Assessment of the Hydrolysis of Pydiflumetofen and Its Degradation Characteristics in Agricultural Soils
Abstract
:1. Introduction
2. Results and Discussion
2.1. Precision Results, LOD, and LOQ
2.2. Hydrolysis Characteristics of Pydiflumetofen
2.2.1. Hydrolysis at Different Initial Concentrations
2.2.2. Hydrolysis at Different Temperatures
2.2.3. Hydrolysis at Various pH Values
2.3. Degradation Characteristics of Pydiflumetofen in Soils
2.3.1. Effects of Different Soil Types on Pydiflumetofen Degradation
2.3.2. Effects of Different Moisture Content on Pydiflumetofen Degradation
2.3.3. Effects of Different Temperatures on Pydiflumetofen Degradation
2.3.4. Effects of Different Initial Concentrations on Pydiflumetofen Degradation
3. Materials and Methods
3.1. Chemicals and Soils
3.2. Design of Hydrolysis Experiment for Pydiflumetofen
3.2.1. Hydrolysis at Different Initial Concentrations
3.2.2. Hydrolysis at Different Temperatures
3.2.3. Hydrolysis at Various pH Values
3.3. Design of Soil Degradation Experiments for Pydiflumetofen
3.3.1. Effects of Different Soil Types on Pydiflumetofen Degradation
3.3.2. Effects of Different Moisture Contents on Pydiflumetofen Degradation
3.3.3. Effects of Different Temperatures on Pydiflumetofen Degradation
3.3.4. Effects of Different Initial Concentrations on Pydiflumetofen Degradation
3.4. Sample Extraction, Purification, and Determination
3.4.1. Sample Extraction
3.4.2. Sample Purification
3.4.3. Sample Determination
3.4.4. Preparation of Standard and Matrix Solutions
3.4.5. Precision and Accuracy
3.5. Data Analysis and Statistics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Liu, Y.; Cheng, X.; Li, W. Agricultural chemicals and sustainable development: The agricultural environment Kuznets curve based on spatial panel model. Environ. Sci. Pollut. Res. Int. 2021, 28, 51453–51470. [Google Scholar] [CrossRef]
- Rong, C.A.I. Agri-chemicals Inputs and Its Impact on Environment. China Popul.·Resour. Environ. 2010, 20, 107–110. [Google Scholar]
- Tebes-Stevens, C.; Patel, J.M.; Jones, W.J.; Weber, E.J. Prediction of Hydrolysis Products of Organic Chemicals under Environmental pH Conditions. Environ. Sci. Technol. 2017, 51, 5008–5016. [Google Scholar] [CrossRef]
- Li, R.; Dörfler, U.; Munch, J.C.; Schroll, R. Enhanced degradation of isoproturon in an agricultural soil by a Sphingomonas sp. strain and a microbial consortium. Chemosphere 2017, 168, 1169–1176. [Google Scholar] [CrossRef]
- Chnirheb, A.; Harir, M.; Kanawati, B.; Fekete, A.; El Azzouzi, M.; Hertkorn, N.; Schmitt-Kopplin, P. Hydrolysis of mefenpyrdiethyl: An analytical and DFT investigation. Anal. Bioanal. Chem. 2010, 398, 2325–2334. [Google Scholar] [CrossRef]
- Zheng, W.; Liu, W.P. Kinetics and mechanism of the hydrolysis of imidacloprid. Pestic. Sci. 1999, 55, 482–485. [Google Scholar] [CrossRef]
- Liqing, Z. Research Progress in the Hydrolysis of Pesticide in Environmen. J. Anhui Agric. Sci. 2006, 34, 3410–3412. [Google Scholar]
- Cowart, R.P.; Bonner, F.L.; Epps, E.A., Jr. Rate of hydrolysis of seven organophosphate pesticides. Bull. Environ. Contam. Toxicol. 1971, 6, 231–234. [Google Scholar] [CrossRef]
- Renbin, Y.; Yihua, L.I.U.; Jianxia, Q.I.U.; Liying, Z.; Juanying, P. Chemistry behavior of pesticides in aquatic environment. J. Hunan Agric. Univ. 2007, 33, 96–100. [Google Scholar]
- Liu, Y.; Zhang, C.X.; Liao, X.P.; Luo, Y.W.; Wu, S.S.; Wang, J.W. Hydrolysis mechanism of methyl parathion evidenced by Q-Exactive mass spectrometry. Environ. Sci. Pollut. Res. 2015, 22, 19747–19755. [Google Scholar] [CrossRef]
- Rotich, H.K.; Zhang, Z.Y.; Zhao, Y.S.; Li, J.C. The adsorption behavior of three organophosphorus pesticides in peat and soil samples and their degradation in aqueous solutions at different temperatures and pH values. Int. J. Environ. Anal. Chem. 2004, 84, 289–301. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, D.; Han, J.; Chen, Y.; Zhang, K. Stereoselective degradation behavior of the novel chiral antifungal agrochemical penthiopyrad in soil. Environ. Res. 2021, 194, 110680. [Google Scholar] [CrossRef]
- Jin, S.; Yao, X.; Xu, Z.; Zhang, X.; Yang, F. Estimation of soil-specific microbial degradation of alpha-cypermethrin by compound-specific stable isotope analysis. Environ. Sci. Pollut. Res. Int. 2018, 25, 22736–22743. [Google Scholar] [CrossRef]
- Cao, Q.; Steinman, A.D.; Yao, L.; Xie, L. Effects of light, microorganisms, farming chemicals and water content on the degradation of microcystin-LR in agricultural soils. Ecotoxicol. Environ. Saf. 2018, 156, 141–147. [Google Scholar] [CrossRef]
- Singh, B.; Singh, K. Microbial degradation of herbicides. Crit. Rev. Microbiol. 2016, 42, 245–261. [Google Scholar] [CrossRef]
- Chatterjee, N.S.; Gupta, S.; Varghese, E. Degradation of metaflumizone in soil: Impact of varying moisture, light, temperature, atmospheric CO2 level, soil type and soil sterilization. Chemosphere 2013, 90, 729–736. [Google Scholar] [CrossRef]
- Wang, Z.; Li, R.; Zhang, J.; Liu, S.L.; He, Z.Z.; Wang, M.H. Evaluation of exploitive potential for higher bioactivity and lower residue risk enantiomer of chiral fungicide pydiflumetofen. Pest Manag. Sci. 2021, 77, 3419–3426. [Google Scholar] [CrossRef]
- He, L.M.; Cui, K.D.; Song, Y.F.; Li, T.T.; Liu, N.; Mu, W.; Liu, F. Activity of the Novel Succinate Dehydrogenase Inhibitor Fungicide Pydiflumetofen Against SDHI-Sensitive and SDHI-Resistant Isolates of Botrytis cinerea and Efficacy Against Gray Mold. Plant Dis. 2020, 104, 2168–2173. [Google Scholar] [CrossRef]
- Huang, X.P.; Luo, J.; Li, B.X.; Song, Y.F.; Mu, W.; Liu, F. Bioactivity, physiological characteristics and efficacy of the SDHI fungicide pydiflumetofen against Sclerotinia sclerotiorum. Pestic. Biochem. Physiol. 2019, 160, 70–78. [Google Scholar] [CrossRef]
- Duan, Y.B.; Xiu, Q.; Li, H.R.; Li, T.; Wang, J.X.; Zhou, M.G. Pharmacological Characteristics and Control Efficacy of a Novel SDHI Fungicide Pydiflumetofen against Sclerotinia sclerotiorum. Plant Dis. 2019, 103, 77–82. [Google Scholar] [CrossRef]
- Wen, J.; Yao, B.; Zhu, Q.; Jiang, T.; Xu, Q.; Zhong, G. The control effect of pydiflumetofen ·difenoconazole 200 g/L SC against powdery mildew in rose under field condition. Agrochemicals 2022, 61, 607–610. [Google Scholar]
- Wang, Z.; Liu, S.L.; Zhao, X.J.; Tian, B.H.; Sun, X.F.; Zhang, J.; Gao, Y.Y.; Shi, H.Y.; Wang, M.H. Enantioseparation and stereoselective dissipation of the novel chiral fungicide pydiflumetofen by ultra-high-performance liquid chromatography tandem mass spectrometry. Ecotoxicol. Environ. Saf. 2021, 207, 111221. [Google Scholar] [CrossRef]
- Bian, C.F.; Gao, M.Z.; Liu, L.; Zhou, W.W.; Li, Y.Q.; Wan, C.R.; Li, B.T. Determination of Pydiflumetofen Residues in Rice and its Environment by an Optimized QuEChERS Method Coupled with HPLC-MS. Bull. Environ. Contam. Toxicol. 2021, 107, 239–247. [Google Scholar] [CrossRef]
- Liu, S.; Wang, Z.; Li, C.; Wan, Y.; Zhong, J.; Shi, H.; Wang, M. Determination of Pydiflumetofen in Seven Kinds of Plant-derived Foods Based on QuEChERS-Liquid Chromatography-Tandem Mass Spectrometry. Agrochemicals 2021, 60, 500–503. [Google Scholar]
- Zhi, S.; Yan, S.; Li, X.; Zhao, E.; Jia, C. Determination of Pydiflumetofen Residues in Watermelon by High Performance Liquid Chromatography. Agrochemicals 2017, 56, 276–278. [Google Scholar]
- Bian, C.F.; Wang, L.; Cui, Z.Y.; Dong, Z.M.; Shi, X.L.; Li, Y.Q.; Li, B.T. Adsorption-desorption and transport behavior of pydiflumetofen in eight different types of soil. Ecotoxicol. Environ. Saf. 2022, 234, 113378. [Google Scholar] [CrossRef]
- Bian, C.F.; Luo, J.; Gao, M.Z.; Shi, X.G.; Li, Y.Q.; Li, B.T.; Tang, L.M. Pydiflumetofen in paddy field environments: Its dissipation dynamics and dietary risk. Microchem. J. 2021, 170, 106709. [Google Scholar] [CrossRef]
- Shi, X.L.; Bian, C.F.; Zhang, W.; Dong, Z.M.; Li, Y.Q.; Li, B.T. Dissipation of oxaziclomefone residues from rice, soil, and paddy field water using carbon nanotube-based QuEChERS and HPLC-MS analysis. Microchem. J. 2022, 177, 107286. [Google Scholar] [CrossRef]
- Luo, J.; Bian, C.F.; Rao, L.; Zhou, W.W.; Li, Y.Q.; Li, B.T. Determination of the residue behavior of isocycloseram in Brassica oleracea and soil using the QuEChERS method coupled with HPLC. Food Chem. 2022, 367, 130734. [Google Scholar] [CrossRef]
- Liu, X.; Peng, P.; Huang, W.; Fu, J.; Sheng, G. Influence of acidity on lindane hydrolysis. China Environ. Sci. 2002, 22, 485–489. [Google Scholar]
- Sharma, A.K.; Zimmerman, W.T.; Lowrie, C.; Chapleo, S. Hydrolysis of chlorantraniliprole and cyantraniliprole in various pH buffer solutions. J. Agric. Food Chem. 2014, 62, 3531–3536. [Google Scholar] [CrossRef] [PubMed]
- Ukpebor, J.E.; Halsall, C.J. Effects of Dissolved Water Constituents on the Photodegradation of Fenitrothion and Diazinon. Water Air Soil Pollut. 2012, 223, 655–666. [Google Scholar] [CrossRef]
- Todey, S.A.; Fallon, A.M.; Arnold, W.A. Neonicotinoid insecticide hydrolysis and photolysis: Rates and residual toxicity. Environ. Toxicol. Chem. 2018, 37, 2797–2809. [Google Scholar] [CrossRef]
- Zhu, F.P.; Duan, J.L.; Yuan, X.Z.; Shi, X.S.; Han, Z.L.; Wang, S.G. Hydrolysis, adsorption, and biodegradation of bensulfuron methyl under methanogenic conditions. Chemosphere 2018, 199, 138–146. [Google Scholar] [CrossRef]
- Nazarova, E.A.; Nazarov, A.V.; Egorova, D.O.; Anan’ina, L.N. Influence of destructive bacteria and red clover (Trifolium pratense L.) on the pesticides degradation in the soil. Environ. Geochem. Health 2022, 44, 399–408. [Google Scholar] [CrossRef] [PubMed]
- Khandelwal, A.; Gupta, S.; Gajbhiye, V.T.; Varghese, E. Degradation of kresoxim-methyl in soil: Impact of varying moisture, organic matter, soil sterilization, soil type, light and atmospheric CO2 level. Chemosphere 2014, 111, 209–217. [Google Scholar] [CrossRef] [PubMed]
- Akoijam, R.; Singh, B. Metabolic degradation of imidacloprid in paddy field soil. Environ. Monit Assess 2014, 186, 5977–5984. [Google Scholar] [CrossRef]
- Reedich, L.M.; Millican, M.D.; Koch, P.L. Temperature Impacts on Soil Microbial Communities and Potential Implications for the Biodegradation of Turfgrass Pesticides. J. Environ. Qual. 2017, 46, 490–497. [Google Scholar] [CrossRef]
- Liu, J.; Wang, X.; Fang, W.; Yan, D.; Han, D.; Huang, B.; Zhang, Y.; Li, Y.; Ouyang, C.; Cao, A.; et al. Soil properties, presence of microorganisms, application dose, soil moisture and temperature influence the degradation rate of Allyl isothiocyanate in soil. Chemosphere 2020, 244, 125540. [Google Scholar] [CrossRef]
- Han, D.; Yan, D.; Wang, Q.; Fang, W.; Wang, X.; Li, J.; Wang, D.; Li, Y.; Ouyang, C.; Cao, A. Effects of soil type, temperature, moisture, application dose, fertilizer, and organic amendments on chemical properties and biodegradation of dimethyl disulfide in soil. Land Degrad. Dev. 2018, 29, 4282–4290. [Google Scholar] [CrossRef]
Matrix | Regression Equation | R2 | LOD (mg/kg) | LOQ (mg/kg) |
---|---|---|---|---|
Acetonitrile | y = 438476x − 9154.5 | 0.9999 | - | - |
Water | y = 395146.95 x + 4537.86 | 0.9999 | 0.0019 | 0.0063 |
phaeozems | y = 395091x + 6260 | 0.9998 | 0.0033 | 0.0115 |
lixisols | y = 421776x − 8302.6 | 0.9998 | 0.0025 | 0.0089 |
ferrosols | y = 405017x + 13869 | 0.9997 | 0.0031 | 0.0108 |
plinthosols | y = 427307x − 4205.9 | 0.9998 | 0.0023 | 0.0082 |
Classification | Treatment Group | Rate Constant, k | R2 | Hydrolysis Kinetic Equation | Half-Life, t1/2,d |
---|---|---|---|---|---|
Different temperature | 5 | 0.0280 | 0.9663 | Ct = 4.3014e−0.0280t | 24.8 |
25 | 0.0571 | 0.9715 | Ct = 4.5121e−0.0571t | 12.1 | |
45 | 0.0742 | 0.7251 | Ct = 3.4726e−0.0742t | 9.3 | |
Different pH | pH = 4 | 0.0373 | 0.9424 | Ct = 4.5000e−0.0372t | 18.6 |
pH = 7 | 0.0571 | 0.9715 | Ct = 4.5121e−0.0571t | 12.1 | |
pH = 9 | 0.0277 | 0.9689 | Ct = 4.7333e−0.0277t | 25.0 | |
Different doses | 1 | 0.0702 | 0.9593 | Ct = 0.8605e−0.0702t | 9.9 |
5 | 0.0571 | 0.9715 | Ct = 4.5121e−0.0571t | 12.1 | |
10 | 0.0379 | 0.9712 | Ct = 8.6758e−0.0379t | 18.3 |
Soil Type | Treatment | Degradation Kinetic Equation | R2 | Rate Constant, k | Half-Life, t1/2,d |
---|---|---|---|---|---|
Phaeozems | Sterilized | ct = 3.6594e−0.0264t | 0.9856 | 0.0264 | 26.27 |
Non-sterilized | ct = 4.3570e−0.0642t | 0.9804 | 0.0642 | 10.79 | |
Lixisols | Sterilized | ct = 4.1437e−0.0155t | 0.9158 | 0.0155 | 44.6 |
Non-sterilized | ct = 4.3479e−0.0339t | 0.8952 | 0.0339 | 20.43 | |
Ferrosols | Sterilized | ct = 3.8283e−0.0125t | 0.9409 | 0.0125 | 55.41 |
Non-sterilized | ct = 4.2430e−0.0560t | 0.9279 | 0.0276 | 25.14 | |
Plinthosols | Sterilized | ct = 3.8151e−0.0132t | 0.9226 | 0.0132 | 52.51 |
Non-sterilized | ct = 4.0279e−0.0279t | 0.9284 | 0.0279 | 24.82 |
Soil Properties | Correlative Equation | R2 |
---|---|---|
OM (%) | y = −1.3381x + 26.18 | 0.9784 |
pH | y = −5.8668x + 54.514 | 0.8723 |
CEC (cmol/kg) | y = −0.6782x + 31.492 | 0.8826 |
Clay (%) | y = −0.283x + 31.364 | 0.4777 |
Treatment | Degradation Kinetic Equation | R2 | Rate Constant, k | Half-Life,t1/2,d |
---|---|---|---|---|
40% | ct = 4.0739e−0.0263t | 0.9786 | 0.0263 | 26.35 |
60% | ct = 4.2430e−0.0276t | 0.9279 | 0.0276 | 25.14 |
80% | ct = 3.8283e−0.0379t | 0.9408 | 0.0379 | 18.26 |
waterlogged | ct = 2.5754e−0.0429t | 0.9221 | 0.0429 | 16.15 |
Treatment | Degradation Kinetic Equation | R2 | Rate Constant, k | Half-Life, t1/2,d |
---|---|---|---|---|
5 °C | ct = 3.9222e−0.0195t | 0.8457 | 0.0195 | 26.35 |
25 °C | ct = 4.2430e−0.0276t | 0.9278 | 0.0276 | 25.14 |
45 °C | ct = 3.7640e−0.0338t | 0.9241 | 0.0338 | 18.26 |
Treatment | Degradation Kinetic Equation | R2 | Rate Constant, k | Half-Life,t1/2,d |
---|---|---|---|---|
1 mg/L | ct = 0.9214e−0.0502t | 0.8457 | 0.0444 | 15.6 |
5 mg/L | ct = 4.2430e−0.0276t | 0.9278 | 0.0276 | 25.14 |
10 mg/L | ct = 6.2821e−0.2797t | 0.9241 | 0.0235 | 29.48 |
Soil Locations | Soil Category | Texture | pH | CEC (cmol/kg) | OM (%) | |||
---|---|---|---|---|---|---|---|---|
Sand (%) | Silt (%) | Clay (%) | Texture Class | |||||
Haerbin, Heilongjiang (41°36′ N, 127°53′ E) | phaeozems | 13.18 ± 1.23 D | 32.41 ± 2.43 B | 54.41 ± 5.72 A | Clay loam | 7.28 A | 30.36 A | 11.68 A |
Jining, Shandong (36°40′ N, 117°02′ E) | lixisols | 30.76 ± 3.42 B | 26.99 ± 2.72 C | 42.24 ± 4.03 B | Sandy loam | 5.31 B | 11.78 B | 3.28 B |
Yichun, Jiangxi (27°82′ N, 114°42′ E) | ferrosols | 15.87 ± 1.59 C | 40.30 ± 3.57 A | 43.83 ± 3.72 B | Silt loam | 5.21 B | 12.89 B | 1.52 C |
Haikou, Hainan (19°32′ N, 110°10′ E) | plinthosols | 51.05 + 5.32 A | 32.97 ± 4.02 B | 15.98 ± 1.61 C | Silt loam | 5.19 C | 11.00 B | 1.21 C |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, X.; Xie, G.; Zhang, W.; Yu, A. Assessment of the Hydrolysis of Pydiflumetofen and Its Degradation Characteristics in Agricultural Soils. Molecules 2023, 28, 4282. https://doi.org/10.3390/molecules28114282
Shi X, Xie G, Zhang W, Yu A. Assessment of the Hydrolysis of Pydiflumetofen and Its Degradation Characteristics in Agricultural Soils. Molecules. 2023; 28(11):4282. https://doi.org/10.3390/molecules28114282
Chicago/Turabian StyleShi, Xianluo, Guai Xie, Wei Zhang, and Ailin Yu. 2023. "Assessment of the Hydrolysis of Pydiflumetofen and Its Degradation Characteristics in Agricultural Soils" Molecules 28, no. 11: 4282. https://doi.org/10.3390/molecules28114282
APA StyleShi, X., Xie, G., Zhang, W., & Yu, A. (2023). Assessment of the Hydrolysis of Pydiflumetofen and Its Degradation Characteristics in Agricultural Soils. Molecules, 28(11), 4282. https://doi.org/10.3390/molecules28114282