Influence of Oxygen Management on Color and Phenolics of Red Wines
Abstract
:1. Introduction
2. Results and Discussion
2.1. Kinetics of Oxygen Consumption in Saturated Ws at Different Oxygen Levels
2.2. Effect of Oxygen Consumption on Phenol Composition and Color
3. Materials and Methods
3.1. Grape Extracts (GEs)
3.2. Grape Extract Wines (Ws)
3.2.1. Saturation at Different Oxygen Levels
3.2.2. Oxygen Consumption Measurement through Kinetics and Kinetic Curve Data Processing
3.3. Chemical Analyses
3.3.1. Spectra, Color Parameters, and Total Phenols Index
3.3.2. Antioxidant Capacity
3.3.3. Analysis of Individual Anthocyanins
3.4. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arapitsas, P.; Scholz, M.; Vrhovsek, U.; Di Blasi, S.; Biondi Bartolini, A.; Masuero, D.; Perenzoni, D.; Rigo, A.; Mattivi, F. A Metabolomic Approach to the Study of Wine Micro-Oxygenation. PLoS ONE 2012, 7, e37783. [Google Scholar] [CrossRef] [PubMed]
- Caillé, S.; Samson, A.; Wirth, J.; Diéval, J.-B.; Vidal, S.; Cheynier, V. Sensory Characteristics Changes of Red Grenache Wines Submitted to Different Oxygen Exposures Pre and Post Bottling. Anal. Chim. Acta 2010, 660, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Gambuti, A.; Rinaldi, A.; Ugliano, M.; Moio, L. Evolution of Phenolic Compounds and Astringency during Aging of Red Wine: Effect of Oxygen Exposure before and after Bottling. J. Agric. Food Chem. 2013, 61, 1618–1627. [Google Scholar] [CrossRef] [PubMed]
- Wirth, J.; Caillé, S.; Souquet, J.M.; Samson, A.; Dieval, J.B.; Vidal, S.; Fulcrand, H.; Cheynier, V. Impact of Post-Bottling Oxygen Exposure on the Sensory Characteristics and Phenolic Composition of Grenache Rosé Wines. Food Chem. 2012, 132, 1861–1871. [Google Scholar] [CrossRef]
- Ugliano, M. Oxygen Contribution to Wine Aroma Evolution during Bottle Aging. J. Agric. Food Chem. 2013, 61, 6125–6136. [Google Scholar] [CrossRef]
- Parpinello, G.P.; Plumejeau, F.; Maury, C.; Versari, A. Effect of Micro-Oxygenation on Sensory Characteristics and Consumer Preference of Cabernet Sauvignon Wine. J. Sci. Food Agric. 2012, 92, 1238–1244. [Google Scholar] [CrossRef]
- Wirth, J.; Morel-Salmi, C.; Souquet, J.M.; Dieval, J.B.; Aagaard, O.; Vidal, S.; Fulcrand, H.; Cheynier, V. The Impact of Oxygen Exposure before and after Bottling on the Polyphenolic Composition of Red Wines. Food Chem. 2010, 123, 107–116. [Google Scholar] [CrossRef]
- Cano-López, M.; Pardo-Minguez, M.; López-Roca, J.M.; Gómez-Plaza, E. Effect of Microoxygenation on Anthocyanin and Derived Pigment Content and Chromatic Characteristics of Red Wines. Am. J. Enol. Vitic. 2006, 57, 325–331. [Google Scholar] [CrossRef]
- Cano-López, M.; Pardo-Mínguez, F.; Schmauch, G.; Saucier, C.; Teissedre, P.-L.; López-Roca, J.M.; Gómez-Plaza, E. Effect of Micro-Oxygenation on Color and Anthocyanin-Related Compounds of Wines with Different Phenolic Contents. J. Agric. Food Chem. 2008, 56, 5932–5941. [Google Scholar] [CrossRef]
- Gómez-Plaza, E.; Cano-López, M. A Review on Micro-Oxygenation of Red Wines: Claims, Benefits and the Underlying Chemistry. Food Chem. 2011, 125, 1131–1140. [Google Scholar] [CrossRef]
- Sánchez-Gómez, R.; Nevares, I.; Martínez-Gil, A.; del Alamo-Sanza, M. Oxygen Consumption by Red Wines under Different Micro-Oxygenation Strategies and Q. Pyrenaica Chips. Effects on Color and Phenolic Characteristics. Beverages 2018, 4, 69. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Gómez, R.; Del Alamo-Sanza, M.; Martínez-Martínez, V.; Nevares, I. Study of the Role of Oxygen in the Evolution of Red Wine Colour under Different Ageing Conditions in Barrels and Bottles. Food Chem. 2020, 328, 127040. [Google Scholar] [CrossRef] [PubMed]
- del Álamo Sanza, M.; Nevares Domínguez, I.; García Merino, S. Influence of Different Aging Systems and Oak Woods on Aged Wine Color and Anthocyanin Composition. Eur. Food Res. Technol. 2004, 219, 124–132. [Google Scholar] [CrossRef]
- Dangles, O.; Fenger, J.-A. The Chemical Reactivity of Anthocyanins and Its Consequences in Food Science and Nutrition. Molecules 2018, 23, 1970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waterhouse, A.L.; Zhu, J. A Quarter Century of Wine Pigment Discovery. J. Sci. Food Agric. 2020, 100, 5093–5101. [Google Scholar] [CrossRef]
- Boulton, R. The Copigmentation of Anthocyanins and Its Role in the Color of Red Wine: A Critical Review. Am. J. Enol. Vitic. 2001, 52, 67–87. [Google Scholar] [CrossRef]
- Zhang, B.; Yang, X.-S.; Li, N.-N.; Zhu, X.; Sheng, W.-J.; He, F.; Duan, C.-Q.; Han, S.-Y. Colorimetric Study of Malvidin-3- O -Glucoside Copigmented by Phenolic Compounds: The Effect of Molar Ratio, Temperature, PH, and Ethanol Content on Color Expression of Red Wine Model Solutions. Food Res. Int. 2017, 102, 468–477. [Google Scholar] [CrossRef]
- Gordillo, B.; Cejudo-Bastante, M.J.; Rodríguez-Pulido, F.J.; González-Miret, M.L.; Heredia, F.J. Application of the Differential Colorimetry and Polyphenolic Profile to the Evaluation of the Chromatic Quality of Tempranillo Red Wines Elaborated in Warm Climate. Influence of the Presence of Oak Wood Chips during Fermentation. Food Chem. 2013, 141, 2184–2190. [Google Scholar] [CrossRef]
- del Carmen Llaudy, M.; Canals, R.; González-Manzano, S.; Canals, J.M.; Santos-Buelga, C.; Zamora, F. Influence of Micro-Oxygenation Treatment before Oak Aging on Phenolic Compounds Composition, Astringency, and Color of Red Wine. J. Agric. Food Chem. 2006, 54, 4246–4252. [Google Scholar] [CrossRef]
- Cejudo-Bastante, M.J.; Hermosín-Gutiérrez, I.; Pérez-Coello, M.S. Micro-Oxygenation and Oak Chip Treatments of Red Wines: Effects on Colour-Related Phenolics, Volatile Composition and Sensory Characteristics. Part II: Merlot Wines. Food Chem. 2011, 124, 738–748. [Google Scholar] [CrossRef]
- Cejudo-Bastante, M.J.; Pérez-Coello, M.S.; Hermosín-Gutiérrez, I. Effect of Wine Micro-Oxygenation Treatment and Storage Period on Colour-Related Phenolics, Volatile Composition and Sensory Characteristics. Lebenson. Wiss. Technol. 2011, 44, 866–874. [Google Scholar] [CrossRef]
- Morales, P.; Rojas, V.; Quirós, M.; Gonzalez, R. The Impact of Oxygen on the Final Alcohol Content of Wine Fermented by a Mixed Starter Culture. Appl. Microbiol. Biotechnol. 2015, 99, 3993–4003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, G.; Zhang, B.; Joseph, L.; Waterhouse, A.L. Effects of Initial Oxygenation on Chemical and Aromatic Composition of Wine in Mixed Starters of Hanseniaspora Vineae and Saccharomyces Cerevisiae. Food Microbiol. 2020, 90, 103460. [Google Scholar] [CrossRef] [PubMed]
- Ferrer-Gallego, R.; Hernández-Hierro, J.M.; Rivas-Gonzalo, J.C.; Escribano-Bailón, M.T. Influence of Climatic Conditions on the Phenolic Composition of Vitis vinifera L. Cv. Graciano. Anal. Chim. Acta 2012, 732, 73–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baiano, A.; Terracone, C. Varietal Differences among the Phenolic Profiles and Antioxidant Activities of Seven Table Grape Cultivars Grown in the South of Italy Based on Chemometrics. J. Agric. Food Chem. 2011, 59, 9815–9826. [Google Scholar] [CrossRef] [PubMed]
- Waterhouse, A.L. Wine Phenolics. Ann. N. Y. Acad. Sci. 2002, 957, 21–36. [Google Scholar] [CrossRef] [PubMed]
- Danilewicz, J.C. Role of Tartaric and Malic Acids in Wine Oxidation. J. Agric. Food Chem. 2014, 62, 5149–5155. [Google Scholar] [CrossRef]
- Kontoudakis, N.; Guo, A.; Scollary, G.R.; Clark, A.C. The Impact of Aging Wine in High and Low Oxygen Conditions on the Fractionation of Cu and Fe in Chardonnay Wine. Food Chem. 2017, 229, 319–328. [Google Scholar] [CrossRef]
- Robinson, A.L.; Boss, P.K.; Solomon, P.S.; Trengove, R.D.; Heymann, H.; Ebeler, S.E. Origins of Grape and Wine Aroma. Part 1. Chemical Components and Viticultural Impacts. Am. J. Enol. Vitic. 2014, 65, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Sikuten, I.; Stambuk, P.; Tomaz, I.; Marchal, C.; Kontic, J.K.; Lacombe, T.; Maletic, E.; Preiner, D. Discrimination of Genetic and Geographical Groups of Grape Varieties (Vitis vinifera L.) Based on Their Polyphenolic Profiles. J. Food Compos. Anal. 2021, 102, 104062. [Google Scholar] [CrossRef]
- Vivas, N. Recherches Sur La Qualité Du Chêne Français de Tonnellerie (Q. Petraea Liebl., Q. Robur L.) et Sur Les Mécanismes d’Oxydoréduction des Vins Rouges Au Cours de Leur Élevage En Barriques; Université de Bordeaux II: Bordeaux, France, 1997. [Google Scholar]
- del Alamo-Sanza, M.; Nevares, I. Recent Advances in the Evaluation of the Oxygen Transfer Rate in Oak Barrels. J. Agric. Food Chem. 2014, 62, 8892–8899. [Google Scholar] [CrossRef]
- Kelly, M.; Wollan, D. Micro-oxygenation of wine in barrels. Aust. N. Z. Grapegrow. Win. Annu. Tech. Issue 2003, 473, 29–32. [Google Scholar]
- Kassara, S.; Kennedy, J.A. Relationship between Red Wine Grade and Phenolics. 2. Tannin Composition and Size. J. Agric. Food Chem. 2011, 59, 8409–8412. [Google Scholar] [CrossRef] [PubMed]
- Mercurio, M.D.; Dambergs, R.G.; Cozzolino, D.; Herderich, M.J.; Smith, P.A. Relationship between Red Wine Grades and Phenolics. 1. Tannin and Total Phenolics Concentrations. J. Agric. Food Chem. 2010, 58, 12313–12319. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, V.; Carrascon, V.; Bueno, M.; Ugliano, M.; Fernandez-Zurbano, P. Oxygen Consumption by Red Wines. Part I: Consumption Rates, Relationship with Chemical Composition, and Role of SO2. J. Agric. Food Chem. 2015, 63, 10928–10937. [Google Scholar] [CrossRef]
- Carrascon, V.; Fernandez-Zurbano, P.; Bueno, M.; Ferreira, V. Oxygen Consumption by Red Wines. Part II: Differential Effects on Color and Chemical Composition Caused by Oxygen Taken in Different Sulfur Dioxide-Related Oxidation Contexts. J. Agric. Food Chem. 2015, 63, 10938–10947. [Google Scholar] [CrossRef]
- Deshaies, S.; Cazals, G.; Enjalbal, C.; Constantin, T.; Garcia, F.; Mouls, L.; Saucier, C. Red Wine Oxidation: Accelerated Ageing Tests, Possible Reaction Mechanisms and Application to Syrah Red Wines. Antioxidants 2020, 9, 663. [Google Scholar] [CrossRef] [PubMed]
- Deshaies, S.; Garcia, L.; Veran, F.; Mouls, L.; Saucier, C.; Garcia, F. Red Wine Oxidation Characterization by Accelerated Ageing Tests and Cyclic Voltammetry. Antioxidants 2021, 10, 1943. [Google Scholar] [CrossRef]
- Marrufo-Curtido, A.; Ferreira, V.; Escudero, A. An Index for Wine Acetaldehyde Reactive Potential (ARP) and Some Derived Remarks about the Accumulation of Acetaldehyde during Wine Oxidation. Foods 2022, 11, 476. [Google Scholar] [CrossRef] [PubMed]
- Gambuti, A.; Picariello, L.; Rinaldi, A.; Moio, L. Evolution of Sangiovese Wines with Varied Tannin and Anthocyanin Ratios during Oxidative Aging. Front. Chem. 2018, 6, 63. [Google Scholar] [CrossRef] [Green Version]
- Rinaldi, A.; Picariello, L.; Soares, S.; Brandão, E.; de Freitas, V.; Moio, L.; Gambuti, A. Effect of Oxidation on Color Parameters, Tannins, and Sensory Characteristics of Sangiovese Wines. Eur. Food Res. Technol. 2021, 247, 2977–2991. [Google Scholar] [CrossRef]
- Coppola, F.; Picariello, L.; Forino, M.; Moio, L.; Gambuti, A. Comparison of Three Accelerated Oxidation Tests Applied to Red Wines with Different Chemical Composition. Molecules 2021, 26, 815. [Google Scholar] [CrossRef] [PubMed]
- Picariello, L.; Slaghenaufi, D.; Ugliano, M. Fermentative and Post-Fermentative Oxygenation of Corvina Red Wine: Influence on Phenolic and Volatile Composition, Colour and Wine Oxidative Response. J. Sci. Food Agric. 2020, 100, 2522–2533. [Google Scholar] [CrossRef] [PubMed]
- Jeremic, J.; Vongluanngam, I.; Ricci, A.; Parpinello, G.P.; Versari, A. The Oxygen Consumption Kinetics of Commercial Oenological Tannins in Model Wine Solution and Chianti Red Wine. Molecules 2020, 25, 1215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carrascón, V.; Vallverdú-Queralt, A.; Meudec, E.; Sommerer, N.; Fernandez-Zurbano, P.; Ferreira, V. The Kinetics of Oxygen and SO2 Consumption by Red Wines. What Do They Tell about Oxidation Mechanisms and about Changes in Wine Composition? Food Chem. 2018, 241, 206–214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García-Puente Rivas, E.; Alcalde-Eon, C.; Santos-Buelga, C.; Rivas-Gonzalo, J.C.; Escribano-Bailón, M.T. Behaviour and Characterisation of the Colour during Red Wine Making and Maturation. Anal. Chim. Acta 2006, 563, 215–222. [Google Scholar] [CrossRef]
- Heras-Roger, J.; Pomposo-Medina, M.; Díaz-Romero, C.; Darias-Martín, J. Copigmentation, Colour and Antioxidant Activity of Single-Cultivar Red Wines. Eur. Food Res. Technol. 2014, 239, 13–19. [Google Scholar] [CrossRef]
- Del Alamo-Sanza, M.; Sánchez-Gómez, R.; Martínez-Martínez, V.; Martínez-Gil, A.; Nevares, I. Air Saturation Methodology Proposal for the Analysis of Wine Oxygen Consumption Kinetics. Food Res. Int. 2021, 147, 110535. [Google Scholar] [CrossRef]
- Culleré, L.; Cacho, J.; Ferreira, V. An Assessment of the Role Played by Some Oxidation-Related Aldehydes in Wine Aroma. J. Agric. Food Chem. 2007, 55, 876–881. [Google Scholar] [CrossRef]
- Boulton, R.B. Both White Wines and Red Wines Can Consume Oxygen at Similar Rates. 2011. Available online: http://www.acenologia.com/enfoques/roger_boulton_enf0612_eng.htm (accessed on 4 August 2021).
- Nevares, I.; Martínez-Martínez, V.; Martínez-Gil, A.; Martín, R.; Laurie, V.F.; Del Álamo-Sanza, M. On-Line Monitoring of Oxygen as a Method to Qualify the Oxygen Consumption Rate of Wines. Food Chem. 2017, 229, 588–596. [Google Scholar] [CrossRef] [Green Version]
- Danilewicz, J.C.; Standing, M.J. Reaction Mechanisms of Oxygen and Sulfite in Red Wine. Am. J. Enol. Vitic. 2018, 69, 189–195. [Google Scholar] [CrossRef]
- Danilewicz, J.C. Review of Reaction Mechanisms of Oxygen and Proposed Intermediate Reduction Products in Wine: Central Role of Iron and Copper. Am. J. Enol. Vitic. 2003, 54, 73–85. [Google Scholar] [CrossRef]
- Danilewicz, J.C. Interaction of Sulfur Dioxide, Polyphenols, and Oxygen in a Wine-Model System: Central Role of Iron and Copper. Am. J. Enol. Vitic. 2007, 58, 53–60. [Google Scholar] [CrossRef]
- Ribereau-Gayon, J. Contribution à l’étude des Oxydations et Réductions dans les Vins; Universiat de Burdeus: Burdeus, France, 1933. [Google Scholar]
- Danilewicz, J.C. Reactions Involving Iron in Mediating Catechol Oxidation in Model Wine. Am. J. Enol. Vitic. 2013, 64, 316–324. [Google Scholar] [CrossRef]
- Waterhouse, A.L.; Laurie, V.F. Oxidation of Wine Phenolics: A Critical Evaluation and Hypotheses. Am. J. Enol. Vitic. 2006, 57, 306–313. [Google Scholar] [CrossRef]
- Casellato, U.; Tamburini, S.; Vigato, P.A.; Vidali, M.; Fenton, D.E. Binuclear Oxovanadium(IV) Complexes as Catalyst for the Oxygenation of the Catechols. Inorganica Chim. Acta 1984, 84, 101–104. [Google Scholar] [CrossRef]
- Elias, R.J.; Waterhouse, A.L. Controlling the Fenton Reaction in Wine. J. Agric. Food Chem. 2010, 58, 1699–1707. [Google Scholar] [CrossRef]
- Peterson, A.L.; Waterhouse, A.L. 1H NMR: A Novel Approach to Determining the Thermodynamic Properties of Acetaldehyde Condensation Reactions with Glycerol, (+)-Catechin, and Glutathione in Model Wine. J. Agric. Food Chem. 2016, 64, 6869–6878. [Google Scholar] [CrossRef]
- Singleton, V.L. Oxygen with Phenols and Related Reactions in Musts, Wines, and Model Systems: Observations and Practical Implications. Am. J. Enol. Vitic. 1987, 38, 69–77. [Google Scholar]
- Singleton, V.L. Browning and oxidation of must and wines. In Proceedings of the 4th Annual Midwest Regional Grape and Wine Conference; Peterson, D.V., Dharmadhikari, M.R., Holloway, J., Eds.; State Fruit Experiment Station, Southwest Missouri State University: Mountain Grove, MO, USA, 1989; pp. 87–93. [Google Scholar]
- Picariello, L.; Gambuti, A.; Petracca, F.; Rinaldi, A.; Moio, L. Enological Tannins Affect Acetaldehyde Evolution, Colour Stability and Tannin Reactivity during Forced Oxidation of Red Wine. Int. J. Food Sci. Technol. 2018, 53, 228–236. [Google Scholar] [CrossRef]
- Carrasco-Quiroz, M.; Martínez-Gil, A.M.; Nevares, I.; Martínez-Martínez, V.; Sánchez-Gómez, R.; Del Alamo-Sanza, M. Development of a New Strategy for Studying the Oxygen Consumption Potential of Wine through the Grape Extract Evaluation. Foods 2022, 11, 1961. [Google Scholar] [CrossRef] [PubMed]
- Vivas, N.; de Gaulejac, N.; Nonier, M.F. Quelques Aspect Cinétiques de la Consommation de l’oxygène et Conséquences Technologiqes des Oxydations dans les Vins Rouges. Rev. Oenologues Tech. Vitivinic. Oenologiques. 2014, 150, 27–31. [Google Scholar]
- Landrault, N.; Poucheret, P.; Ravel, P.; Gasc, F.; Cros, G.; Teissedre, P.L. Antioxidant Capacities and Phenolics Levels of French Wines from Different Varieties and Vintages. J. Agric. Food Chem. 2001, 49, 3341–3348. [Google Scholar] [CrossRef] [PubMed]
- Hernández, M.M.; Pesquera-Alegría, C.; Manso-Martínez, C.; Menéndez, C.M. Antioxidant Capacity and Flavanol Composition of Seed Extracts from a Grenache × Tempranillo Population: Effect of Sex and Color. Ind. Crops Prod. 2021, 161, 113177. [Google Scholar] [CrossRef]
- Marrufo-Curtido, A.; Carrascón, V.; Bueno, M.; Ferreira, V.; Escudero, A. A Procedure for the Measurement of Oxygen Consumption Rates (OCRs) in Red Wines and Some Observations about the Influence of Wine Initial Chemical Composition. Food Chem. 2018, 248, 37–45. [Google Scholar] [CrossRef]
- del Alamo, M.; Bernal, J.L.; Gómez-Cordovés, C. Behavior of Monosaccharides, Phenolic Compounds, and Color of Red Wines Aged in Used Oak Barrels and in the Bottle. J. Agric. Food Chem. 2000, 48, 4613–4618. [Google Scholar] [CrossRef]
- Harborne, J.B. The Flavonoids: Advances in Research since 1980; Harborne, J.B., Ed.; Chapman and Hall: London, UK, 1988; ISBN 9780412287701. [Google Scholar]
- He, F.; Liang, N.-N.; Mu, L.; Pan, Q.-H.; Wang, J.; Reeves, M.J.; Duan, C.-Q. Anthocyanins and Their Variation in Red Wines. II. Anthocyanin Derived Pigments and Their Color Evolution. Molecules 2012, 17, 1483–1519. [Google Scholar] [CrossRef] [Green Version]
- Santos-Buelga, C.; Bravo-Haro, S.; Rivas-Gonzalo, J.C. Interactions between catechin and malvi-din-3-monoglucoside in model solutions. Z. Lebensm. Unters. Forsch. 1995, 201, 269–274. [Google Scholar] [CrossRef]
- Mateus, N.; Oliveira, J.; Pissarra, J.; González-Paramás, A.M.; Rivas-Gonzalo, J.C.; Santos-Buelga, C.; Silva, A.M.S.; de Freitas, V. A New Vinylpyranoanthocyanin Pigment Occurring in Aged Red Wine. Food Chem. 2006, 97, 689–695. [Google Scholar] [CrossRef]
- Mateus, N.; Silva, A.M.S.; Rivas-Gonzalo, J.C.; Santos-Buelga, C.; de Freitas, V. A New Class of Blue Anthocyanin-Derived Pigments Isolated from Red Wines. J. Agric. Food Chem. 2003, 51, 1919–1923. [Google Scholar] [CrossRef]
- Atanasova, V.; Fulcrand, H.; Cheynier, V.; Moutounet, M. Effect of Oxygenation on Polyphenol Changes Occurring in the Course of Wine-Making. Anal. Chim. Acta 2002, 458, 15–27. [Google Scholar] [CrossRef]
- De Freitas, V.A.P.; Fernandes, A.; Oliveira, J.; Teixeira, N.; Mateus, N. A Review of the Current Knowledge of Red Wine Colour. OENO One 2017, 51, 1001–1021. [Google Scholar] [CrossRef]
- Zhang, X.-K.; He, F.; Zhang, B.; Reeves, M.J.; Liu, Y.; Zhao, X.; Duan, C.-Q. The Effect of Prefermentative Addition of Gallic Acid and Ellagic Acid on the Red Wine Color, Copigmentation and Phenolic Profiles during Wine Aging. Food Res. Int. 2018, 106, 568–579. [Google Scholar] [CrossRef]
- Quaglieri, C.; Jourdes, M.; Waffo-Teguo, P.; Teissedre, P.-L. Updated Knowledge about Pyranoanthocyanins: Impact of Oxygen on Their Contents, and Contribution in the Winemaking Process to Overall Wine Color. Trends Food Sci. Technol. 2017, 67, 139–149. [Google Scholar] [CrossRef]
- Schmidtke, L.M.; Clark, A.C.; Scollary, G.R. Micro-Oxygenation of Red Wine: Techniques, Applications, and Outcomes. Crit. Rev. Food Sci. Nutr. 2011, 51, 115–131. [Google Scholar] [CrossRef] [PubMed]
- Alegre, Y.; Arias-Pérez, I.; Hernández-Orte, P.; Ferreira, V. Development of a New Strategy for Studying the Aroma Potential of Winemaking Grapes through the Accelerated Hydrolysis of Phenolic and Aromatic Fractions (PAFs). Food Res. Int. 2020, 127, 108728. [Google Scholar] [CrossRef] [PubMed]
- Näykki, T.; Jalukse, L.; Helm, I.; Leito, I. Dissolved Oxygen Concentration Interlaboratory Comparison: What Can We Learn? Water 2013, 5, 420–442. [Google Scholar] [CrossRef] [Green Version]
- Glories, Y. La Couleur Des Vins Rouges. 2e Partie: Mesure, Origine et Interprétation. OENO One 1984, 18, 253. [Google Scholar] [CrossRef]
- Compendium of International Analysis of Methods -OIV Chromatic Characteristics. Available online: http://www.oiv.int/public/medias/2478/oiv-ma-as2-11.pdf (accessed on 2 October 2022).
- Ribereau-Gayon, P. The determination of total phenolic compounds in red wines, Le dosage des composés phénoliques totaux dan les vins rouges. Chim. Anal. 1970, 52, 627–631. [Google Scholar]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
(a) | ||||||||
---|---|---|---|---|---|---|---|---|
Saturation Level | Omax | Omin | ∆Omax_min | Oint | O90 | ∆O90_10 | Amax_min | AOmax_min |
W-A | ||||||||
Sat-1 | 125 ± 7.64 a | 106 ± 7.59 a | 18.9 ± 5.12 a | 115 ± 7.17 a | 123 ± 7.60 a | 14.8 ± 4.20 a | 52,544 ± 3208 a | 2430 ± 763 a |
Sat-2 | 170 ± 0.00 a | 100 ± 6.08 a | 69.3 ± 6.08 ab | 135 ± 3.04 ab | 162 ± 0.97 a | 54.8 ± 4.57 ab | 73,727 ± 3333 a | 8488 ± 964 ab |
Sat-3 | 241 ± 12.9 b | 121 ± 14.0 a | 120 ± 12.7 b | 181 ± 11.9 bc | 227 ± 11.7 b | 94.0 ± 9.46 b | 108,585 ± 7047 b | 13,841 ± 2922 b |
Sat-4 | 296 ± 15.7 b | 113 ± 4.42 a | 183 ± 13.2 c | 205 ± 9.50 c | 276 ± 13.9 b | 144 ± 9.27 c | 129,133 ± 4683 b | 24,753 ± 1237 c |
W-B | ||||||||
Sat-1 | 123 ± 8.92 a | 101 ± 8.93 a | 16.5 ± 6.43 a | 112 ± 6.91 a | 120 ± 8.34 a | 12.8 ± 5.16 a | 87,881 ± 5116 a | 2111 ± 1171 a |
Sat-2 | 166 ± 0.00 ab | 105 ± 5.24 a | 61.3 ± 5.24 ab | 136 ± 2.62 ab | 160 ± 0.50 ab | 48.6 ± 4.06 ab | 93,639 ± 4316 ab | 8882 ± 1211 ab |
Sat-3 | 229 ± 22.0 bc | 111 ± 3.45 a | 118 ± 19.7 bc | 170 ± 12.3 bc | 215 ± 17.0 bc | 92.1 ± 12.5 bc | 117,120 ± 4988 bc | 18,030 ± 2315 bc |
Sat-4 | 277 ± 12.0 c | 109 ± 4.39 a | 169 ± 8.08 c | 193 ± 8.07 c | 260 ± 11.1 c | 134 ± 6.40 c | 129,846 ± 5545 c | 22,466 ± 1490 c |
W-C | ||||||||
Sat-1 | 126 ± 7.67 a | 116 ± 8.62 a | 10.1 ± 1.19 a | 121 ± 8.14 a | 125 ± 7.79 a | 7.70 ± 1.02 a | 43,575 ± 3335 a | 1004 ± 319 a |
Sat-2 | 166 ± 0.00 a | 119 ± 5.89 a | 47.1 ± 5.89 b | 142 ± 2.94 ab | 161 ± 0.56 a | 37.4 ± 4.66 b | 78,183 ± 2677 a | 4979 ± 1272 ab |
Sat-3 | 240 ± 12.8 b | 135 ± 14.8 a | 105 ± 2.07 c | 187 ± 13.8 bc | 228 ± 13.4 b | 82.7 ± 1.49 c | 130,410 ± 13,035 b | 12,003 ± 1541 b |
Sat-4 | 296 ± 7.81 c | 129 ± 5.90 a | 167 ± 5.56 d | 213 ± 6.34 c | 278 ± 8.53 b | 133 ± 5.45 d | 161,098 ± 8410 b | 22,971 ± 2900 c |
(b) | ||||||||
Saturation Level | A090_10 | tOmin | tO_90 | tR_min | Rmax | Rmedio | Vcons | Vcons10% |
W-A | ||||||||
Sat-1 | 1667 ± 411 a | 434 ± 34.4 a | 17.6 ± 4.46 b | 254 ± 97.6 a | 0.91 ± 0.26 a | 254 ± 138 a | 0.04 ± 0.01 a | 0.12 ± 0.01 a |
Sat-2 | 5095 ± 703 ab | 639 ± 7.78 a | 4.19 ± 0.58 a | 19.3 ± 6.78 a | 19.3 ± 0.43 a | 19.3 ± 9.58 a | 0.11 ± 0.01 ab | 1.81 ± 0.47 a |
Sat-3 | 6808 ± 3511 ab | 620 ± 232 a | 0.16 ± 0.00 a | 2.39 ± 0.50 a | 90.2 ± 15.6 b | 2.39 ± 0.71 ab | 0.18 ± 0.03 b | 88.8 ± 15.3 b |
Sat-4 | 13,449 ± 1142 c | 906 ± 10.1 a | 12.3 ± 0.48 ab | 0.35 ± 0.29 a | 27.0 ± 9.52 a | 0.35 ± 0.40 b | 0.20 ± 0.01 b | 1.68 ± 0.38 a |
W-B | ||||||||
Sat-1 | 2486 ± 2081 a | 382 ± 103 a | 17.4 ± 5.54 a | 185 ± 114 a | 0.93 ± 0.15 a | 185 ± 161 a | 0.04 ± 0.01 a | 0.10 ± 0.03 a |
Sat-2 | 5520 ± 1021 ab | 727 ± 75.4 ab | 8.75 ± 2.26 a | 45.4 ± 33.0 a | 1.07 ± 0.14 a | 45.4 ± 46.7 ab | 0.09 ± 0.02 ab | 0.76 ± 0.21 a |
Sat-3 | 10,924 ± 1398 ab | 806 ± 59.8 ab | 11.1 ± 1.45 a | 1.19 ± 0.14 a | 20.0 ± 11.3 a | 1.19 ± 0.20 bc | 0.15 ± 0.03 bc | 1.04 ± 0.28 a |
Sat-4 | 13,029 ± 1554 b | 909 ± 58.1 b | 0.60 ± 0.15 a | 0.02 ± 0.00 a | 33.7 ± 7.59 a | 0.02 ± 0.00 c | 0.19 ± 0.01 c | 31.3 ± 10.6 b |
W-C | ||||||||
Sat-1 | 737 ± 306 a | 312 ± 95.1 a | 15.6 ± 4.47 b | 105 ± 37.5 a | 0.91 ± 0.26 a | 105 ± 53.1 a | 0.03 ± 0.01 a | 0.08 ± 0.03 a |
Sat-2 | 3061 ± 836 a | 520 ± 96.0 ab | 5.76 ± 1.30 ab | 112 ± 0.58 a | 1.21 ± 0.40 a | 112 ± 0.82 a | 0.09 ± 0.01 ab | 0.84 ± 0.10 a |
Sat-3 | 7253 ± 1089 ab | 736 ± 101 ab | 0.31 ± 0.16 a | 499 ± 93.9 b | 61.2 ± 11.3 b | 499 ± 133 ab | 0.14 ± 0.02 b | 22.3 ± 7.91 c |
Sat-4 | 13,731 ± 1825 b | 939 ± 121 b | 1.73 ± 0.00 a | 0.09 ± 0.00 a | 17.6 ± 4.21 a | 0.09 ± 0.00 b | 0.18 ± 0.03 b | 9.03 ± 2.84 b |
Omax | Omin | ∆Omax_min | Rmax | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
W-A | W-B | W-C | W-A | W-B | W-C | W-A | W-B | W-C | W-A | W-B | W-C | |
Df-3-Gl (Df) | −0.947 *** | −0.895 ** | −0.732 * | −0.626 | −0.616 | −0.659 | −0.922 *** | −0.900 ** | −0.679 | −0.695 | −0.718 * | −0.681 |
Cy-3-Gl (Cn) | 0.382 | −0.492 | −0.840 ** | 0.272 | −0.503 | −0.538 | 0.361 | −0.471 | −0.822 * | 0.477 | −0.626 | −0.581 |
Pt-3-Gl (Pt) | 0.407 | −0.829 * | −0.787 * | 0.469 | −0.139 | −0.206 | 0.377 | −0.836 ** | −0.809 * | 0.426 | −0.752 * | −0.462 |
Pn-3-Gl (Pn) | −0.125 | −0.891 ** | −0.413 | 0.129 | −0.433 | −0.269 | −0.085 | −0.895 ** | −0.397 | −0.091 | −0.720 * | −0.338 |
Mv-3-Gl (Mv) | −0.932 *** | −0.800 * | −0.962 *** | −0.406 | −0.291 | −0.484 | −0.908 ** | −0.819 * | −0.950 *** | −0.553 | −0.582 | −0.595 |
% ABTS | −0.888 ** | −0.552 | −0.621 | −0.568 | −0.399 | −0.462 | −0.867 ** | −0.574 | −0.556 | −0.754 * | −0.323 | −0.666 |
% DPPH | −0.883 ** | −0.761 * | −0.102 | −0.539 | −0.538 | −0.313 | −0.853 ** | −0.786 * | −0.061 | −0.729 * | −0.536 | −0.225 |
TPI | 0.953 *** | 0.784 * | 0.330 | 0.498 | 0.483 | 0.280 | 0.932 *** | 0.791 * | 0.312 | 0.674 | 0.549 | 0.000 |
Color Intensity (CI) | 0.306 | −0.570 | −0.024 | 0.015 | −0.357 | 0.364 | 0.332 | −0.586 | −0.119 | 0.305 | −0.331 | 0.705 |
L* | −0.033 | 0.585 | −0.418 | 0.134 | 0.350 | −0.584 | −0.067 | 0.599 | −0.326 | −0.095 | 0.367 | −0.872 ** |
a* | 0.035 | 0.607 | −0.861 ** | 0.165 | 0.377 | −0.601 | 0.000 | 0.622 | −0.813 * | −0.048 | 0.397 | −0.765 * |
b* | −0.032 | 0.594 | −0.672 | 0.143 | 0.368 | −0.559 | −0.066 | 0.608 | −0.630 | −0.086 | 0.380 | −0.420 |
Cab* | 0.005 | 0.599 | −0.869 ** | 0.152 | 0.368 | −0.614 | −0.030 | 0.613 | −0.820 * | −0.067 | 0.387 | −0.753 * |
650 nm | −0.086 | −0.625 | 0.816 * | −0.193 | −0.341 | 0.628 | −0.050 | −0.638 | 0.757 * | 0.003 | −0.434 | 0.808 * |
630 nm | 0.113 | −0.566 | 0.718 * | −0.121 | −0.361 | 0.630 | 0.147 | −0.578 | 0.647 | 0.122 | −0.350 | 0.873 ** |
620 nm | 0.183 | −0.546 | 0.612 | −0.088 | −0.335 | 0.621 | 0.217 | −0.562 | 0.533 | 0.169 | −0.318 | 0.900 ** |
520 nm | 0.174 | −0.658 | −0.574 | −0.024 | −0.378 | −0.022 | 0.200 | −0.672 | −0.640 | 0.262 | −0.424 | 0.172 |
420 nm | 0.566 | −0.262 | 0.457 | 0.117 | −0.264 | 0.546 | 0.588 | −0.279 | 0.373 | 0.407 | −0.021 | 0.923 *** |
330 nm | 0.685 | 0.291 | 0.092 | 0.122 | −0.041 | 0.396 | 0.711 * | 0.285 | 0.012 | 0.374 | 0.468 | 0.854 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carrasco-Quiroz, M.; Alamo-Sanza, M.d.; Martínez-Gil, A.M.; Sánchez-Gómez, R.; Martínez-Martínez, V.; Nevares, I. Influence of Oxygen Management on Color and Phenolics of Red Wines. Molecules 2023, 28, 459. https://doi.org/10.3390/molecules28010459
Carrasco-Quiroz M, Alamo-Sanza Md, Martínez-Gil AM, Sánchez-Gómez R, Martínez-Martínez V, Nevares I. Influence of Oxygen Management on Color and Phenolics of Red Wines. Molecules. 2023; 28(1):459. https://doi.org/10.3390/molecules28010459
Chicago/Turabian StyleCarrasco-Quiroz, Marioli, Maria del Alamo-Sanza, Ana María Martínez-Gil, Rosario Sánchez-Gómez, Víctor Martínez-Martínez, and Ignacio Nevares. 2023. "Influence of Oxygen Management on Color and Phenolics of Red Wines" Molecules 28, no. 1: 459. https://doi.org/10.3390/molecules28010459
APA StyleCarrasco-Quiroz, M., Alamo-Sanza, M. d., Martínez-Gil, A. M., Sánchez-Gómez, R., Martínez-Martínez, V., & Nevares, I. (2023). Influence of Oxygen Management on Color and Phenolics of Red Wines. Molecules, 28(1), 459. https://doi.org/10.3390/molecules28010459