Novel Carbonaceous Adsorbents Prepared from Glycerin Waste and Dopamine for Gas Separation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of the Adsorbents
2.2. Adsorption of Ethane, Ethylene, Carbon Dioxide, and Methane
3. Materials and Methods
3.1. Preparation of the Adsorbents
3.1.1. Overview
3.1.2. Preparation of the Glycerin–Dopamine Carbonized
3.1.3. Chemical Activation
3.2. Characterization of the Adsorbents
3.3. Adsorption of Ethane, Ethylene, Carbon Dioxide, and Methane
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Sosa, J.A.; Laines, J.R.; García, D.S.; Hernández, R.; Zappi, M.; Monteros, A.E.E.d.L. Activated carbon: A review of residual precursors, cynthesis processes, characterization techniques, and applications in the improvement of biogas. Environ. Eng. Res. 2023, 28, 220100. [Google Scholar] [CrossRef]
- Devi, B.P.; Reddy, T.V.K.; Lakshmi, K.V.; Prasad, R. A green recyclable SO3H-carbon catalyst derived from glycerol for the production of biodiesel from FFA-containing karanja (Pongamia glabra) oil in a single step. Bioresour. Technol. 2014, 153, 370–373. [Google Scholar] [CrossRef] [PubMed]
- Batista, M.K.S.; Mestre, A.S.; Matos, I.; Fonseca, I.M.; Carvalho, A.P. Biodiesel production waste as promising biomass precursor of reusable activated carbons for caffeine removal. RSC Adv. 2016, 6, 45419–45427. [Google Scholar] [CrossRef]
- Batista, M.; Pinto, M.L.; Carvalho, R.; Pires, J. Glycerin-based adsorbents for the separation of ethane and ethylene. Colloids Surf. A Physicochem. Eng. Asp. 2022, 634, 127975. [Google Scholar] [CrossRef]
- Liang, W.; Zhang, Y.; Wang, X.; Wu, Y.; Zhou, X.; Xiao, J.; Li, Y.; Wang, H.; Li, Z. Asphalt-derived high surface area activated porous carbons for the effective adsorption separation of ethane and ethylene. Chem. Eng. Sci. 2017, 162, 192–202. [Google Scholar] [CrossRef]
- Anwar, F.; Khaleel, M.; Wang, K.; Karanikolos, G.N. Selectivity tuning of adsorbents for ethane/ethylene separation: A review. Ind. Eng. Chem. Res. 2022, 61, 12269–12293. [Google Scholar] [CrossRef]
- Wang, Y.; Peh, S.B.; Zhao, D. Alternatives to cryogenic distillation: Advanced porous materials in adsorptive light olefin/paraffin separations. Small 2019, 15, 1900058. [Google Scholar] [CrossRef]
- Pires, J.; Pinto, M.L.; Saini, V.K. Ethane selective IRMOF-8 and its significance in ethane-ethylene separation by adsorption. ACS Appl. Mater. Interfaces 2014, 6, 12093–12099. [Google Scholar] [CrossRef]
- Bux, H.; Chmelik, C.; Krishna, R.; Caro, J. Ethene/ethane separation by the MOF membrane ZIF-8: Molecular correlation of permeation, adsorption, diffusion. J. Memb. Sci. 2011, 369, 284–289. [Google Scholar] [CrossRef]
- Saini, V.K.; Pinto, M.; Pires, J. Natural clay binder based extrudates of mesoporous materials: Improved materials for selective adsorption of natural and biogas components. Green Chem. 2011, 13, 1251–1259. [Google Scholar] [CrossRef]
- Jaramillo, P.; Matthews, H.S. Landfill-gas.to-energy projects: Analysis of net private and social benefits. Environ. Sci. Technol. 2005, 39, 7365–7373. [Google Scholar] [CrossRef]
- Anto, S.; Sudhakar, M.P.; Shan Ahamed, T.; Samuel, M.S.; Mathimani, T.; Brindhadevi, K.; Pugazhendhi, A. Activation strategies for biochar to use as an efficient catalyst in various applications. Fuel 2021, 285, 119205. [Google Scholar] [CrossRef]
- Wang, J.; Kaskel, S. KOH activation of carbon-based materials for energy storage. J. Mater. Chem. 2012, 22, 23710–23725. [Google Scholar] [CrossRef]
- Wang, X.; Wu, Y.; Zhou, X.; Xiao, J.; Xia, Q.; Wang, H.; Li, Z. Novel C-PDA adsorbents with high uptake and preferential adsorption of ethane over ethylene. Chem. Eng. Sci. 2016, 155, 338–347. [Google Scholar] [CrossRef]
- Wang, X.; Wu, Y.; Peng, J.; Wu, Y.; Xiao, J.; Xia, Q.; Li, Z. Novel glucosamine-based carbon adsorbents with high capacity and its enhanced mechanism of preferential adsorption of C2H6 over C2H4. Chem. Eng. J. 2019, 358, 1114–1125. [Google Scholar] [CrossRef]
- Brenda, G. Pollution is called a byproduct of a ‘Clean’ fuel. New York Times. 11 March 2008. Available online: https://www.nytimes.com/2008/03/11/us/11biofuel.html (accessed on 9 May 2023).
- Kaur, J.; Sarma, A.K.; Jha, M.K.; Gera, P. Valorisation of crude glycerol to value-added products: Perspectives of process technology, economics and environmental issues. Biotechnol. Rep. 2020, 27, e00487. [Google Scholar] [CrossRef] [PubMed]
- Fanning, P.E.; Vannice, M.A. A DRIFTS study of the formation of surface groups on carbon by oxidation. Carbon N. Y. 1993, 31, 721–730. [Google Scholar] [CrossRef]
- Maciá-Agulló, J.A.; Sevilla, M.; Diez, M.A.; Fuertes, A.B. Synthesis of carbon-based solid acid microspheres and their application to the production of biodiesel. ChemSusChem 2010, 3, 1352–1354. [Google Scholar] [CrossRef]
- Yu, X.-H.; Zhao, Z.-Y.; Yi, J.-L.; Wang, F.-Y.; Zhang, R.-L.; Yu, Q.; Liu, L. Nitrogen-doped hollow carbon spheres from bio-inspired dopamine: Hexamethylenetetramine-induced polymerization, morphology control and supercapacitor performance. J. Electroanal. Chem. 2021, 900, 115735. [Google Scholar] [CrossRef]
- Chowdhury, Z.; Abd Hamid, S.B.; Das, R.; Hasan, M.R.; Zain, S.; Khalisanni, K.; Uddin, M. Preparation of carbonaceous adsorbents from lignocellulosic biomass and their use in removal of contaminants from aqueous solution. BioResources 2013, 8, 6523–6555. [Google Scholar] [CrossRef]
- Maniarasu, R.; Rathore, S.K.; Murugan, S. Biomass-based activated carbon for CO2 adsorption—A review. Energy Environ. 2022, 1–48. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef]
- Gauden, P.A.; Terzyk, A.P.; Jaroniec, M.; Kowalczyk, P. Bimodal pore size distributions for carbons: Experimental results and computational studies. J. Colloid Interface Sci. 2007, 310, 205–216. [Google Scholar] [CrossRef]
- Liang, W.; Wu, Y.; Xiao, H.; Xiao, J.; Li, Y.; Li, Z. Ethane-selective carbon composites CPDA@A-ACs with high uptake and its enhanced ethane/ethylene adsorption selectivity. AIChE J. 2018, 64, 3390–3399. [Google Scholar] [CrossRef]
- Xiang, H.; Fan, X.; Siperstein, F.R. Understanding ethane/ethylene adsorption selectivity in ethane-selective microporous materials. Sep. Purif. Technol. 2020, 241, 116635. [Google Scholar] [CrossRef]
- Li, J.-R.; Kuppler, R.J.; Zhou, H.-C. Selective gas adsorption and separation in metal–organic frameworks. Chem. Soc. Rev. 2009, 38, 1477–1504. [Google Scholar] [CrossRef] [PubMed]
- Myers, A.L.; Prausnitz, J.M. Thermodynamics of mixed-gas adsorption. AIChE J. 1965, 11, 121–127. [Google Scholar] [CrossRef]
- Do, D.D. Adsorption Analysis: Equilibria and Kinetics; Yang, R.T., Ed.; Imperial College Press: London, UK, 1998; Volume 2. [Google Scholar]
- Simon, C.M.; Smit, B.; Haranczyk, M. pyIAST: Ideal adsorbed solution theory (IAST) Python package. Comput. Phys. Commun. 2016, 200, 364–380. [Google Scholar] [CrossRef]
- Bernardo, M.; Lapa, N.; Fonseca, I.; Esteves, I.A.A.C. Biomass valorization to produce porous carbons: Applications in CO2 capture and biogas upgrading to biomethane—A Mini-Review. Front. Energy Res. 2021, 9, 625188. [Google Scholar] [CrossRef]
- Aghel, B.; Behaein, S.; Alobaid, F. CO2 capture from biogas by biomass-based adsorbents: A review. Fuel 2022, 328, 125276. [Google Scholar] [CrossRef]
- Karimi, M.; Shirzad, M.; Silva, J.A.C.; Rodrigues, A.E. Biomass/Biochar carbon materials for CO2 capture and sequestration by cyclic adsorption processes: A review and prospects for future directions. J. CO2 Util. 2022, 57, 101890. [Google Scholar] [CrossRef]
- Peredo-Mancilla, D.; Ghimbeu, C.M.; Ho, B.-N.; Jeguirim, M.; Hort, C.; Bessieres, D. Comparative study of the CH4/CO2 adsorption selectivity of activated carbons for biogas upgrading. J. Environ. Chem. Eng. 2019, 7, 103368. [Google Scholar] [CrossRef]
- Yuan, B.; Wu, X.; Chen, Y.; Huang, J.; Luo, H.; Deng, S. Adsorptive separation studies of ethane-methane and methane-nitrogen systems using mesoporous carbon. J. Colloid Interface Sci. 2013, 394, 445–450. [Google Scholar] [CrossRef] [PubMed]
- Mokhtarani, B.; Repke, J.-U.; Son, N.X.; Wozny, G.; Yilmaz, N.M.; Senturk, K.; Godini, H.R. Miniplant-scale demonstration of ethylene adsorption separation in downstream of an oxidative coupling of methane process. Ind. Eng. Chem. Res. 2021, 60, 11778–11788. [Google Scholar] [CrossRef]
- Reymond, J.P.; Kolenda, F. Estimation of the point of zero charge of simple and mixed oxides by mass titration. Powder Technol. 1999, 103, 30–36. [Google Scholar] [CrossRef]
- Rouquerol, F.; Rouquerol, J.; Sing, K.S.W.; Llewellyn, P.; Maurin, G. Adsorption by Powders and Porous Solids Principles, Methodology and Applications, 2nd ed.; Elsevier, B.V.: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Rodriguez-Reinoso, F.; Martin-Martinez, J.M.; Prado-Burguete, C.; McEnaney, B. A standard adsorption isotherm for the characterization of activated carbons. J. Phys. Chem. 1987, 91, 515–516. [Google Scholar] [CrossRef]
Sample → | Glycerin | Gdop1.0 | Gdop0.75 | Gdop0.50 | Gdop0.25 |
---|---|---|---|---|---|
C (%) | 39.1 | 60.1 | 62.1 | 59.1 | 65.1 |
H (%) | 8.7 | 2.5 | 2.0 | 2.1 | 2.1 |
N (%) | - | 1.1 | 0.9 | 0.8 | 0.8 |
S (%) | - | 6.1 | 7.2 | 12.1 | 13.1 |
O (%) | 57.5 | 30.2 | 27.8 | 12.1 | 13.1 |
pHPZC | - | 1.9 | 2.0 | 2.4 | 3.2 |
Samples | → | GdopC | Gdop1.0 | Gdop0.75 | Gdop0.50 | Gdop0.25 |
---|---|---|---|---|---|---|
Partial yield (%) | Carbonization | 49 | - | - | - | - |
Activation | - | 42 | 52 | 56 | 64 | |
Global yield (%) | - | 3.4 | 5.3 | 5.7 | 5.9 | |
Apparent-tap-density | 0.65 | 0.12 | 0.42 | 0.52 | 0.52 | |
ABET (m2 g−1) | <10 | 1657 | 1276 | 834 | 227 | |
VTOTAL (cm3 g−1) | - | 0.73 | 0.56 | 0.37 | 0.12 | |
VMESO (cm3 g−1) | - | 0.10 | 0.06 | 0.05 | 0.03 | |
VMICRO (cm3 g−1) | - | 0.63 | 0.48 | 0.32 | 0.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Batista, M.; Carvalho, R.; Pinto, M.L.; Pires, J. Novel Carbonaceous Adsorbents Prepared from Glycerin Waste and Dopamine for Gas Separation. Molecules 2023, 28, 4071. https://doi.org/10.3390/molecules28104071
Batista M, Carvalho R, Pinto ML, Pires J. Novel Carbonaceous Adsorbents Prepared from Glycerin Waste and Dopamine for Gas Separation. Molecules. 2023; 28(10):4071. https://doi.org/10.3390/molecules28104071
Chicago/Turabian StyleBatista, Mary, Renato Carvalho, Moisés L. Pinto, and João Pires. 2023. "Novel Carbonaceous Adsorbents Prepared from Glycerin Waste and Dopamine for Gas Separation" Molecules 28, no. 10: 4071. https://doi.org/10.3390/molecules28104071
APA StyleBatista, M., Carvalho, R., Pinto, M. L., & Pires, J. (2023). Novel Carbonaceous Adsorbents Prepared from Glycerin Waste and Dopamine for Gas Separation. Molecules, 28(10), 4071. https://doi.org/10.3390/molecules28104071