, Solieriaceae, Phyllophoraceae, Furcellariaceae, or combinations thereof. | Seaweed-based composition and food product, beverage, nutritional product, dietary supplement, feed product, personal care product, pharmaceutical product, or industrial product | The present invention relates to a seaweed-based composition comprising water, a seaweed powder and an additional component, with the said additional component being chosen from the group consisting of glucomannans, galactomannans, native starch, and combinations thereof. The red seaweed is preferably selected from the families of Gigartinaceae, Bangiophyceae, Palmariaceae, Hypneaceae, Cystocloniaceae, Solieriaceae, Phyllophoraceae, Furcellariaceae, or combinations thereof. | United States of America (USA) |
BR 11 2022 014527 6 [134] | Asparagopsis taxiformis and Asparagopsis armata | Bioreactor and seaweed culture method | The present invention relates to a bioreactor, which includes a first compartment designed to retain seaweed sporophytes; a second compartment in fluid communication with the first compartment. Also, includes one or more seating surfaces, and a first porous barrier between the first and second compartments. The second compartments allow seaweed spores to pass from the first compartment to the second compartment, and to systems comprising the bioreactor. Also provided herein are methods of culturing seaweed, for example using a bioreactor. | United States of America (USA) |
BR 11 2022 020495 7 [107] | Asparagopsis taxiformis | Compositions comprising seaweed and methods of using seaweed to increase animal product production | The present invention generally relates to a method for determining red algae inclusion rates in livestock feed and livestock supplements. | United States of America (USA) |
BR 11 2022 025357 5 [135] | Not specified | Systems and methods for growing algae using direct air capture | It is a system together with a method of supplying an algae-growing fluid with nutrients (e.g., carbon dioxide and nitrogen) directly from the atmosphere. Supplying nutrients directly from the atmosphere reduces operating costs and environmental impacts, as well as providing greater flexibility in the location of algae farms. | United States of America (USA) |
BR 11 2022 026526 3 [105] | Ulva armoricana, Solieria cordalis, and Euchema spinosum | Formulation and use of a composition for plant health | The invention relates to the use of an organomineral composition by foliar application to stimulate plant development in the presence of at least one abiotic stress, with the said composition comprising the following compounds: 5 to 50% of seaweed extract; 0.5 to 2.5% of soluble silica expressed in SiO2; 0 to 30% mineral nutrient salts; 0 to 12% of trace elements; and 0 to 30% of organic acids. The percentages are expressed as the weight of the dry matter of each of the said compounds in relation to the total weight of the dry matter of the organomineral composition. | France (FR) |
BR 11 2022 025481 4 [127] | Red seaweed (Rhodophyceae), belonging to the families Gigartinaceae, Hypneaceae, Furcellariaceae, and Polyideaceae. | Composition, in particular cosmetic composition, and cosmetic process for caring for keratin materials, especially the skin. | The present invention relates a cosmetic composition for skin containing keratin, comprising between 0.5% and 4% weight of short-chain fatty acid salt and, at least, 90% by weight of an aqueous phase relative to the total weight of the composition. It is gelled by a hydrophilic gelling agent chosen from (i) at least one polymer chosen from polyacrylamides and 2-acrylamido-2-acid polymers and copolymers methylpropanesulfonic acid, (ii) at least one polysaccharide produced by microorganisms or isolated from algae, (iii) at least a cellulose or one of its derivatives, (iv) at least one carboxyvinyl polymer, or (v) one of its mixtures. It also refers to a cosmetic process for caring for keratin materials, the skin in particular. | France (FR) |
BR 10 2021 014827 6 [121] | Not specified | Production process of polymeric nanoparticles of R-Phycoerythrin and resulting products with therapeutic and diagnostic potential against cancer | R-Phycoerythrin (R-FE) is a protein pigment that is produced by red algae, which has spectroscopic properties of absorption and the emission of light at three specific wavelengths, which is why the pigment can be photosensitized inside the cell by photodynamic therapy, producing reactive molecules that have a positive effect on suppressing cancer cells. To increase the permeability of this molecule in cells, as well as its accumulation in the cell interior, a production process of R-FE polymeric nanoparticles coated with polyvinyl acetate and polycaprolactone was developed through the double emulsification by the evaporation of the organic solvent. | Brazil (BR) |
BR 10 2022 006876 3 [106] | Brown seaweed | Phytoregulator for plants | A phytoregulatory composition including L-proline, kaolin, and, optionally, brown algae, which is provided in wettable powder form for use on plants in the flowering and fruiting stages. | United States of America (USA) |
2.2. Seaweeds from the Brazilian Coast: Environmental Aspects
2.3. Corals from the Brazilian Coast: Bioactive Compounds
2.4. Corals from the Brazilian Coast: Environmental Aspects
3. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kalasariya, H.S.; Yadav, V.K.; Yadav, K.K.; Tirth, V.; Algahtani, A.; Islam, S.; Gupta, N.; Jeon, B.-H. Seaweed-Based Molecules and Their Potential Biological Activities: An Eco-Sustainable Cosmetics. Molecules 2021, 26, 5313. [Google Scholar] [CrossRef]
- Lomartire, S.; Gonçalves, A.M.M. An Overview of Potential Seaweed-Derived Bioactive Compounds for Pharmaceutical Applications. Mar. Drugs 2022, 20, 141. [Google Scholar] [CrossRef]
- Gomez-Zavaglia, A.; Prieto Lage, M.A.; Jimenez-Lopez, C.; Mejuto, J.C.; Simal-Gandara, J. The Potential of Seaweeds as a Source of Functional Ingredients of Prebiotic and Antioxidant Value. Antioxidants 2019, 8, 406. [Google Scholar] [CrossRef]
- Salehi, B.; Sharifi-Rad, J.; Seca, A.M.; Pinto, D.C.; Michalak, I.; Trincone, A.; Mishra, A.P.; Nigam, M.; Zam, W.; Martins, N. Current Trends on Seaweeds: Looking at Chemical Composition, Phytopharmacology, and Cosmetic Applications. Molecules 2019, 24, 4182. [Google Scholar] [CrossRef] [PubMed]
- Sultana, F.; Wahab, M.A.; Nahiduzzaman, M.; Mohiuddin, M.; Iqbal, M.Z.; Shakil, A.; Mamun, A.-A.; Khan, M.S.R.; Wong, L.; Asaduzzaman, M. Seaweed Farming for Food and Nutritional Security, Climate Change Mitigation and Adaptation, and Women Empowerment: A Review. Aquac. Fish. 2023, 8, 463–480. [Google Scholar] [CrossRef]
- Ashkenazi, D.Y.; Figueroa, F.L.; Korbee, N.; García-Sánchez, M.; Vega, J.; Ben-Valid, S.; Paz, G.; Salomon, E.; Israel, Á.; Abelson, A. Enhancing Bioproducts in Seaweeds via Sustainable Aquaculture: Antioxidant and Sun-Protection Compounds. Mar. Drugs 2022, 20, 767. [Google Scholar] [CrossRef] [PubMed]
- Souter, D.; Planes, S.; Wicquart, J.; Obura, D.; Staub, F. The Sixth GCRMN Status of Coral Reefs of the World: 2020. Global Coral Reef Monitoring Network, ICRI. 2021. Available online: https://gcrmn.net/2020-report/ (accessed on 5 April 2023).
- Devlin, M.J. Coral Reefs: The Good and Not so Good News with Future Bright and Dark Spots for Coral Reefs through Climate Change. Glob. Chang. Biol. 2022, 28, 4506–4508. [Google Scholar] [CrossRef]
- Yan, X.; Liu, J.; Leng, X.; Ouyang, H. Chemical Diversity and Biological Activity of Secondary Metabolites from Soft Coral Genus Sinularia since 2013. Mar. Drugs 2021, 19, 335. [Google Scholar] [CrossRef]
- Souza, C.R.M.; Bezerra, W.P.; Souto, J.T. Marine Alkaloids with Anti-Inflammatory Activity: Current Knowledge and Future Perspectives. Mar. Drugs 2020, 18, 147. [Google Scholar] [CrossRef]
- Alves, C.; Diederich, M. Marine Natural Products as Anticancer Agents. Mar. Drugs 2021, 19, 447. [Google Scholar] [CrossRef]
- Sheehy, E.J.; Lemoine, M.; Clarke, D.; Gonzalez Vazquez, A.; O’Brien, F.J. The Incorporation of Marine Coral Microparticles into Collagen-Based Scaffolds Promotes Osteogenesis of Human Mesenchymal Stromal Cells via Calcium Ion Signalling. Mar. Drugs 2020, 18, 74. [Google Scholar] [CrossRef]
- Bax, N.; Novaglio, C.; Maxwell, K.H.; Meyers, K.; McCann, J.; Jennings, S.; Frusher, S.; Fulton, E.A.; Nursey-Bray, M.; Fischer, M.; et al. Ocean Resource Use: Building the Coastal Blue Economy. Rev. Fish Biol. Fish. 2022, 32, 189–207. [Google Scholar] [CrossRef] [PubMed]
- Intergovernmental Oceanographic Commission. IOC-UNESCO United Nations Decade of Ocean Science for Sustainable Development 2021–2030—Implementation Plan. Available online: https://ioc.unesco.org/ocean-decade (accessed on 5 April 2023).
- Ward, D.; Melbourne-Thomas, J.; Pecl, G.T.; Evans, K.; Green, M.; McCormack, P.C.; Novaglio, C.; Trebilco, R.; Bax, N.; Brasier, M.J.; et al. Safeguarding Marine Life: Conservation of Biodiversity and Ecosystems. Rev. Fish Biol. Fish. 2022, 32, 65–100. [Google Scholar] [CrossRef] [PubMed]
- Malhi, Y.; Franklin, J.; Seddon, N.; Solan, M.; Turner, M.G.; Field, C.B.; Knowlton, N. Climate Change and Ecosystems: Threats, Opportunities and Solutions. Philos. Trans. R. Soc. B Biol. Sci. 2020, 375, 20190104. [Google Scholar] [CrossRef]
- Thushari, G.G.N.; Senevirathna, J.D.M. Plastic Pollution in the Marine Environment. Heliyon 2020, 6, e04709. [Google Scholar] [CrossRef]
- Ward-Paige, C.; White, E.; Madin, E.; Osgood, G.; Bailes, L.; Bateman, R.; Belonje, E.; Burns, K.; Cullain, N.; Darbyshire-Jenkins, P.; et al. A Framework for Mapping and Monitoring Human-Ocean Interactions in near Real-Time during COVID-19 and Beyond. Mar. Policy 2022, 140, 105054. [Google Scholar] [CrossRef] [PubMed]
- Luna, G.M. Biotechnological Potential of Marine Microbes. In Springer Handbook of Marine Biotechnology; Springer: Berlin/Heidelberg, Germany, 2015; pp. 651–661. [Google Scholar]
- García-Poza, S.; Leandro, A.; Cotas, C.; Cotas, J.; Marques, J.C.; Pereira, L.; Gonçalves, A.M.M. The Evolution Road of Seaweed Aquaculture: Cultivation Technologies and the Industry 4.0. Int. J. Environ. Res. Public Health 2020, 17, 6528. [Google Scholar] [CrossRef]
- Leandro, A.; Pereira, L.; Gonçalves, A.M.M. Diverse Applications of Marine Macroalgae. Mar. Drugs 2019, 18, 17. [Google Scholar] [CrossRef]
- Morais, T.; Cotas, J.; Pacheco, D.; Pereira, L. Seaweeds Compounds: An Eco Sustainable Source of Cosmetic Ingredients? Cosmetics 2021, 8, 8. [Google Scholar] [CrossRef]
- Naylor, R.L.; Hardy, R.W.; Buschmann, A.H.; Bush, S.R.; Cao, L.; Klinger, D.H.; Little, D.C.; Lubchenco, J.; Shumway, S.E.; Troell, M. A 20-Year Retrospective Review of Global Aquaculture. Nature 2021, 591, 551–563. [Google Scholar] [CrossRef]
- Ahmad Raus, R.; Wan Nawawi, W.M.F.; Nasaruddin, R.R. Alginate and Alginate Composites for Biomedical Applications. Asian J. Pharm. Sci. 2021, 16, 280–306. [Google Scholar] [CrossRef]
- Ning, L.; Yao, Z.; Zhu, B. Ulva (Enteromorpha) Polysaccharides and Oligosaccharides: A Potential Functional Food Source from Green-Tide-Forming Macroalgae. Mar. Drugs 2022, 20, 202. [Google Scholar] [CrossRef] [PubMed]
- Rotter, A.; Barbier, M.; Bertoni, F.; Bones, A.M.; Cancela, M.L.; Carlsson, J.; Carvalho, M.F.; Cegłowska, M.; Chirivella-Martorell, J.; Conk Dalay, M.; et al. The Essentials of Marine Biotechnology. Front. Mar. Sci. 2021, 8, 158. [Google Scholar] [CrossRef]
- Wilke, D.V.; Jimenez, P.C.; Branco, P.C.; Rezende-Teixeira, P.; Trindade-Silva, A.E.; Bauermeister, A.; Lopes, N.P.; Costa-Lotufo, L.V. Anticancer Potential of Compounds from the Brazilian Blue Amazon. Planta Med. 2021, 87, 49–70. [Google Scholar] [CrossRef]
- Schmitz, C.; Ramlov, F.; de Lucena, L.A.F.; Uarrota, V.; Batista, M.B.; Sissini, M.N.; Oliveira, I.; Briani, B.; Martins, C.D.L.; de Castro Nunes, J.M.; et al. UVR and PAR Absorbing Compounds of Marine Brown Macroalgae along a Latitudinal Gradient of the Brazilian Coast. J. Photochem. Photobiol. B Biol. 2018, 178, 165–174. [Google Scholar] [CrossRef]
- Vasconcelos, J.B.; de Vasconcelos, E.R.T.P.P.; Urrea-Victoria, V.; Bezerra, P.S.; Reis, T.N.V.; Cocentino, A.L.M.; Navarro, D.M.A.F.; Chow, F.; Areces, A.J.; Fujii, M.T. Antioxidant Activity of Three Seaweeds from Tropical Reefs of Brazil: Potential Sources for Bioprospecting. J. Appl. Phycol. 2019, 31, 835–846. [Google Scholar] [CrossRef]
- Santos, J.P.; Torres, P.B.; dos Santos, D.Y.A.C.; Motta, L.B.; Chow, F. Seasonal Effects on Antioxidant and Anti-HIV Activities of Brazilian Seaweeds. J. Appl. Phycol. 2019, 31, 1333–1341. [Google Scholar] [CrossRef]
- Harb, T.B.; Pereira, M.S.; Cavalcanti, M.I.L.G.; Fujii, M.T.; Chow, F. Antioxidant Activity and Related Chemical Composition of Extracts from Brazilian Beach-Cast Marine Algae: Opportunities of Turning a Waste into a Resource. J. Appl. Phycol. 2021, 33, 3383–3395. [Google Scholar] [CrossRef]
- Harb, T.B.; Vega, J.; Bonomi-Barufi, J.; Casas, V.; Abdala-Díaz, R.; Figueroa, F.L.; Chow, F. Brazilian Beach-Cast Seaweeds: Antioxidant, Photoprotection and Cytotoxicity Properties. Waste Biomass Valorization 2022. [Google Scholar] [CrossRef]
- Urrea-Victoria, V.; Furlan, C.M.; dos Santos, D.Y.A.C.; Chow, F. Antioxidant Potential of Two Brazilian Seaweeds in Response to Temperature: Pyropia Spiralis (Red Alga) and Sargassum Stenophyllum (Brown Alga). J. Exp. Mar. Bio. Ecol. 2022, 549, 151706. [Google Scholar] [CrossRef]
- Kang, H.; Seo, C.; Park, Y. Marine Peptides and Their Anti-Infective Activities. Mar. Drugs 2015, 13, 618–654. [Google Scholar] [CrossRef]
- Abrantes, J.; Barbosa, J.; Cavalcanti, D.; Pereira, R.; Frederico Fontes, C.; Teixeira, V.; Moreno Souza, T.; Paixão, I. The Effects of the Diterpenes Isolated from the Brazilian Brown Algae Dictyota Pfaffii and Dictyota Menstrualis against the Herpes Simplex Type-1 Replicative Cycle. Planta Med. 2010, 76, 339–344. [Google Scholar] [CrossRef]
- De Souza Barros, C.; Garrido, V.; Melchiades, V.; Gomes, R.; Gomes, M.W.L.; Teixeira, V.L.; de Palmer Paixão, I.C.N. Therapeutic Efficacy in BALB/C Mice of Extract from Marine Alga Canistrocarpus Cervicornis (Phaeophyceae) against Herpes Simplex Virus Type 1. J. Appl. Phycol. 2017, 29, 769–773. [Google Scholar] [CrossRef]
- De Souza Barros, C.; Teixeira, V.L.; Paixão, I.C.N.P. Seaweeds with Anti-Herpes Simplex Virus Type 1 Activity. J. Appl. Phycol. 2015, 27, 1623–1637. [Google Scholar] [CrossRef]
- Miceli, L.; Teixeira, V.; Castro, H.; Rodrigues, C.; Mello, J.; Albuquerque, M.; Cabral, L.; de Brito, M.; de Souza, A. Molecular Docking Studies of Marine Diterpenes as Inhibitors of Wild-Type and Mutants HIV-1 Reverse Transcriptase. Mar. Drugs 2013, 11, 4127–4143. [Google Scholar] [CrossRef]
- Abdul Ahmad, S.A.; Palanisamy, U.D.; Tejo, B.A.; Chew, M.F.; Tham, H.W.; Syed Hassan, S. Geraniin Extracted from the Rind of Nephelium Lappaceum Binds to Dengue Virus Type-2 Envelope Protein and Inhibits Early Stage of Virus Replication. Virol. J. 2017, 14, 229. [Google Scholar] [CrossRef]
- Donalisio, M.R.; Freitas, A.R.R.; Zuben, A.P.B. Von Arboviruses Emerging in Brazil: Challenges for Clinic and Implications for Public Health. Rev. Saude Publica 2017, 51, 30. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Li, H.; Zhao, Z.; Xia, X.; Li, B.; Zhang, J.; Yan, X. Diterpenes from the Marine Algae of the Genus Dictyota. Mar. Drugs 2018, 16, 159. [Google Scholar] [CrossRef]
- Cirne-Santos, C.C.; de Barros, C.S.; Gomes, M.W.L.; Gomes, R.; Cavalcanti, D.N.; Obando, J.M.C.; Ramos, C.J.B.; Villaça, R.C.; Teixeira, V.L.; de Paixão, I.C.N. In Vitro Antiviral Activity against Zika Virus from a Natural Product of the Brazilian Brown Seaweed Dictyota menstrualis. Nat. Prod. Commun. 2019, 14, 1934578X1985912. [Google Scholar] [CrossRef]
- Cirne-Santos, C.C.; de Souza Barros, C.; Esteves, P.O.; Gomes, M.W.L.; dos Santos Pereira Gomes, R.; Cavalcanti, D.N.; Obando, J.M.C.; Ramos, C.J.B.; Villaça, R.C.; Teixeira, V.L.; et al. Antiviral Activity Against Chikungunya Virus of Diterpenes from the Seaweed Dictyota menstrualis. Rev. Bras. Farmacogn. 2020, 30, 709–714. [Google Scholar] [CrossRef]
- Cirne-Santos, C.C.; de Souza Barros, C.; de Oliveira, M.C.; Rabelo, V.W.-H.; Azevedo, R.C.; Teixeira, V.L.; Ferreira, D.F.; de Palmer Paixão, I.C.N. In Vitro Studies on The Inhibition of Replication of Zika and Chikungunya Viruses by Dolastane Isolated from Seaweed Canistrocarpus cervicornis. Sci. Rep. 2020, 10, 8263. [Google Scholar] [CrossRef]
- Philippus, A.C.; Zatelli, G.A.; Wanke, T.; Gabriela De Barros, M.A.; Kami, S.A.; Lhullier, C.; Armstrong, L.; Sandjo, L.P.; Falkenberg, M. Molecular Networking Prospection and Characterization of Terpenoids and C15-Acetogenins in Brazilian Seaweed Extracts. RSC Adv. 2018, 8, 29654–29661. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, V.L.; Lima, J.C.R.; Lechuga, G.C.; Ramos, C.J.B.; de Souza Pereira, M.C.; Calvet, C.M.; Bourguignon, S.C. Natural Products from Marine Red and Brown Algae against Trypanosoma cruzi. Rev. Bras. Farmacogn. 2019, 29, 735–738. [Google Scholar] [CrossRef]
- Wahl, M.; Goecke, F.; Labes, A.; Dobretsov, S.; Weinberger, F. The Second Skin: Ecological Role of Epibiotic Biofilms on Marine Organisms. Front. Microbiol. 2012, 3, 292. [Google Scholar] [CrossRef]
- Persson, F.; Svensson, R.; Nylund, G.M.; Fredriksson, N.J.; Pavia, H.; Hermansson, M. Ecological Role of a Seaweed Secondary Metabolite for a Colonizing Bacterial Community. Biofouling 2011, 27, 579–588. [Google Scholar] [CrossRef]
- Plouguerné, E.; de Souza, L.M.; Sassaki, G.L.; Hellio, C.; Trepos, R.; da Gama, B.A.P.; Pereira, R.C.; Barreto-Bergter, E. Glycoglycerolipids from Sargassum vulgare as Potential Antifouling Agents. Front. Mar. Sci. 2020, 7, 116. [Google Scholar] [CrossRef]
- Menezes-Silva, S.; Lira, N.S.; Mangueira do Nascimento, Y.; Araújo Ramos Meireles, R.; da Silva Dias, C.; Tavares, J.F.; Sobral da Silva, M.; Cavalcanti de Miranda, G.E.; Barbosa Filho, J.M.; Pinto de Siqueira-Junior, J. Modulation of Drug Resistance in Staphylococcus Aureus by 132-Hydroxy-(132-R/S)-Pheophytin Isolated from Sargassum polyceratium. Microb. Pathog. 2020, 141, 104034. [Google Scholar] [CrossRef]
- Stein, E.M.; Tajú, S.G.; Miyasato, P.A.; de Freitas, R.P.; de Tallarico, L.F.; dos Santos, G.S.; Luiz, G.L.F.; Rofatto, H.K.; da Silva, F.N.V.; Colepicolo, P.; et al. The Prospective Use of Brazilian Marine Macroalgae in Schistosomiasis Control. Mar. Drugs 2021, 19, 234. [Google Scholar] [CrossRef]
- Esteves, P.O.; de Oliveira, M.C.; de Souza Barros, C.; Cirne-Santos, C.C.; Laneuvlille, V.T.; Palmer Paixão, I.C. Antiviral Effect of Caulerpin Against Chikungunya. Nat. Prod. Commun. 2019, 14, 1934578X1987829. [Google Scholar] [CrossRef]
- Chaves Filho, G.P.; de Sousa, A.F.G.; Câmara, R.B.G.; Rocha, H.A.O.; de Medeiros, S.R.B.; Moreira, S.M.G. Genotoxicity and Osteogenic Potential of Sulfated Polysaccharides from Caulerpa Prolifera Seaweed. Int. J. Biol. Macromol. 2018, 114, 565–571. [Google Scholar] [CrossRef] [PubMed]
- Filho, G.P.C.; de Sousa, A.F.G.; Viana, R.L.S.; Rocha, H.A.O.; de Medeiros, S.R.B.; Moreira, S.M.G. Osteogenic Activity of Non-Genotoxic Sulfated Polysaccharides from the Green Seaweed Caulerpa sertularioides. Algal Res. 2019, 42, 101546. [Google Scholar] [CrossRef]
- Jiao, G.; Yu, G.; Zhang, J.; Ewart, H. Chemical Structures and Bioactivities of Sulfated Polysaccharides from Marine Algae. Mar. Drugs 2011, 9, 196–223. [Google Scholar] [CrossRef] [PubMed]
- De Jesus Raposo, M.; de Morais, A.; de Morais, R. Marine Polysaccharides from Algae with Potential Biomedical Applications. Mar. Drugs 2015, 13, 2967–3028. [Google Scholar] [CrossRef] [PubMed]
- Atashrazm, F.; Lowenthal, R.; Woods, G.; Holloway, A.; Dickinson, J. Fucoidan and Cancer: A Multifunctional Molecule with Anti-Tumor Potential. Mar. Drugs 2015, 13, 2327–2346. [Google Scholar] [CrossRef] [PubMed]
- Mendes Marques, M.; Presa, F.; Viana, R.; Costa, M.; Amorim, M.; Bellan, D.; Alves, M.; Costa, L.; Trindade, E.; Rocha, H. Anti-Thrombin, Anti-Adhesive, Anti-Migratory, and Anti-Proliferative Activities of Sulfated Galactans from the Tropical Green Seaweed, Udotea flabellum. Mar. Drugs 2018, 17, 5. [Google Scholar] [CrossRef]
- Bezerra, F.F.; Lima, G.C.; de Sousa, N.A.; de Sousa, W.M.; Costa, L.E.C.; da Costa, D.S.; Barros, F.C.N.; Medeiros, J.V.R.; Freitas, A.L.P. Antidiarrheal Activity of a Novel Sulfated Polysaccharide from the Red Seaweed Gracilaria cervicornis. J. Ethnopharmacol. 2018, 224, 27–35. [Google Scholar] [CrossRef]
- Monturil, H.P.H.R.; de Brito, T.V.; da Cruz Júnior, J.S.; Júnior, G.J.D.; de Aguiar Magalhães, D.; Sousa, S.G.; Batista, J.A.; Damasceno, R.O.S.; Pereira, J.G.; Mesquita, J.X.; et al. Sulfated Polysaccharide from Digenea Simplex Decreases Intestinal Inflammation in Rats. Rev. Bras. Farmacogn. 2020, 30, 388–396. [Google Scholar] [CrossRef]
- Fontenelle, T.P.C.; Lima, G.C.; Mesquita, J.X.; de Lopes, J.L.S.; de Brito, T.V.; das Chagas Vieira, F., Jr.; Sales, A.B.; Aragão, K.S.; Souza, M.H.L.P.; dos Reis Barbosa, A.L.; et al. Lectin Obtained from the Red Seaweed Bryothamnion triquetrum: Secondary Structure and Anti-Inflammatory Activity in Mice. Int. J. Biol. Macromol. 2018, 112, 1122–1130. [Google Scholar] [CrossRef]
- Santhanaraju Vairappan, C. Probiotic Fortified Seaweed Silage as Feed Supplement in Marine Hatcheries. In Advances in Probiotics; Elsevier: Amsterdam, The Netherlands, 2021; pp. 247–258. [Google Scholar]
- Araújo, P.G.; Nardelli, A.E.; Fujii, M.T.; Chow, F. Antioxidant Properties of Different Strains of Kappaphycus alvarezii (Rhodophyta) Farmed on the Brazilian Coast. Phycologia 2020, 59, 272–279. [Google Scholar] [CrossRef]
- Araújo, P.G.; Nardelli, A.E.; Duran, R.; Pereira, M.S.; Gelli, V.C.; Mandalka, A.; Eisner, P.; Fujii, M.T.; Chow, F. Seasonal Variation of Nutritional and Antioxidant Properties of Different Kappaphycus alvarezii Strains (Rhodophyta) Farmed in Brazil. J. Appl. Phycol. 2022, 34, 1677–1691. [Google Scholar] [CrossRef]
- Kato-Noguchi, H.; Nakamura, K.; Okuda, N. Involvement of an Autotoxic Compound in Asparagus decline. J. Plant Physiol. 2018, 224–225, 49–55. [Google Scholar] [CrossRef]
- Sudatti, D.B.; Duarte, H.M.; Soares, A.R.; Salgado, L.T.; Pereira, R.C. New Ecological Role of Seaweed Secondary Metabolites as Autotoxic and Allelopathic. Front. Plant Sci. 2020, 11, 347. [Google Scholar] [CrossRef]
- Dos Santos, G.S.; Miyasato, P.A.; Stein, E.M.; Colepicolo, P.; Wright, A.D.; de Pereira, C.A.D.B.; Falkenberg, M.; Nakano, E. Algal-Derived Halogenated Sesquiterpenes from Laurencia dendroidea as Lead Compounds in Schistosomiasis Environmental Control. Mar. Drugs 2022, 20, 111. [Google Scholar] [CrossRef]
- Shannon, E.; Abu-Ghannam, N. Seaweeds as Nutraceuticals for Health and Nutrition. Phycologia 2019, 58, 563–577. [Google Scholar] [CrossRef]
- Ashkenazi, D.Y.; Segal, Y.; Ben-Valid, S.; Paz, G.; Tsubery, M.N.; Salomon, E.; Abelson, A.; Israel, Á. Enrichment of Nutritional Compounds in Seaweeds via Abiotic Stressors in Integrated Aquaculture. Innov. Food Sci. Emerg. Technol. 2022, 80, 103067. [Google Scholar] [CrossRef]
- Quitral, R.V.; Morales, G.C.; Sepúlveda, L.M.; Schwartz, M.M. Propiedades Nutritivas y Saludables de Algas Marinas y Su Potencialidad Como Ingrediente Funcional. Rev. Chil. Nutr. 2012, 39, 196–202. [Google Scholar] [CrossRef]
- Pérez-Lloréns, J.L.; Mouritsen, O.G.; Rhatigan, P.; Cornish, M.L.; Critchley, A.T. Seaweeds in Mythology, Folklore, Poetry, and Life. J. Appl. Phycol. 2020, 32, 3157–3182. [Google Scholar] [CrossRef]
- Kandasamy, S.; Narayanan, M.; He, Z.; Liu, G.; Ramakrishnan, M.; Thangavel, P.; Pugazhendhi, A.; Raja, R.; Carvalho, I.S. Current Strategies and Prospects in Algae for Remediation and Biofuels: An Overview. Biocatal. Agric. Biotechnol. 2021, 35, 102045. [Google Scholar] [CrossRef]
- Bwapwa, J.K.; Jaiyeola, A.T.; Chetty, R. Bioremediation of Acid Mine Drainage Using Algae Strains: A Review. S. Afr. J. Chem. Eng. 2017, 24, 62–70. [Google Scholar] [CrossRef]
- Ścieszka, S.; Klewicka, E. Algae in Food: A General Review. Crit. Rev. Food Sci. Nutr. 2019, 59, 3538–3547. [Google Scholar] [CrossRef]
- Cherry, P.; O’Hara, C.; Magee, P.J.; McSorley, E.M.; Allsopp, P.J. Risks and Benefits of Consuming Edible Seaweeds. Nutr. Rev. 2019, 77, 307–329. [Google Scholar] [CrossRef] [PubMed]
- Morais, T.; Inácio, A.; Coutinho, T.; Ministro, M.; Cotas, J.; Pereira, L.; Bahcevandziev, K. Seaweed Potential in the Animal Feed: A Review. J. Mar. Sci. Eng. 2020, 8, 559. [Google Scholar] [CrossRef]
- Myint, Z.W.; Oo, T.H.; Thein, K.Z.; Tun, A.M.; Saeed, S.H. Copper Deficiency Anemia. Ann. Hematol. 2018, 97, 1527–1534. [Google Scholar] [CrossRef] [PubMed]
- Horn, N.; Møller, L.B.; Nurchi, V.M.; Aaseth, J. Chelating Principles in Menkes and Wilson Diseases. J. Inorg. Biochem. 2019, 190, 98–112. [Google Scholar] [CrossRef]
- Liberal, Â.; Pinela, J.; Vívar-Quintana, A.M.; Ferreira, I.C.F.R.; Barros, L. Fighting Iron-Deficiency Anemia: Innovations in Food Fortificants and Biofortification Strategies. Foods 2020, 9, 1871. [Google Scholar] [CrossRef]
- Shubham, K.; Anukiruthika, T.; Dutta, S.; Kashyap, A.V.; Moses, J.A.; Anandharamakrishnan, C. Iron Deficiency Anemia: A Comprehensive Review on Iron Absorption, Bioavailability and Emerging Food Fortification Approaches. Trends Food Sci. Technol. 2020, 99, 58–75. [Google Scholar] [CrossRef]
- Bjørklund, G.; Aaseth, J.; Skalny, A.V.; Suliburska, J.; Skalnaya, M.G.; Nikonorov, A.A.; Tinkov, A.A. Interactions of Iron with Manganese, Zinc, Chromium, and Selenium as Related to Prophylaxis and Treatment of Iron Deficiency. J. Trace Elem. Med. Biol. 2017, 41, 41–53. [Google Scholar] [CrossRef]
- Silva, C.S.; Moutinho, C.; Ferreira da Vinha, A.; Matos, C. Trace Minerals in Human Health: Iron, Zinc, Copper, Manganese and Fluorine. Int. J. Sci. Res. Methodol. 2019, 13, 57–80. [Google Scholar]
- De Melo, N.S.M.; Cardoso, L.G.; de Castro Nunes, J.M.; Brito, G.B.; Caires, T.A.; de Souza, C.O.; Portz, L.; Druzian, J.I. Effects of Dry and Rainy Seasons on the Chemical Composition of Ulva fasciata, Crassiphycus corneus, and Sargassum vulgare Seaweeds in Tropical Environment. Braz. J. Bot. 2021, 44, 331–344. [Google Scholar] [CrossRef]
- Santos-Silva, M.C.; Machado, E.C.; Wallner-Kersanach, M.; Camargo, M.G.; Andrade, C.; Sá, F.; Pellizzari, F. Background Levels of Trace Elements in Brown and Red Seaweeds from Trindade, a Remote Island in South Atlantic Ocean. Mar. Pollut. Bull. 2018, 135, 923–931. [Google Scholar] [CrossRef]
- Praharaj, S.; Skalicky, M.; Maitra, S.; Bhadra, P.; Shankar, T.; Brestic, M.; Hejnak, V.; Vachova, P.; Hossain, A. Zinc Biofortification in Food Crops Could Alleviate the Zinc Malnutrition in Human Health. Molecules 2021, 26, 3509. [Google Scholar] [CrossRef]
- Yaman, M.; Çatak, J.; Uğur, H.; Gürbüz, M.; Belli, İ.; Tanyıldız, S.N.; Yıldırım, H.; Cengiz, S.; Yavuz, B.B.; Kişmiroğlu, C.; et al. The Bioaccessibility of Water-Soluble Vitamins: A Review. Trends Food Sci. Technol. 2021, 109, 552–563. [Google Scholar] [CrossRef]
- Cáceres-Jiménez, S.; Ordóñez-Díaz, J.L.; Moreno-Rojas, J.M.; Pereira-Caro, G. Bioaccesibility and Bioavailability of Marine Polyphenols. In Marine Phenolic Compounds; Elsevier: Amsterdam, The Netherlands, 2023; pp. 265–298. [Google Scholar]
- Demarco, M.; Oliveira de Moraes, J.; Matos, Â.P.; Derner, R.B.; de Farias Neves, F.; Tribuzi, G. Digestibility, Bioaccessibility and Bioactivity of Compounds from Algae. Trends Food Sci. Technol. 2022, 121, 114–128. [Google Scholar] [CrossRef]
- Fernandes, A.S.; Nascimento, T.C.; Pinheiro, P.N.; Vendruscolo, R.G.; Wagner, R.; de Rosso, V.V.; Jacob-Lopes, E.; Zepka, L.Q. Bioaccessibility of Microalgae-Based Carotenoids and Their Association with the Lipid Matrix. Food Res. Int. 2021, 148, 110596. [Google Scholar] [CrossRef]
- Martins, B.; Vieira, M.; Delerue-Matos, C.; Grosso, C.; Soares, C. Biological Potential, Gastrointestinal Digestion, Absorption, and Bioavailability of Algae-Derived Compounds with Neuroprotective Activity: A Comprehensive Review. Mar. Drugs 2022, 20, 362. [Google Scholar] [CrossRef]
- Trigo, J.P.; Engström, N.; Steinhagen, S.; Juul, L.; Harrysson, H.; Toth, G.B.; Pavia, H.; Scheers, N.; Undeland, I. In Vitro Digestibility and Caco-2 Cell Bioavailability of Sea Lettuce (Ulva fenestrata) Proteins Extracted Using PH-Shift Processing. Food Chem. 2021, 356, 129683. [Google Scholar] [CrossRef]
- Vicente, B.; Matos, J.; Gomes, R.; Sapatinha, M.; Afonso, C.; Rodrigues, T.; Amorim, A.; Bandarra, N.M.; Cardoso, C. Production and Bioaccessibility of Emiliania huxleyi Biomass and Bioactivity of Its Aqueous and Ethanolic Extracts. J. Appl. Phycol. 2021, 33, 3719–3729. [Google Scholar] [CrossRef]
- Zhou, L.; Li, K.; Duan, X.; Hill, D.; Barrow, C.; Dunshea, F.; Martin, G.; Suleria, H. Bioactive Compounds in Microalgae and Their Potential Health Benefits. Food Biosci. 2022, 49, 101932. [Google Scholar] [CrossRef]
- Li, K.; Duan, X.; Zhou, L.; Hill, D.R.A.; Martin, G.J.O.; Suleria, H.A.R. Bioaccessibility and Bioactivities of Phenolic Compounds from Microalgae during in Vitro Digestion and Colonic Fermentation. Food Funct. 2023, 14, 899–910. [Google Scholar] [CrossRef]
- Francisco, J.; Cardoso, C.; Bandarra, N.; Brito, P.; Horta, A.; Pedrosa, R.; Gil, M.M.; Delgado, I.M.; Castanheira, I.; Afonso, C. Bioaccessibility of Target Essential Elements and Contaminants from Fucus spiralis. J. Food Compos. Anal. 2018, 74, 10–17. [Google Scholar] [CrossRef]
- Uribe-Wandurraga, Z.N.; Igual, M.; García-Segovia, P.; Martínez-Monzó, J. In Vitro Bioaccessibility of Minerals from Microalgae-Enriched Cookies. Food Funct. 2020, 11, 2186–2194. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, E.C., Jr.; Babaahmadifooladi, M.; Folens, K.; dos Reis, A.R.; Guilherme, L.R.G.; Van de Wiele, T.; Jacxsens, L.; Du Laing, G. Content, Speciation and in Vitro Bioaccessibility of Trace Elements in Seaweeds and Derived Food Products. J. Food Compos. Anal. 2023, 118, 105162. [Google Scholar] [CrossRef]
- Wragg, J.; Cave, M.; Taylor, H.; Basta, N.; Brandon, E.; Casteel, S.; Gron, C.; Oomen, A.; Van de Wiele, T. Inter-Laboratory Trial of a Unified Bioaccessibility Testing Procedure; British Geological Survey: Nottingham, UK, 2009; 90p. [Google Scholar]
- Brodkorb, A.; Egger, L.; Alminger, M.; Alvito, P.; Assunção, R.; Ballance, S.; Bohn, T.; Bourlieu-Lacanal, C.; Boutrou, R.; Carrière, F.; et al. INFOGEST Static in Vitro Simulation of Gastrointestinal Food Digestion. Nat. Protoc. 2019, 14, 991–1014. [Google Scholar] [CrossRef]
- Real, S.A.; Lopes, J.R.; Oliveiro, M.A.N.; Madoran, I.S.; Gines, M.F.; Chavez, T.C. Agronomic Additive for Fertilizers, Including Urea, Urease Inhibitors and Biostimulants. INPI-Brasil Patent BR 11 2020 015303 6, 14 February 2018. [Google Scholar]
- Vadakekuttu, T.; Sawan, A. Water-Disintegratable Granular Composition, Process for Preparing the Water-Disintegratable Granular Composition, Method of Fortification of Crops and Plants, Use of the Water-Disintegratable Granular Composition, and Method of Improving Plant Health. INPI-Brasil Patent BR 11 2019 023615 5, 10 May 2018. [Google Scholar]
- Sawant, A. New Fortification, Crop Nutrition and Crop Protection Composition. INPI-Brasil Patent BR 11 2020 000675 0, 14 July 2018. [Google Scholar]
- Sawant, A. Water-Dispersible Agricultural Granular Composition, Process of Preparation Thereof, Its Use and Method of Plant Protection or Improvement of Health or Yield. INPI-Brasil Patent BR 11 2020 001535 0, 27 July 2018. [Google Scholar]
- Assi, L. Mixed Mineral Fertilizer for Use in Agriculture. INPI-Brasil Patent BR 10 2019 003343 6, 19 February 2019. [Google Scholar]
- Daridon, B.; Levergef, C.; Audier, T.; Nyvall-Collen, P. Use of a Composition and Composition. INPI-Brasil Patent BR 11 2022 026526 3, 16 June 2018. [Google Scholar]
- Jose, A. Phytoregulator for Plants. INPI-Brasil Patent BR 10 2022 006876 3, 4 April 2022. [Google Scholar]
- Hay, V.; Rothe, M.; Salwen, J.; Bracc, M. Compositions Comprising Algae and Methods of Using Them to Increase Animal Product Production. INPI-Brasil Patent BR 11 2022 020495 7, 12 April 2021. [Google Scholar]
- Erickson, G.; Norman, M.; Rabe, C.; Watson, A.; Wilson, J. Animal Feed to Improve Growth Performance. INPI-Brasil Patent BR 11 2021 006877 5, 8 October 2019. [Google Scholar]
- Legarth, J.H.; Kjærulff, S. Animal Feed Product and Use of an Animal Feed Product. INPI-Brasil Patent BR 11 2021 002969, 19 August 2019. [Google Scholar]
- Silva, A.S.M.; Oliveira, M. Biodegradable Glue for Fixing Small Plants and Uses. INPI-Brasil Patent BR 10 2019 026291 5, 11 December 2019. [Google Scholar]
- Biasone, A.; Tommaso, D.D.; Povero, G.; Lorito, V.; Piaggesi, A. Method for Improving Water Use Efficiency and/or Water Productivity in Plants and/or Water Management in Agriculture. INPI-Brasil Patent BR 11 2021 000776 8, 18 July 2019. [Google Scholar]
- Deolu-Ajayi, A.O.; van der Meer, I.M.; van der Werf, A.; Karlova, R. The Power of Seaweeds as Plant Biostimulants to Boost Crop Production under Abiotic Stress. Plant. Cell Environ. 2022, 45, 2537–2553. [Google Scholar] [CrossRef] [PubMed]
- Ali, O.; Ramsubhag, A.; Jayaraman, J. Biostimulant Properties of Seaweed Extracts in Plants: Implications towards Sustainable Crop Production. Plants 2021, 10, 531. [Google Scholar] [CrossRef]
- Nedumaran, T.; Arulbalachandran, D. Seaweeds: A Promising Source for Sustainable Development. In Environmental Sustainability; Springer: New Delhi, India, 2015; pp. 65–88. [Google Scholar]
- Alba, D.; Fuks, D.; Karniel, A.; Hanuka, E. Innovative Process for Protein Extraction from Plant or Algal Matter. INPI-Brasil Patent BR 11 2019 019497 5, 19 March 2018. [Google Scholar]
- Agoda-Tandjawa, G.; Mazoyer, J.A.C.; Garnec, C.L.; Lefrancois, C. Composition Based on Seaweed, and, Food Product, Drink, Nutritional Product, Dietary Supplement, Feed Product, Personal Care Product, Pharmaceutical Product or Industrial Product. INPI-Brasil Patent BR 11 2022 004774 6, 15 September 2020. [Google Scholar]
- Higuchi, T.; Ihara, J. Oil/Fat Compositions Containing Fine Food Particles, Methods for Producing Said Compositions and Methods for Increasing the Water Absorption Index, for Increasing an Opacity Value, for Enhancing the Extent of Flavor, for Enhancing Sensation of Swallowing. INPI-Brasil Patent BR 11 2019 017483 4, 21 February 2018. [Google Scholar]
- Legarth, J.K. Antiparasitic Composition, Food Product and Use of Antiparasitic Composition. INPI-Brasil Patent BR 11 2020 025226 3, 7 June 2019. [Google Scholar]
- Santos, D.O.; Teixeira, V.L.; Nascimento, A.F.S.C.; Ramos, C.J.B.; Ribeiro, M.S.; Nogueira, C. Pharmaceutical Composition with Fractions Derived from Seaweed and Its Use as Leishmanicidal Agent. INPI-Brasil Patent BR 10 2019 018113 3, 30 August 2019. [Google Scholar]
- Asehnoune, K.; Jacqueline, C.; Bouras, M.; Roquilly, P.N.; Collén, P.; Demais, P.; Balusson, H. Use of an Extract from Seaweeds of the Order Ulvales. INPI-Brasil Patent BR 11 2021 007506 2, 22 October 2019. [Google Scholar]
- Junior, V.J.S.; Eloy, J.O.; Eloy, P.R.; Son, A.J.U.B.; Nogueira, K.A.B.; Araujo, M.L.H.; Martins, J.R.P.; Pessoa, C.Ó. Production Process of Polymeric Nanoparticles of R-Phycoerythrin and Resulting Products with Therapeutic and Diagnostic Potential against Cancer. INPI-Brasil Patent BR 10 2021 014827 6, 28 July 2021. [Google Scholar]
- Bodanese, B.V.S. Biodegradable organic bandage as an option in the treatment of burns or wounds and the respective process of obtention. INPI-Brasil Patent BR 10 2018 075813 6, 12 December 2020. [Google Scholar]
- Hempel, M.S.S.; Silva, L.A.A.; Silva, S.V.; Santos, W.G.S.; Miranda, G. Dilutor for Cryoprotection and Freezing of Gametes Based on Algae. INPI-Brasil Patent BR 10 2019 027698 3, 23 December 2019. [Google Scholar]
- Conan, C.; Potin, P.; Guiboileau, A.; Besse, S.; Joubert, J.-M. Method for identification and isolation of bioactive compounds from seaweeds extracts. INPI-Brasil Patent BR 11 2020 012394 3, 17 December 2018. [Google Scholar]
- Cruz, L.G.; Vendramini, A. Base Mass/Gel Extraction Process from Seaweed Maintaining Its Properties. INPI-Brasil Patent BR 10 2019 003936 1, 26 February 2019. [Google Scholar]
- Pagels, F.; Arias, A.; Guerreiro, A.; Guedes, A.C.; Moreira, M.T. Seaweed Cosmetics under the Spotlight of Sustainability. Phycology 2022, 2, 374–383. [Google Scholar] [CrossRef]
- Blaise, A.; Lerebour, G.; Sebillotte-Arnaud, L.; Vrignaud-Barreteau, S.; Wang, P. Composition, in Particular Cosmetic Composition, and Cosmetic Process for Caring for Keratin Materials, Especially the Skin. INPI-Brasil Patent BR 11 2022 025481 4, 17 June 2021. [Google Scholar]
- Mentink, L.; Wils, D.; Piot, S. Film Formation System with Barrier Effect, Namely Anti-Atmospheric Pollution, of Natural Origin and for Use in Cosmetics. INPI-Brasil Patent BR 11 2020 021196 6, 17 April 2019. [Google Scholar]
- Catunda, A.C.M. Production Process of Edible, Recyclable, Disposable and Biodegradable Bio-Cups and Bio-Utensils from Agar-Agar (Hydrocolloid) Extracted from Brazilian Red Marine Algae of the Phylum Rhodophyta. INPI-Brasil Patent BR 10 2018 072892 0, 7 November 2018. [Google Scholar]
- Silva, B.Z.; Pereira, C.M.P.; Pacheco, B.S.; Freitas, V.O.; Martiny, T. Antimicrobial Bioactive Film Based on Carrageenan and Olive Leaf Extract. INPI-Brasil Patent BR 10 2018 013380 2, 28 June 2018. [Google Scholar]
- Andrade, P.A.V.B.F.; Costa, V. Simultaneous Production of Biohydrogen and Bioethanol from Landborne Algae in Batch Anaerobic Reactors. INPI-Brasil Patent BR 10 2019 009021 9, 3 May 2019. [Google Scholar]
- Zeller, M. Algae-Elastomer Composite Footwear Component Comprising the Algae-Elastomer Composite and Method for Preparing an Algae-Based Elastomer Composite. INPI-Brasil Patent BR 11 2020 021993 2, 26 April 2019. [Google Scholar]
- Carina, D.; Sharma, S.; Jaiswal, A.K.; Jaiswal, S. Seaweeds polysaccharides in active food packaging: A review of recent progress. Trends Food Sci. Technol. 2021, 110, 559–572. [Google Scholar] [CrossRef]
- Goldman, J.N.; Mata, L. Bioreactor and Seaweed Culture Method. INPI-Brasil Patent BR 11 2022 014527 6, 15 January 2021. [Google Scholar]
- Hazlebeck, D.A.; Rickman, W.H.P. Systems and Methods for Growing Algae Using Direct Air Capture. INPI-Brasil Patent BR 11 2022 025357 5, 11 June 2019. [Google Scholar]
- Bashan, O.; Bashan, O.; Drummey, S. Algae cultivation system and method. INPI-Brasil Patent BR 11 2019 015051 0, 18 January 2018. [Google Scholar]
- Øverland, M.; Mydland, L.T.; Skrede, A. Marine Macroalgae as Sources of Protein and Bioactive Compounds in Feed for Monogastric Animals. J. Sci. Food Agric. 2019, 99, 13–24. [Google Scholar] [CrossRef]
- Filippini, M.; Baldisserotto, A.; Menotta, S.; Fedrizzi, G.; Rubini, S.; Gigliotti, D.; Valpiani, G.; Buzzi, R.; Manfredini, S.; Vertuani, S. Heavy Metals and Potential Risks in Edible Seaweed on the Market in Italy. Chemosphere 2021, 263, 127983. [Google Scholar] [CrossRef]
- Trica; Delattre; Gros; Ursu; Dobre; Djelveh; Michaud; Oancea Extraction and Characterization of Alginate from an Edible Brown Seaweed (Cystoseira barbata) Harvested in the Romanian Black Sea. Mar. Drugs 2019, 17, 405. [CrossRef]
- Yadav, M.; Thakore, S.; Jadeja, R. Removal of Organic Dyes Using Fucus Vesiculosus Seaweed Bioadsorbent an Ecofriendly Approach: Equilibrium, Kinetics and Thermodynamic Studies. Environ. Chem. Ecotoxicol. 2022, 4, 67–77. [Google Scholar] [CrossRef]
- Sundbæk, K.B.; Koch, I.D.W.; Villaro, C.G.; Rasmussen, N.S.; Holdt, S.L.; Hartmann, N.B. Sorption of Fluorescent Polystyrene Microplastic Particles to Edible Seaweed Fucus Vesiculosus. J. Appl. Phycol. 2018, 30, 2923–2927. [Google Scholar] [CrossRef]
- Li, Q.; Feng, Z.; Zhang, T.; Ma, C.; Shi, H. Microplastics in the Commercial Seaweed Nori. J. Hazard. Mater. 2020, 388, 122060. [Google Scholar] [CrossRef]
- Dantas, N.C.F.M.; Duarte, O.S.; Ferreira, W.C.; Ayala, A.P.; Rezende, C.F.; Feitosa, C.V. Plastic Intake Does Not Depend on Fish Eating Habits: Identification of Microplastics in the Stomach Contents of Fish on an Urban Beach in Brazil. Mar. Pollut. Bull. 2020, 153, 110959. [Google Scholar] [CrossRef]
- Da Costa, M.B.; Otegui, M.B.P.; Zamprogno, G.C.; Caniçali, F.B.; dos Reis Cozer, C.; Pelletier, E.; Graceli, J.B. Abundance, Composition, and Distribution of Microplastics in Intertidal Sediment and Soft Tissues of Four Species of Bivalvia from Southeast Brazilian Urban Beaches. Sci. Total Environ. 2023, 857, 159352. [Google Scholar] [CrossRef]
- Maynard, I.F.N.; Bortoluzzi, P.C.; Nascimento, L.M.; Madi, R.R.; Cavalcanti, E.B.; Lima, Á.S.; de Lourdes Sierpe Jeraldo, V.; Marques, M.N. Analysis of the Occurrence of Microplastics in Beach Sand on the Brazilian Coast. Sci. Total Environ. 2021, 771, 144777. [Google Scholar] [CrossRef]
- da Silva, E.F.; de Fátima do Carmo, D.; Muniz, M.C.; dos Santos, C.A.; Cardozo, B.B.I.; de Oliveira Costa, D.M.; dos Anjos, R.M.; Vezzone, M. Evaluation of Microplastic and Marine Debris on the Beaches of Niterói Oceanic Region, Rio De Janeiro, Brazil. Mar. Pollut. Bull. 2022, 175, 113161. [Google Scholar] [CrossRef]
- Castro, R.O.; da Silva, M.L.; Marques, M.R.C.; Araújo, F.V. de Spatio-Temporal Evaluation of Macro, Meso and Microplastics in Surface Waters, Bottom and Beach Sediments of Two Embayments in Niterói, RJ, Brazil. Mar. Pollut. Bull. 2020, 160, 111537. [Google Scholar] [CrossRef]
- Carvalho, J.P.S.; Silva, T.S.; Costa, M.F. Distribution, Characteristics and Short-Term Variability of Microplastics in Beach Sediment of Fernando de Noronha Archipelago, Brazil. Mar. Pollut. Bull. 2021, 166, 112212. [Google Scholar] [CrossRef]
- Monteiro, R.C.P.; do Sul, J.A.I.; Costa, M.F. Small Microplastics on Beaches of Fernando de Noronha Island, Tropical Atlantic Ocean. Ocean Coast. Res. 2020, 68, e20235. [Google Scholar] [CrossRef]
- Mengatto, M.F.; Nagai, R.H. A First Assessment of Microplastic Abundance in Sandy Beach Sediments of the Paranaguá Estuarine Complex, South Brazil (RAMSAR Site). Mar. Pollut. Bull. 2022, 177, 113530. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira Novaes, G.; de Moura Monteiro, S.; Rollnic, M. Microplastics on the Fluvio-Estuarine Beaches of Cotijuba Island, Pará River Estuary (Brazil). J. Coast. Res. 2020, 95, 780. [Google Scholar] [CrossRef]
- Baptista Neto, J.A.; Gaylarde, C.; Beech, I.; Bastos, A.C.; da Silva Quaresma, V.; de Carvalho, D.G. Microplastics and Attached Microorganisms in Sediments of the Vitória Bay Estuarine System in SE Brazil. Ocean Coast. Manag. 2019, 169, 247–253. [Google Scholar] [CrossRef]
- Morais, L.M.S.; Sarti, F.; Chelazzi, D.; Cincinelli, A.; Giarrizzo, T.; Martinelli Filho, J.E. The Sea Anemone Bunodosoma Cangicum as a Potential Biomonitor for Microplastics Contamination on the Brazilian Amazon Coast. Environ. Pollut. 2020, 265, 114817. [Google Scholar] [CrossRef] [PubMed]
- Tibiriçá, C.; Leite, I.; Batista, T.; Fernandes, L.; Chomérat, N.; Herve, F.; Hess, P.; Mafra, L. Ostreopsis Cf. Ovata Bloom in Currais, Brazil: Phylogeny, Toxin Profile and Contamination of Mussels and Marine Plastic Litter. Toxins 2019, 11, 446. [Google Scholar] [CrossRef]
- Pegado, T.; Brabo, L.; Schmid, K.; Sarti, F.; Gava, T.T.; Nunes, J.; Chelazzi, D.; Cincinelli, A.; Giarrizzo, T. Ingestion of Microplastics by Hypanus Guttatus Stingrays in the Western Atlantic Ocean (Brazilian Amazon Coast). Mar. Pollut. Bull. 2021, 162, 111799. [Google Scholar] [CrossRef]
- Vidal, C.; Pasquini, C. A Comprehensive and Fast Microplastics Identification Based on Near-Infrared Hyperspectral Imaging (HSI-NIR) and Chemometrics. Environ. Pollut. 2021, 285, 117251. [Google Scholar] [CrossRef]
- Paz, S.; Rubio, C.; Frías, I.; Gutiérrez, Á.J.; González-Weller, D.; Martín, V.; Revert, C.; Hardisson, A. Toxic Metals (Al, Cd, Pb and Hg) in the Most Consumed Edible Seaweeds in Europe. Chemosphere 2019, 218, 879–884. [Google Scholar] [CrossRef]
- Rubio, C.; Napoleone, G.; Luis-González, G.; Gutiérrez, A.J.; González-Weller, D.; Hardisson, A.; Revert, C. Metals in Edible Seaweed. Chemosphere 2017, 173, 572–579. [Google Scholar] [CrossRef]
- Bhatt, P.; Bhandari, G.; Bhatt, K.; Simsek, H. Microalgae-Based Removal of Pollutants from Wastewaters: Occurrence, Toxicity and Circular Economy. Chemosphere 2022, 306, 135576. [Google Scholar] [CrossRef]
- Dubey, S.; Chen, C.-W.; Haldar, D.; Tambat, V.S.; Kumar, P.; Tiwari, A.; Singhania, R.R.; Dong, C.-D.; Patel, A.K. Advancement in Algal Bioremediation for Organic, Inorganic, and Emerging Pollutants. Environ. Pollut. 2023, 317, 120840. [Google Scholar] [CrossRef] [PubMed]
- Franco-Fuentes, E.; Moity, N.; Ramírez-González, J.; Andrade-Vera, S.; Hardisson, A.; Paz, S.; Rubio, C.; Martín, V.; Gutiérrez, Á.J. Mercury in Fish Tissues from the Galapagos Marine Reserve: Toxic Risk and Health Implications. J. Food Compos. Anal. 2023, 115, 104969. [Google Scholar] [CrossRef]
- Monagail, M.M.; Cummins, E.; Bermejo, R.; Daly, E.; Costello, D.; Morrison, L. Quantification and Feed to Food Transfer of Total and Inorganic Arsenic from a Commercial Seaweed Feed. Environ. Int. 2018, 118, 314–324. [Google Scholar] [CrossRef]
- Desideri, D.; Roselli, C.; Feduzi, L.; Ugolini, L.; Meli, M.A. Applicability of an in Vitro Gastrointestinal Digestion Method to Evaluation of Toxic Elements Bioaccessibility from Algae for Human Consumption. J. Toxicol. Environ. Health Part A 2018, 81, 212–217. [Google Scholar] [CrossRef]
- Leão, Z.M.A.N.; Kikuchi, R.K.P.; Testa, V. Corals and Coral Reefs of Brazil. In Latin American Coral Reefs; Elsevier: Amsterdam, The Netherlands, 2003; pp. 9–52. [Google Scholar]
- Leão, Z.M.A.N.; Kikuchi, R.K.P.; Oliveira, M.D.M.; Vasconcellos, V. Status of Eastern Brazilian Coral Reefs in Time of Climate Changes. Pan Am. J. Aquat. Sci. 2010, 5, 224–235. [Google Scholar]
- Cortés, J. Coral Reefs of the Americas: An Introduction to Latin American Coral Reefs. In Latin American Coral Reefs; Elsevier: Amsterdam, The Netherlands, 2003; pp. 1–7. [Google Scholar]
- Leão, Z.M.A.N.; Kikuchi, R.K.P.; Ferreira, B.P.; Neves, E.G.; Sovierzoski, H.H.; Oliveira, M.D.M.; Maida, M.; Correia, M.D.; Johnsson, R. Brazilian Coral Reefs in a Period of Global Change: A Synthesis. Braz. J. Oceanogr. 2016, 64, 97–116. [Google Scholar] [CrossRef]
- Castro, C.B. Corals of Southern Bahia. In Corals of Southern Bahia; Nova Fronteira: Rio de Janeiro, Brazil, 1994; pp. 161–176. [Google Scholar]
- Neves, B.M.; Pérez, C. A New Species of Sclerobelemnon Kölliker, 1872 from Brazil (Octocorallia: Pennatulacea: Kophobelemnidae). Cah. Biol. Mar 2012, 53, 429–434. [Google Scholar]
- Romanelli, M.M.; Amaral, M.; Thevenard, F.; Santa Cruz, L.M.; Regasini, L.O.; Migotto, A.E.; Lago, J.H.G.; Tempone, A.G. Mitochondrial Imbalance of Trypanosoma Cruzi Induced by the Marine Alkaloid 6-Bromo-2′-de-N-Methylaplysinopsin. ACS Omega 2022, 7, 28561–28570. [Google Scholar] [CrossRef]
- Lhullier, C.; Moritz, M.I.G.; Tabalipa, E.O.; Sardá, F.N.; Schneider, N.F.Z.; Moraes, M.H.; Constantino, L.; Reginatto, F.H.; Steindel, M.; Pinheiro, U.S.; et al. Biological Activities of Marine Invertebrates Extracts from the Northeast Brazilian Coast. Braz. J. Biol. 2020, 80, 393–404. [Google Scholar] [CrossRef]
- Almeida, M.T.R.; Moritz, M.I.G.; Capel, K.C.C.; Pérez, C.D.; Schenkel, E.P. Chemical and Biological Aspects of Octocorals from the Brazilian Coast. Rev. Bras. Farmacogn. 2014, 24, 446–467. [Google Scholar] [CrossRef]
- Leal, M.C.; Madeira, C.; Brandão, C.A.; Puga, J.; Calado, R. Bioprospecting of Marine Invertebrates for New Natural Products —A Chemical and Zoogeographical Perspective. Molecules 2012, 17, 9842–9854. [Google Scholar] [CrossRef] [PubMed]
- Coll, J.C. The Chemistry and Chemical Ecology of Octocorals (Coelenterata, Anthozoa, Octocorallia). Chem. Rev. 1992, 92, 613–631. [Google Scholar] [CrossRef]
- Wells, M.L.; Smith, G.J.; Bruland, K. The Distribution of Colloidal and Particulate Bioactive Metals in Narragansett Bay, RI. Mar. Chem. 2000, 71, 143–163. [Google Scholar] [CrossRef]
- Metian, M.; Hédouin, L.; Ferrier-Pagès, C.; Teyssié, J.L.; Oberhansli, F.; Buschiazzo, E.; Warnau, M. Metal Bioconcentration in the Scleractinian Coral Stylophora Pistillata: Investigating the Role of Different Components of the Holobiont Using Radiotracers. Environ. Monit. Assess. 2015, 187, 178. [Google Scholar] [CrossRef] [PubMed]
- Hédouin, L.S.; Wolf, R.E.; Phillips, J.; Gates, R.D. Improving the Ecological Relevance of Toxicity Tests on Scleractinian Corals: Influence of Season, Life Stage, and Seawater Temperature. Environ. Pollut. 2016, 213, 240–253. [Google Scholar] [CrossRef]
- Turner, N.R.; Renegar, D.A. Petroleum Hydrocarbon Toxicity to Corals: A Review. Mar. Pollut. Bull. 2017, 119, 1–16. [Google Scholar] [CrossRef]
- Mitchelmore, C.L.; Burns, E.E.; Conway, A.; Heyes, A.; Davies, I.A. A Critical Review of Organic Ultraviolet Filter Exposure, Hazard, and Risk to Corals. Environ. Toxicol. Chem. 2021, 40, 967–988. [Google Scholar] [CrossRef]
- Ranjbar Jafarabadi, A.; Dashtbozorg, M.; Raudonytė-Svirbutavičienė, E.; Riyahi Bakhtiari, A. A Potential Threat to the Coral Reef Environments: Polybrominated Diphenyl Ethers and Phthalate Esters in the Corals and Their Ambient Environment (Persian Gulf, Iran). Sci. Total Environ. 2021, 775, 145822. [Google Scholar] [CrossRef]
- Menezes, N.; Cruz, I.; da Rocha, G.O.; de Andrade, J.B.; Leão, Z.M.A.N. Polycyclic Aromatic Hydrocarbons in Coral Reefs with a Focus on Scleractinian Corals: A Systematic Overview. Sci. Total Environ. 2023, 877, 162868. [Google Scholar] [CrossRef]
- De Oliviera Soares, M.; Teixeira, C.E.P.; Bezerra, L.E.A.; Paiva, S.V.; Tavares, T.C.L.; Garcia, T.M.; de Araújo, J.T.; Campos, C.C.; Ferreira, S.M.C.; Matthews-Cascon, H.; et al. Oil Spill in South Atlantic (Brazil): Environmental and Governmental Disaster. Mar. Policy 2020, 115, 103879. [Google Scholar] [CrossRef]
- Tsui, M.M.P.; Leung, H.W.; Kwan, B.K.Y.; Ng, K.-Y.; Yamashita, N.; Taniyasu, S.; Lam, P.K.S.; Murphy, M.B. Occurrence, Distribution and Ecological Risk Assessment of Multiple Classes of UV Filters in Marine Sediments in Hong Kong and Japan. J. Hazard. Mater. 2015, 292, 180–187. [Google Scholar] [CrossRef]
- Rachoń, D.; Rimoldi, G.; Wuttke, W. In Vitro Effects of Benzophenone-2 and Octyl-Methoxycinnamate on the Production of Interferon-γ and Interleukin-10 by Murine Splenocytes. Immunopharmacol. Immunotoxicol. 2006, 28, 501–510. [Google Scholar] [CrossRef]
- Downs, C.A.; Kramarsky-Winter, E.; Fauth, J.E.; Segal, R.; Bronstein, O.; Jeger, R.; Lichtenfeld, Y.; Woodley, C.M.; Pennington, P.; Kushmaro, A.; et al. Toxicological Effects of the Sunscreen UV Filter, Benzophenone-2, on Planulae and in Vitro Cells of the Coral, Stylophora Pistillata. Ecotoxicology 2014, 23, 175–191. [Google Scholar] [CrossRef]
- Downs, C.A.; Kramarsky-Winter, E.; Segal, R.; Fauth, J.; Knutson, S.; Bronstein, O.; Ciner, F.R.; Jeger, R.; Lichtenfeld, Y.; Woodley, C.M.; et al. Toxicopathological Effects of the Sunscreen UV Filter, Oxybenzone (Benzophenone-3), on Coral Planulae and Cultured Primary Cells and Its Environmental Contamination in Hawaii and the U.S. Virgin Islands. Arch. Environ. Contam. Toxicol. 2016, 70, 265–288. [Google Scholar] [CrossRef]
- Swart, P.K.; Grottoli, A. Proxy Indicators of Climate in Coral Skeletons: A Perspective. Coral Reefs 2003, 22, 313–315. [Google Scholar] [CrossRef]
- Weber, J.N.; Woodhead, P.M.J. Carbon and Oxygen Isotope Fractionation in the Skeletal Carbonate of Reef-Building Corals. Chem. Geol. 1970, 6, 93–117. [Google Scholar] [CrossRef]
- Weber, J.N. Incorporation of Strontium into Reef Coral Skeletal Carbonate. Geochim. Cosmochim. Acta 1973, 37, 2173–2190. [Google Scholar] [CrossRef]
- DeLong, K.L.; Maupin, C.R.; Flannery, J.A.; Quinn, T.M.; Shen, C.-C. Refining Temperature Reconstructions with the Atlantic Coral Siderastrea Siderea. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2016, 462, 1–15. [Google Scholar] [CrossRef]
- Saha, N.; Webb, G.E.; Zhao, J.-X. Coral Skeletal Geochemistry as a Monitor of Inshore Water Quality. Sci. Total Environ. 2016, 566–567, 652–684. [Google Scholar] [CrossRef]
- Cardoso, G.O.; Falsarella, L.N.; Chiroque-Solano, P.M.; Porcher, C.C.; Leitzke, F.P.; Wegner, A.C.; Carelli, T.; Salomon, P.S.; Bastos, A.C.; Sá, F.; et al. Coral Growth Bands Recorded Trace Elements Associated with the Fundão Dam Collapse. Sci. Total Environ. 2022, 807, 150880. [Google Scholar] [CrossRef]
- Evangelista, H.; de Paula, R.L.M.; Magalhães, N.; de Gois, J.S.; Luna, A.S.; Cagnin, R.C.; Quaresma, V.S.; Bezerra, F.F.; Dia, J.P.; Santos, R.V.; et al. Intake of Trace Contaminants by Corals in Abrolhos Reef Bank (Western South Atlantic) during Two Decades of Coastal Impacts. Cont. Shelf Res. 2023, 255, 104946. [Google Scholar] [CrossRef]
- Kilbourne, K.H.; Quinn, T.M.; Webb, R.; Guilderson, T.; Nyberg, J.; Winter, A. Paleoclimate Proxy Perspective on Caribbean Climate since the Year 1751: Evidence of Cooler Temperatures and Multidecadal Variability. Paleoceanography 2008, 23, PA3220. [Google Scholar] [CrossRef]
- Pereira, N.S.; Sial, A.N.; Frei, R.; Ullmann, C.V.; Korte, C.; Kikuchi, R.K.P.; Ferreira, V.P.; Kilbourne, K.H. The Potential of the Coral Species Porites Astreoides as a Paleoclimate Archive for the Tropical South Atlantic Ocean. J. S. Am. Earth Sci. 2017, 77, 276–285. [Google Scholar] [CrossRef]
- Al-Rousan, S.; Felis, T. Long-Term Variability in the Stable Carbon Isotopic Composition of Porites Corals at the Northern Gulf of Aqaba, Red Sea. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2013, 381–382, 1–14. [Google Scholar] [CrossRef]
- Deng, W.; Chen, X.; Wei, G.; Zeng, T.; Zhao, J. Decoupling of Coral Skeletal δ 13 C and Solar Irradiance over the Past Millennium Caused by the Oceanic Suess Effect. Paleoceanography 2017, 32, 161–171. [Google Scholar] [CrossRef]
- Swart, P.K.; Greer, L.; Rosenheim, B.E.; Moses, C.S.; Waite, A.J.; Winter, A.; Dodge, R.E.; Helmle, K. The 13 C Suess Effect in Scleractinian Corals Mirror Changes in the Anthropogenic CO 2 Inventory of the Surface Oceans. Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef]
- Keeling, C.D. The Suess Effect: 13Carbon-14Carbon Interrelations. Environ. Int. 1979, 2, 229–300. [Google Scholar] [CrossRef]
- Pereira, N.S.; Sial, A.N.; Kilbourne, K.H.; Liu, S.-C.; Shen, C.-C.; Ullmann, C.V.; Frei, R.; Korte, C.; Kikuchi, R.K.P.; Ferreira, V.P.; et al. Carbon Stable Isotope Record in the Coral Species Siderastrea Stellata: A Link to the Suess Effect in the Tropical South Atlantic Ocean. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2018, 497, 82–90. [Google Scholar] [CrossRef]
- Simioni, C.; Hayashi, L.; Oliveira, M.C. Seaweed Resources of Brazil: What Has Changed in 20 Years? Bot. Mar. 2019, 62, 433–441. [Google Scholar] [CrossRef]
- Horta, P.A.; Amancio, E.; Coimbra, C.S.; Oliveira, E.C. Considerations on the Distribution and Origin of the Marine Macroalgal Brazilian Flora. Hoehnea 2001, 28, 243–265. [Google Scholar]
- Almeida, A.A.; Leite, J.P.V.; de Castro Simão, M.V.R.; Rody, H.V.S. Molecular Bioprospecting of Plant Extracts: Experience Report of the BIOPROS/UFV Group in the Search for Antitumor Compounds. Rev. Fitos 2022, 16, 238–246. [Google Scholar] [CrossRef]
- Thornburg, C.C.; Britt, J.R.; Evans, J.R.; Akee, R.K.; Whitt, J.A.; Trinh, S.K.; Harris, M.J.; Thompson, J.R.; Ewing, T.L.; Shipley, S.M.; et al. NCI Program for Natural Product Discovery: A Publicly-Accessible Library of Natural Product Fractions for High-Throughput Screening. ACS Chem. Biol. 2018, 13, 2484–2497. [Google Scholar] [CrossRef]
- Stuart, K.A.; Welsh, K.; Walker, M.C.; Edrada-Ebel, R.A. Metabolomic Tools Used in Marine Natural Product Drug Discovery. Expert Opin. Drug Discov. 2020, 15, 499–522. [Google Scholar] [CrossRef]
- Mandalka, A.; Cavalcanti, M.I.L.G.; Harb, T.B.; Toyota Fujii, M.; Eisner, P.; Schweiggert-Weisz, U.; Chow, F. Nutritional composition of beach-cast marine algae from the Brazilian coast: Added value for algal biomass considered as waste. Foods 2022, 11, 1201. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
dos Santos, G.S.; de Souza, T.L.; Teixeira, T.R.; Brandão, J.P.C.; Santana, K.A.; Barreto, L.H.S.; Cunha, S.d.S.; dos Santos, D.C.M.B.; Caffrey, C.R.; Pereira, N.S.; et al. Seaweeds and Corals from the Brazilian Coast: Review on Biotechnological Potential and Environmental Aspects. Molecules 2023, 28, 4285. https://doi.org/10.3390/molecules28114285
dos Santos GS, de Souza TL, Teixeira TR, Brandão JPC, Santana KA, Barreto LHS, Cunha SdS, dos Santos DCMB, Caffrey CR, Pereira NS, et al. Seaweeds and Corals from the Brazilian Coast: Review on Biotechnological Potential and Environmental Aspects. Molecules. 2023; 28(11):4285. https://doi.org/10.3390/molecules28114285
Chicago/Turabian Styledos Santos, Gustavo Souza, Thais Luz de Souza, Thaiz Rodrigues Teixeira, João Pedro Cezário Brandão, Keila Almeida Santana, Luan Henrique Santos Barreto, Samantha de Souza Cunha, Daniele Cristina Muniz Batista dos Santos, Conor R. Caffrey, Natan Silva Pereira, and et al. 2023. "Seaweeds and Corals from the Brazilian Coast: Review on Biotechnological Potential and Environmental Aspects" Molecules 28, no. 11: 4285. https://doi.org/10.3390/molecules28114285
APA Styledos Santos, G. S., de Souza, T. L., Teixeira, T. R., Brandão, J. P. C., Santana, K. A., Barreto, L. H. S., Cunha, S. d. S., dos Santos, D. C. M. B., Caffrey, C. R., Pereira, N. S., & de Freitas Santos Júnior, A. (2023). Seaweeds and Corals from the Brazilian Coast: Review on Biotechnological Potential and Environmental Aspects. Molecules, 28(11), 4285. https://doi.org/10.3390/molecules28114285