Okara-Enriched Gluten-Free Bread: Nutritional, Antioxidant and Sensory Properties
Abstract
:1. Introduction
2. Results and Discussion
2.1. Sensory Analyses
2.2. Proximate Composition
2.3. Total Phenolic Content and Antioxidant Properties
2.4. Macro- and Micro-Elements
2.5. Dietary Reference Intakes
2.6. Potential Benefits and Future Trends
3. Material and Methods
3.1. Material
3.2. Okara Production
3.3. Gluten-Free Bread Production
3.4. Sensory Analyses
3.5. Proximate Composition
3.6. Total Energy Value
3.7. Determination of Antioxidant Properties
3.8. Dietary Reference Intakes
3.9. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Official Gazette of the RS (2018): Rulebook on the Healthiness of Dietary Products. Available online: https://www.pravno-informacioni-sistem.rs/SlGlasnikPortal/eli/rep/sgrs/ministarstva/pravilnik/2010/45/2/reg (accessed on 28 March 2023). (In Serbian).
- Egea, B.M.; De Sousa, L.T.; Dos Santos, C.D.; De Oliveira Filho, G.J.; Guimarães, M.R.; Yoshiara, Y.L. Application of soy, corn, and bean by-products in the gluten-free baking process: A Review. Food Bioprocess Technol. 2023. [Google Scholar] [CrossRef]
- Kennedy, N.P.; Feighery, C. Clinical features of coeliac disease today. Biomed. Pharmacother. 2000, 54, 373–380. [Google Scholar] [CrossRef] [PubMed]
- Anderson, R.P. Coeliac disease. Review. Aust. Fam. Physician 2005, 34, 239–242. [Google Scholar] [PubMed]
- Presutti, R.J.; Cangemi, J.R.; Cassidy, H.D.; Hill, D.A. Celiac Disease. Am. Fam. Physician 2007, 76, 1795–1802. [Google Scholar]
- Torbica, A.; Hadnadev, M.; Dapčević, T. Rheological, textural and sensory properties of gluten-free bread formulations based on rice and buckwheat flour. Food Hydrocolloid 2010, 24, 626–632. [Google Scholar] [CrossRef]
- Gómez, M. Gluten-free bakery products: Ingredients and processes. Adv. Food Nutr. Res. 2022, 99, 189–237. [Google Scholar] [CrossRef]
- Demin, M. Gluten-Free Grains and Cereals, New Technologies in Processing; University of Belgrade, Faculty of Agriculture: Belgrade, Serbia, 2017; ISBN 978-86-7834-283-7. Available online: https://agris.fao.org/agris-search/search.do?recordID=RS2020000110 (accessed on 28 March 2023). (In Serbian)
- Bhinder, S.; Kaur, A.; Singhb, B.; Yadav, P.M.; Singh, N. Proximate composition, amino acid profile, pasting and process characteristics of flour from different Tartary buckwheat varieties. Food Res. Int. 2020, 130, 108946. [Google Scholar] [CrossRef]
- Espinoza-Herrera, J.; Martínez, L.M.; Serna-Saldívar, O.S.; Chuck-Hernández, C. Review methods for the modification and evaluation of cereal proteins for the substitution of wheat gluten in dough systems. Foods 2021, 10, 118. [Google Scholar] [CrossRef]
- Przybylski, R.; Gruezynska, E. A review of nutritional and nutraceutical components of buckwheat. Eur. J. Plant Sci. Biotechnol. 2009, 3, 10–22. [Google Scholar]
- Inglett, E.G.; Chen, D.; Berhow, M.; Lee, S. Antioxidant activity of commercial buckwheat flours and their free and bound phenolic compositions. Food Chem. 2011, 125, 923–929. [Google Scholar] [CrossRef]
- Oppong, D.; Panpipat, W.; Chaijan, M. Chemical, physical, and functional properties of Thai indigenous brown rice flours. PLoS ONE 2021, 16, e0255694. [Google Scholar] [CrossRef]
- Parameswaran, K.P.; Sadasivam, S. Changes in the carbohydrates and nitrogenous components during germination of proso millet, Panicum miliaceum. Plant Food Hum Nutr. 1994, 45, 97–102. [Google Scholar] [CrossRef]
- Taylor, R.N.J. Millets: Their unique nutritional and health-promoting attributes, Chapter 4. In Gluten-Free Ancient Grains Cereals, Pseudocereals, and Legumes: Sustainable, Nutritious, and Health-Promoting Foods for the 21st Century; Taylor, R.N.J., Awika, M.J., Eds.; Elsevier: Duxford, UK, 2017; pp. 55–103. [Google Scholar] [CrossRef]
- Becker, R.; Lorenz, K. Saccharides in proso and foxtail millets. J. Food Sci. 1978, 43, 1412–1414. [Google Scholar] [CrossRef]
- Casey, P.; Lorenz, K. Millet–functional and nutritional properties. Bakers Digest. 1977, 51, 45–57. [Google Scholar]
- Ferriola, D.; Stone, M. Sweetener effects on flaked millet breakfast cereals. J. Food Sci. 1998, 63, 726–729. [Google Scholar] [CrossRef]
- Ostermann-Porcel, M.V.; Quiroga-Panelo, N.; Rinaldoni, N.A.; Campderrós, E.M. Incorporation of okara into gluten-free cookies with high quality and nutritional value. J. Food Qual. 2017, 2017, 4071585. [Google Scholar] [CrossRef]
- Stanojevic, P.S.; Barac, B.M.; Pesic, B.M.; Jankovic, S.V.; Vucelic-Radovic, V.B. Bioactive proteins and energy value of okara as a byproduct in hydrothermal processing of soy milk. J. Agric. Food Chem. 2013, 61, 9210–9219. [Google Scholar] [CrossRef]
- Guimarãesa, R.M.; Silvaa, T.E.; Lemesb, A.C.; Boldrina, M.C.F.; da Silvaa, M.A.P.; Guimarães, S.F.; Egeaa, M.B. A soybean by-product as an alternative to enrich vegetable paste. LWT Food Sci. Technol. 2018, 92, 593–599. [Google Scholar] [CrossRef]
- Khare, S.K.; Jha, K.; Gandhi, A.P. Citric acid production from okara (soyresidue) by solid-state fermentation. Bioresour. Technol. 1995, 54, e323–e325. [Google Scholar] [CrossRef]
- Kamble, D.B.; Rani, S. Bioactive components, in vitro digestibility, microstructure and application of soybean residue (okara): A review. Legume Sci. 2020, 2, e32. [Google Scholar] [CrossRef]
- Tao, X.; Cai, Y.; Liu, T.; Long, Z.; Huang, L.; Deng, X.; Zhao, Q.; Zhao, M. Effects of pretreatments on the structure and functional prop-erties of okara protein. Food Hydrocolloid 2019, 90, 394–402. [Google Scholar] [CrossRef]
- Colletti, A.; Attrovio, A.; Boffa, L.; Mantegna, S.; Cravotto, G. Valorisation of by-products from soybean (Glycine max (L.) Merr.) processing. Molecules 2020, 25, 2129. [Google Scholar] [CrossRef] [PubMed]
- Van der Riet, W.B.; Wight, A.W.; Cilliers, J.J.L.; Datel, J.M. Food chemical investigation of tofu and its byproduct okara. Food Chem. 1989, 34, 193–202. [Google Scholar] [CrossRef]
- Stanojevic, P.S.; Barac, B.M.; Pesic, B.M.; Vucelic- Radovic, V.B. Composition of proteins in okara as a by-product in hydrothermal processing of soymilk. J. Agric. Food Chem. 2012, 60, 9221–9228. [Google Scholar] [CrossRef] [PubMed]
- Stanojevic, P.S.; Barac, M.B.; Pesic, B.M.; Zilic, M.S.; Kresovic, M.M.; Vucelic-Radovic, V.B. Mineral elements, lipoxygenase activity, and antioxidant capacity of okara as a byproduct in hydrothermal processing of soy milk. J. Agric. Food Chem. 2014, 62, 9017–9023. [Google Scholar] [CrossRef]
- Kumar, V.; Rani, A.; Husain, L. Investigations of amino acids profile, fatty acids composition, isoflavones content and antioxidative properties in soy okara. Asian J. Chem. 2016, 28, 903–906. [Google Scholar] [CrossRef]
- Lu, F.; Liu, Y.; Li, B. Okara dietary fiber and hypoglycemic effect of okara foods. Bioact. Carbohydr. Diet. Fibre. 2013, 2, 126–132. [Google Scholar] [CrossRef]
- Li, S.; Zhu, D.; Li, K.; Yang, Y.; Lei, Z.; Zhang, Z. Soybean curd residue: Composition, utilization, and related limiting factors. ISRN Ind. Eng. 2013, 2013, 1–8. [Google Scholar] [CrossRef]
- Salgado, J.M.; Donado-Pestana, M.C. Soy as a functional food. In Soybean and Nutrition; El-Shemy, H., Ed.; InTech: Changzhou, China, 2011; pp. 21–44. [Google Scholar]
- Ostermann Porcel, V.M.; Campderrós, E.M.; Rinaldoni, N.A. Effect of Okara flour addition on the physical and sensory quality of wheat bread. MOJ Food Process. Technol. 2017, 4, 184–190. [Google Scholar] [CrossRef]
- Fendri, L.; Chaari, F.; Maaloul, M.; Kallel, F.; Abdelkafi, L.; Ellouz Chaabouni, S.; Ghribi-Aydi, D. Wheat bread enrichment by pea and broad bean pods fibers: Effect on dough rheology and bread quality. LWT-Food Sci. Technol. 2016, 73, 584–591. [Google Scholar] [CrossRef]
- Garrido, T.; Etxabide, A.; Leceta, I.; Cabezudo, S.; de la Caba, K.; Guerrero, P. Valorization of soya by-products for sustainable packaging. J. Clean. Prod. 2014, 64, e228–e233. [Google Scholar] [CrossRef]
- Santos, D.C.D.; Oliveira, F.J.G.D.; Silva, J.D.S.; Sousa, M.F.D.; Vilela, M.D.S.; Silva, M.A.P.D.; Egea, M.B. Okara flour: Its physicochemical, microscopical and functional properties. Nutr. Food Sci. 2019, 49, 1252–1264. [Google Scholar] [CrossRef]
- Shin, D.-J.; Kim, W.; Kim, Y. Physicochemical and sensory properties of soy bread made with germinated, steamed, and roasted soy flour. Food Chem. 2013, 141, 517–523. [Google Scholar] [CrossRef]
- Guimarães, R.M.; Pimentel, T.C.; de Rezende, T.A.M.; de Santana Silva, J.; Falcão, H.G.; Ida, E.I.; Egea, M.B. Gluten-free bread: Effect of soy and corn co-products on the quality parameters. Eur. Food Res. Technol. 2019, 245, 1365–1376. [Google Scholar] [CrossRef]
- Sandri, L.T.B.; Santos, F.G.; Fratelli, C.; Capriles, V.D. Development of gluten-free bread formulations containing whole chia flour with acceptable sensory properties. Food Sci. Nutr. 2017, 5, 1021–1028. [Google Scholar] [CrossRef]
- Melini, F.; Melini, V.; Luziatelli, F.; Ruzzi, M. Current and forward-looking approaches to technological and nutritional improvements of gluten-free bread with legume flours: A critical review. Compr. Rev. Food Sci. Food Saf. 2017, 16, 1101–1121. [Google Scholar] [CrossRef]
- Yoshizawa, T.; Shimizu, T.; Yamabe, M.; Taichi, M.; Nishiuchi, Y.; Shichijo, N.; Unzai, S.; Hirano, H.; Sato, M.; Hashimoto, H. Crystal structure of basic 7S globulin, a xyloglucan-specific endo-β-1,4-glucanase inhibitor protein-like protein from soybean lacking inhibitory activity against endo-β-glucanase. FEBS J. 2011, 278, 1944–1954. [Google Scholar] [CrossRef]
- Miñarro, B.; Albanell, E.; Aguilar, N.; Guamis, B.; Capellas, M. Effect of legume flours on baking characteristics of gluten-free bread. J. Cer. Sci. 2012, 56, e476–e481. [Google Scholar] [CrossRef]
- Šmídová, Z.; Rysová, J. Gluten-free bread and bakery products technology. Foods 2022, 11, 480. [Google Scholar] [CrossRef]
- Wang, T.; Xu, P.; Chen, Z.; Zhou, X.; Wang, R. Alteration of the structure of rice proteins by their interaction with soy protein isolates to design novel protein composites. Food Funct. 2018, 9, 4282–4291. [Google Scholar] [CrossRef]
- Lin, S. Dietary fiber in bakery products: Source, processing, and function. Adv. Food Nutr. Res. 2022, 99, 37–100. [Google Scholar] [CrossRef] [PubMed]
- Rehinan, Z.; Rashid, M.; Shah, H.W. Insoluble dietary fibre components of food legumes as affected by soaking and cooking processes. Food Chem. 2004, 85, 245–249. [Google Scholar] [CrossRef]
- Poutanen, K.S.; Fiszman, S.; Marsaux, C.F.M.; Pentikäinen, S.P.; Steinert, R.E.; Mela, D.J. Recommendations for characterization and reporting of dietary fibres in nutrition research. Am. J. Clin. Nutr. 2018, 108, 437–444. [Google Scholar] [CrossRef] [PubMed]
- Eastwood, M.A.; Morris, E.R. Physical properties of dietary fibre that influence physiological function: A model for polymers along the gastrointestinal tract. Am. J. Clin. Nutr. 1992, 55, 436–442. [Google Scholar] [CrossRef]
- Du, H.; van der A, D.L.; Boshuizen, C.H.; Forouhi, N.G.; Wareham, N.J.; Halkjær, J.; Tjønneland, A.; Overvad, K.; Jakobsen, M.U.; Boeing, H.; et al. Dietary fibre and subsequent changes in body weight and waist circumference in European men and women. Am. J. Clin. Nutr. 2010, 91, 329–336. [Google Scholar] [CrossRef]
- Dahm, C.C.; Keogh, R.H.; Spencer, E.A.; Greenwood, D.C.; Key, T.J.; Fentiman, I.S.; Shipley, M.J.; Brunner, E.J.; Cade, J.E.; Burley, V.J.; et al. Dietary fibre and colorectal cancer risk: A nested case–control study using food diaries. JNCI J. Natl. Cancer I 2010, 102, 614–626. [Google Scholar] [CrossRef]
- Chuang, S.-C.; Norat, T.; Murphy, N.; Olsen, A.; Tjønneland, A.; Overvad, K.; Boutron-Ruault, M.C.; Perquier, F.; Dartois, L.; Kaaks, R.; et al. Fibre intake and total and cause-specific mortality in the european prospective investigation into cancer and nutrition cohort. Am. J. Clin. Nutr. 2012, 96, 164–174. [Google Scholar] [CrossRef]
- Satija, A.; Hu, F.B. Cardiovascular benefits of dietary fibre. Curr. Atheroscler. Rep. 2012, 14, 505–514. [Google Scholar] [CrossRef]
- WHO/FAO Expert Consultation on Diet NatPoCD. Diet, Nutrition, and the Prevention of Chronic Diseases. WHO Technical Report Series 91634-63. 2003. Available online: https://apps.who.int/iris/bitstream/handle/10665/42665/WHO_TRS_916.pdf;jsessionid=49613CE7E4E7BF52F2A6E5FD7F2CD55F?sequence=1 (accessed on 12 December 2022).
- Stephen, A.M.; Champ, M.M.J.; Cloran, S.J.; Fleith, M.; van Lieshout, L.; Mejborn, H.; Burley, V.J. Dietary fibre in Europe: Current state of knowledge on definitions, sources, recommendations, intakes and relationships to health. Nutr. Res. Rev. 2017, 30, 149–190. [Google Scholar] [CrossRef]
- Conte, P.; Fadda, C.; Piga, A.; Collar, C. Techno-functional and nutritional performance of commercial breads available in Europe. Food Sci. Technol. Int. 2016, 22, 621–633. [Google Scholar] [CrossRef]
- Segura, M.E.M.; Rosell, M.C. Chemical composition and starch digestibility of different gluten-free breads. Plant. Foods Hum. Nutr. 2011, 66, 224–230. [Google Scholar] [CrossRef]
- Kerezsi, A.D.; Jacquet, N.; Blecker, C. Advances on physical treatments for soy allergens reduction–A review. Trends Food Sci. Technol. 2022, 122, 24–39. [Google Scholar] [CrossRef]
- FDA–U.S. Food and Drug Administration. Gluten and Food Labeling. 2018. Available online: https://www.fda.gov/food/nutrition-education-resources-materials/gluten-and-food-labeling (accessed on 12 December 2022).
- Wahrburg, U. What are the health effects of fat? Eur. J. Nutr. 2004, 43, I/6–I/11. [Google Scholar] [CrossRef]
- McCann, T.H.; Day, L. Effect of sodium chloride on gluten network formation, dough microstructure and rheology in relation to breadmaking. J. Cer. Sci. 2013, 57, 444e452. [Google Scholar] [CrossRef]
- WHO, World Health Organization. Fat intake. 2013. Available online: https://www.who.int/data/gho/indicator-metadata-registry/imr-details/3418 (accessed on 14 December 2022).
- Ma, C.-Y.; Liu, W.-S.; Kwokb, K.C.; Kwokb, F. Isolation and characterization of proteins from soymilk residue (okara). Food Res. Int. 1997, 29, 199–805. [Google Scholar] [CrossRef]
- Falcinelli, B.; Calzuola, I.; Gigliarelli, L.; Torricelli, R.; Polegri, L.; Vizioli, V.; Benincasa, P.; Marsili, V. Phenolic content and antioxidant activity of wholegrain breads from modern and old wheat (Triticum aestivum L.) cultivars and ancestors enriched with wheat sprout powder. Ital. J. Agron. 2018, 13, 1220. [Google Scholar] [CrossRef]
- Power, O.; Jakeman, P.; Fitzgerald, R.J. Antioxidative peptides: Enzymatic production, in vitro and in vivo antioxidant activity and potential applications of milk-derived antioxidative peptides. Amino Acids 2013, 44, 797–820. [Google Scholar] [CrossRef]
- Gülçin, İ. Antioxidant activity of food constituents: An overview. Arch. Toxicol. 2012, 86, 345–391. [Google Scholar] [CrossRef]
- Floegel, A.; Kim, D.-O.; Chung, S.-J.; Koo, S.I.; Chun, O.K. Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods. J. Food Comp. Anal. 2011, 24, 1043–1048. [Google Scholar] [CrossRef]
- Banu, I.; Aprodu, I. Assessing the performance of different grains in gluten-free bread applications. Appl. Sci. 2020, 10, 8772. [Google Scholar] [CrossRef]
- Turfani, V.; Narducci, V.; Durazzo, A.; Galli, V.; Carcea, M. Technological, nutritional and functional properties of wheat bread enriched with lentil or carob flours. LWT–Food Sci. Technol. 2017, 78, 361–366. [Google Scholar] [CrossRef]
- Pavlović, D.D. Metabolism of water and minerals. Chapter XI. In Biochemistry; Busarčević, V., Ed.; “Savremena Administracija”a.d.: Belgrade, Serbia, 1995; pp. 817–881. ISBN 86-387-0750-9. (In Serbian) [Google Scholar]
- Stanojević, S.; Pešić, M. Mineral elements. In Food Biochemistry; Radivojević, D., Ed.; University of Belgrade: Belgrade, Serbia, 2017; pp. 189–205. (In Serbian) [Google Scholar]
- Ibidapo, O.P.; Henshaw, F.O.; Shittu, T.A.; Afolabi, W.A. Quality evaluation of functional bread developed from wheat, malted millet (Pennisetum Glaucum) and ‘Okara’ flour blends. Sci. Afr. 2020, 10, e00622. [Google Scholar] [CrossRef]
- Maggio, A.; Orecchio, S.; Barreca, S. Review on chemical composition of gluten-free food for celiac people. Review Article. Integr. Food Nutr. Metab. 2019, 6, 1–11. [Google Scholar] [CrossRef]
- Rybicka, I.; Gliszczyńska-Świgło, A. Minerals in grain gluten-free products. The content of calcium, potassium, magnesium, sodium, copper, iron, manganese, and zinc. J. Food Comp. Anal. 2017, 59, 61–67. [Google Scholar] [CrossRef]
- Martos, A.G.T.; López, E.P. Chemical composition, percent of dietary reference intake, and acceptability of gluten free bread made from Prosopis nigra flour, added with hydrocolloids. Food Sci. Technol. 2018, 38, 619–624. [Google Scholar] [CrossRef]
- National Academy of Science; Institute of Medicine. Dietary Reference Intakes for Energy, carbohydrate, Fiber, Fat, Fatty Acids, Protein, and Amino Acids (Macronutrients). Washington D.C. NAP. 2005. Available online: https://nap.nationalacademies.org/catalog/10490/dietary-reference-intakes-for-energy-carbohydrate-fiber-fat-fatty-acids-cholesterol-protein-and-amino-acids (accessed on 10 January 2023).
- King, A.J.; Jeong, J.; Underwood, F.E.; Quan, J.; Panaccione, N.; Windsor, W.J.; Coward, S.; deBruyn, J.; Ronksley, P.E.; Shaheen, A.-A.; et al. Incidence of celiac disease is increasing over time: A systematic review and meta-analysis. Am. J. Gastroenterol. 2020, 115, 507–525. [Google Scholar] [CrossRef]
- WHO. World Health Organization Global Report on Diabetes. 2016. Available online: https://www.who.int/health-topics/diabetes#tab=tab (accessed on 28 March 2023).
- Saklayen, M.G. The global epidemic of the metabolic syndrome. Curr. Hypertens. Rep. 2018, 20, 12. [Google Scholar] [CrossRef]
- Burke, L. Practical Sports Nutrition; Bahrke, M.S., Ed.; Human Kinetics: Champaign, IL, USA, 2007; pp. 1–26. [Google Scholar]
- Astrup, A.; Bertram, C.S.H.; Bonjour, J.-P.; de Groot, C.P.L.; de Oliveira Otto, C.M.; Feeney, L.E.; Garg, M.L.; Givens, I.; Kok, F.J.; Krauss, R.M.; et al. WHO draft guidelines on dietary saturated and trans fatty acids: Time for a new approach? BMJ Brit. Med. J. 2019, 366, l4137. [Google Scholar] [CrossRef]
- Glade, M.J. Food, nutrition and the prevention of cancer: A global perspective. American Institute for Cancer Research/World Cancer Research Fund, American Institute for Cancer Research, 1997. Nutrition 1999, 15, 523–526. [Google Scholar] [CrossRef]
- Hu, F.B.; Manson, J.E.; Willett, W.C. Types of dietary fat and risk of coronary heart disease: A Critical Review. J. Am. Coll. Nutr. 2001, 20, 5–19. [Google Scholar] [CrossRef]
- WHO, World Health Organization. World Obesity Day 2022—Accelerating Action to Stop Obesity. 2022. Available online: https://www.who.int/news/item/04-03-2022-world-obesity-day-2022-accelerating-action-to-stop-obesity (accessed on 16 January 2023).
- Gupta, D. Methods for determination of antioxidant capacity: A review. Int. J. Pharm. Sci. Res. 2015, 6, 546–566. [Google Scholar] [CrossRef]
- Augustyniak, A.; Bartosz, G.; Čipak, A.; Duburs, G.; Horáková, L.; Łuczaj, W. Natural and synthetic antioxidants: An updated overview. Free Radic. Res. 2010, 44, 1216–1262. [Google Scholar] [CrossRef]
- Arshad, M.S.; Khalid, W.; Ahmad, S.R.; Khan, K.M.; Ahmad, H.M.; Safdar, S.; Kousar, S.; Munir, H.; Shabbir, U.; Zafarullah, M.; et al. Functional foods and human health: An overview. In Functional Foods–Phytochemicals and Health Promoting Potential; Arshad, M.S., Ahmad, H.M., Eds.; IntechOpen: London, UK, 2021. [Google Scholar]
- Matos, M.E.; Rosell, C.M. Understanding gluten-free dough for reaching breads with physical quality and nutritional balance. J. Sci. Food Agric. 2015, 95, 653–661. [Google Scholar] [CrossRef]
- Ren, Y.; Linter, B.R.; Linforth, R.; Foster, T.J. A comprehensive investigation of gluten free bread dough rheology, proving and baking performance and bread qualities by response surface design and principal component analysis. Food Funct. 2020, 11, 5333–5345. [Google Scholar] [CrossRef]
- Duodu, K.G.; Taylor, J.R.N. The quality of breads made with non-wheat flours. In Breadmaking; Woodhead Publishing: Cambridge, UK, 2012; pp. 754–782. [Google Scholar]
- Torbica, A.; Belović, M.; Tomić, J. Novel breads of non-wheat flours. Food Chem. 2019, 282, 134–140. [Google Scholar] [CrossRef]
- Purić, M.; Rabrenović, B.; Rac, V.; Pezo, L.; Tomašević, I.; Demin, M. Application of defatted apple seed cakes as a by-product for the enrichment of wheat bread. LWT Food Sci. Technol. 2020, 130, 109391. [Google Scholar] [CrossRef]
- Stanojevic, P.S.; Barać, B.M.; Pešić, B.M.; Vucelic-Radovic, V.B. Protein composition and textural properties of inulin-enriched tofu produced by hydrothermal process. LWT Food Sci. Technol. 2020, 126, 109309. [Google Scholar] [CrossRef]
- AACC method 46-13 Crude protein-micro Kjeldahl method. In Proceedings of the 10th in Approved Methods of the AACC: Vol. II AACC International; American Association of Cereal Chemist. Approved Methods Committee: St Paul, MC, USA, 2000; ISBN 1891127128.
- AOAC Official Method 991.43. ANNEX G: Total, Soluble, and Insoluble Dietary Fibre in Foods. 1995. Available online: https://acnfp.food.gov.uk/sites/default/files/mnt/drupal_data/sources/files/multimedia/pdfs/annexg.pdf (accessed on 28 March 2023).
- FAO-Food and Agriculture Organization of the United Nations. Food energy–methods of analysis and conversion factors. Food Nutr. 2002, 77, 57–60. [Google Scholar]
- SRPS E.L8.007:1980; Determination of Glucose and Fructose by Enzymatic Method (UV-Test). Institute of Standardization of Serbia: Belgrade, Serbia, 1980. Available online: https://iss.rs/sr_Cyrl/project/show/iss:proj:3372 (accessed on 28 March 2023).
- SRPS E.L8.011:1980; Determination of Sucrose and Glucose by Enzymatic Method (UV-Test). Institute of Standardization of Serbia: Belgrade, Serbia, 1980. Available online: https://iss.rs/sr_Cyrl/project/show/iss:proj:3376 (accessed on 28 March 2023).
- AOAC Method 16th. In Official Methods of Analysis, 16th ed.; Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2006.
- SRPS EN ISO 12966-2:2017; Animal and Vegetable Fats and Oils–Gas Chromatography of Fatty Acid Methyl Esters–Part 2: Preparation of Methyl Esters of Fatty Acids (ISO 12966-2:2017). Institute of Standardization of Serbia: Belgrade, Serbia, 2017. Available online: https://iss.rs/sr_Cyrl/project/show/iss:proj:63206 (accessed on 18 January 2023).
- Julshamn, K.; Lea, P. Determination of sodium in foods by flame atomic absorption spectrometry after microwave digestion: NMKL interlaboratory study. J. AOAC Int. 2005, 88, 1212–1216. [Google Scholar] [CrossRef]
- AOAC Official Method 2012.01. Gliadin as a Measure of Gluten in Foods Containing Wheat, Rye, and Barley. 2012. Available online: http://www.aoacofficialmethod.org/index.php?main_page=product_info&cPath=1&products_id=2965 (accessed on 21 January 2023).
- Kostić, Ž.A.; Pešić, B.M.; Mosić, D.M.; Dojčinović, P.B.; Natić, N.M.; Trifković, Đ.J. Mineral content of some bee-collected pollen from Serbia. Arch. Ind. Hyg. Toxicol. 2015, 66, 251–258. [Google Scholar] [CrossRef]
- Pešić, B.M.; Milinčić, D.D.; Kostić, Ž.A.; Stanisavljević, S.N.; Vukotić, N.G.; Kojić, O.M.; Gašić, M.U.; Barać, B.M.; Stanojević, P.S.; Popović, A.D.; et al. In vitro digestion of meat-and cereal-based food matrix enriched with grape extracts: How are polyphenol composition, bioaccessibility and antioxidant activity affected? Food Chem. 2019, 284, 28–44. [Google Scholar] [CrossRef] [PubMed]
- Milinčić, D.D.; Stanisavljević, S.N.; Kostić, Ž.A.; Gašić, M.U.; Stanojević, P.S.; Tešić, L.Ž.; Pešić, B.M. Bioaccessibility of phenolic compounds and antioxidant properties of goat-milk powder fortified with grape-pomace-seed extract after in vitro gastrointestinal digestion. Antioxidants 2022, 11, 2164. [Google Scholar] [CrossRef] [PubMed]
Components | Content (%) |
---|---|
Total proteins | 8.80 ± 0.07 |
Total carbohydrates | 28.90 ± 0.04 |
Insoluble fiber | 11.11 ± 0.03 |
Soluble fiber | 2.89 ± 0.06 |
Sugars (glucose, fructose, sucrose) | 0.05 ± 0.006 |
Total lipids | 3.80 ± 0.03 |
Saturated fatty acids | 0.80 ± 0.04 |
Salt | 0.80 ± 0.03 |
Content (ppm) | |
Gluten | 14.41 ± 5.33 |
Components | kJ/100g | kcal/100g |
---|---|---|
Energy of proteins | 149.60 | 35.91 |
Energy of digestible carbohydrates * | 302.43 | 72.58 |
Energy of lipids | 116.18 | 27.88 |
Total energy value | 568.21 | 136.37 |
Nutritional Aspects to Improve | Solution | Outcome |
---|---|---|
Low protein | Okara proteins are added | High-quality proteins were added and the resulting bread, according to legal regulations, belongs to the group “product with increased protein content”. Okara proteins are of high value and contain all essential amino acids, with lysine exceeding the daily requirements. Furthermore, they can reduce the content of cholesterol and triglycerides in the blood. Such properties allow okara proteins to be used for supplementation [19]. |
Low fiber | Okara fibers are added | Soluble and insoluble fibers are added with okara (dietary fibers of formulated gluten-free bread make up to 50% of total carbohydrates) |
Low minerals | Okara minerals are added | Okara contains: Na, Mg, N, K, P, Ca, Fe, Zn, Mn; okara contain Fe+2, which is easily absorbed |
High lipids | Okara may contain a low percentage of total lipids [28]. | The addition of okara did not increase the lipid content in the formulated gluten-free bread; in addition, the saturated fatty acid content was low. Namely, soy fats, are known as “cardio-healthy fats”, they are unsaturated fats (contains an essential omega 3 fatty acids) [62]. |
High sugars | Okara contain a low percentage of monosaccharides and disaccharides [20]. | The content of sugar (glucose, fructose, and sucrose) in the examined bread was very low. |
Total Phenolics | FRP | ABTS | DPPH |
---|---|---|---|
mgGAE/100g | mgAA/100g | mgTrolox/100g | |
133.75 ± 2.42 | 119.25 ± 4.29 | 86.80 ± 2.46 | 49.42 ± 8.58 |
Macro-Elements (µg/g) | |||
---|---|---|---|
Ca | 849.59 | Na | 4677.08 |
K | 2002.04 | P | 3831.19 |
Mg | 777.04 | S | 1374.72 |
Pooled std | 4.11 | ||
Micro-elements (µg/g) | |||
Co | n.d. | Mn | 8.91 |
Cr | 0.19 | Ni | 0.87 |
Cu | 2.96 | Sr | 2.42 |
Fe | 24.71 | Zn | 17.42 |
Pooled std | 0.25 | ||
Toxic elements (µg/g) | |||
Al | 4.15 | Cd | 0.02 |
As | n.d. | Li | 0.04 |
B | 5.82 | Pb | n.d. |
Ba | 0.59 | ||
Pooled std | 0.09 | Pooled std | 0.00 |
Life Stage Group | Nutrients | ||||||||
---|---|---|---|---|---|---|---|---|---|
Carbohydrate | Total Fiber | Proteins | |||||||
DRI (g/d) | CBS (g/50g) | %DRI | DRI (g/d) | CBS (g/50g) | %DRI | DRI (g/d) | CBS (g/50g) | %DRI | |
Children | 14.45 | 11.12 | 7.00 | 4.40 | |||||
1–3 y | 130 | 16 | 36.84 | 13 | 33.85 | ||||
4–8 y | 25 | 28.00 | 19 | 23.16 | |||||
Man | |||||||||
9–13 y | 31 | 22.58 | 34 | 12.94 | |||||
14–18 y | 38 | 18.42 | 52 | 8.46 | |||||
19–50 y | |||||||||
51–70 y | 30 | 23.33 | 56 | 7.86 | |||||
>70 y | |||||||||
Females | |||||||||
9–13 y | 26 | 26.93 | 34 | 12.94 | |||||
14–18 y | 46 | 9.57 | |||||||
19–70 y | 21 | 33.33 | |||||||
>70 y | |||||||||
Pregnancy | 175 | 8.26 | 28 | 25.00 | 71 | 6.20 | |||
Lactation | 210 | 7.19 | 29 | 24.14 |
Life Stage Group | Macro-Elements | |||||
---|---|---|---|---|---|---|
Ca | K | Mg | Na | P | S | |
Children | ||||||
1–3 y | 93.04 | 3.34 | 48.57 | 33.29 | 41.64 | 68.74 |
4–8 y | 58.15 | 2.63 | 29.89 | 19.52 | 38.31 | |
Men | ||||||
9–13 y | 35.78 | 2.22 | 16.19 | 15.53 | 15.32 | 68.74 |
14–18 y | 2.13 | 9.48 | 13.75 | |||
19–30 y | 46.52 | 9.71 | 27.37 | |||
31–50y | 9.25 | |||||
51–70 y | 38.77 | 17.92 | ||||
>70 y | 19.42 | |||||
Females | ||||||
9–13 y | 35.78 | 2.22 | 16.19 | 17.92 | 15.32 | 68.74 |
14–18 y | 2.13 | 10.79 | 13.75 | |||
19–30 y | 46.52 | 12.53 | 27.37 | |||
31–50 y | 12.14 | |||||
51–70 y | 38.77 | 19,42 | ||||
>70 y | ||||||
Pregnancy | 46.52 | 2.13 | 11.10 | 15.53 | 27.37 | / |
Lactation | 1.96 | 12.34 |
Life Stage Group | Micro-Elements | |||||
---|---|---|---|---|---|---|
Fe | Zn | Mn | Cu | Cr | Ni | |
Children | ||||||
1–3 y | 17.65 | 28.67 | 37.13 | 43.53 | 86.36 | 21.75 |
4–8 y | 12.36 | 17.20 | 29.70 | 33.64 | 63.33 | 14.50 |
Men | ||||||
9–13 y | 15.44 | 10.75 | 23.45 | 21.14 | 38.00 | 7.25 |
14–18 y | 11.23 | 7.82 | 20.25 | 16.63 | 27.14 | 4.35 |
19–50 y | 15.44 | 19.37 | 16.44 | |||
51–70 y | 31.67 | |||||
>70 y | ||||||
Females | ||||||
9–13 y | 15.44 | 10.75 | 27.84 | 21.14 | 45.24 | 7.25 |
14–18 y | 8.24 | 9.56 | 24.75 | 16.63 | 39.58 | 4.35 |
19–50 y | 6.86 | 10.75 | 22.28 | 16.44 | 38.00 | |
51–70 y | 15.44 | 47.50 | ||||
>70 y | ||||||
Pregnancy | 4.58 | 7.82 | 22.28 | 14.80 | 31.67 | |
Lactation | 13.73 | 7.17 | 17.13 | 11.38 | 21.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pešić, M.B.; Pešić, M.M.; Bezbradica, J.; Stanojević, A.B.; Ivković, P.; Milinčić, D.D.; Demin, M.; Kostić, A.Ž.; Dojčinović, B.; Stanojević, S.P. Okara-Enriched Gluten-Free Bread: Nutritional, Antioxidant and Sensory Properties. Molecules 2023, 28, 4098. https://doi.org/10.3390/molecules28104098
Pešić MB, Pešić MM, Bezbradica J, Stanojević AB, Ivković P, Milinčić DD, Demin M, Kostić AŽ, Dojčinović B, Stanojević SP. Okara-Enriched Gluten-Free Bread: Nutritional, Antioxidant and Sensory Properties. Molecules. 2023; 28(10):4098. https://doi.org/10.3390/molecules28104098
Chicago/Turabian StylePešić, Mirjana B., Milica M. Pešić, Jelena Bezbradica, Anđela B. Stanojević, Petra Ivković, Danijel D. Milinčić, Mirjana Demin, Aleksandar Ž. Kostić, Biljana Dojčinović, and Sladjana P. Stanojević. 2023. "Okara-Enriched Gluten-Free Bread: Nutritional, Antioxidant and Sensory Properties" Molecules 28, no. 10: 4098. https://doi.org/10.3390/molecules28104098
APA StylePešić, M. B., Pešić, M. M., Bezbradica, J., Stanojević, A. B., Ivković, P., Milinčić, D. D., Demin, M., Kostić, A. Ž., Dojčinović, B., & Stanojević, S. P. (2023). Okara-Enriched Gluten-Free Bread: Nutritional, Antioxidant and Sensory Properties. Molecules, 28(10), 4098. https://doi.org/10.3390/molecules28104098