8,9-Dihydrocannabidiol, an Alternative of Cannabidiol, Its Preparation, Antibacterial and Antioxidant Ability
Abstract
:1. Introduction
2. Results
2.1. Synthesis of CBD Analogues and Improvement on H2CBD Production
2.2. H2BCD and CBD Present Similar and Stronger Antibacterial and Bactericidal Activity Than Popular Antibiotics
2.3. H2CBD Does Not Present Synergistic or Antagonistic Effect on Bacteria with the Popular Antibiotics
2.4. H2CBD Follows CBD in the Time–Kill Kinetics Curves
2.5. H2CBD Possess Similar Toxicity towards to Human Skin Fibroblasts as CBD
2.6. H2CBD Possesses Similar Antioxidant Activity to CBD and Is Comparable with VC
3. Discussion
3.1. Synthesis of H2CBD
3.2. The Antibacterial Activity of H2BCD and CBD in Comparison to Popular Antibiotics
3.3. The Toxicity of H2BCD and CBD towards Human Skin Fibroblasts
3.4. The Antioxidant Activity of H2BCD and CBD in Comparison of VC
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Preparation of 8,9-Dihydrocannabidiol (H2CBD) and NMR Profiles of CBD Analogues
4.3. Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) Assays against S. aureus and E. coli
4.4. Synergistic Effect of CBD Analogues with the Classic Antibiotics against S. aureus and E. coli
4.5. Optical Density Measurements for Kinetic Bactericidal Effect of H2CBD
4.6. Cytotoxicity of H2CBD to Human Skin Fibroblasts
4.7. DPPH Radical Scavenging Activity
4.8. ABTS Radical Scavenging Assay
4.9. Ferric Reducing Antioxidant Power Assay
4.10. Lipid Oxidation Inhibition Assay
4.11. Statistics
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gaoni, Y.; Mechoulam, R. Hashish—VII: The isomerization of cannabidiol to tetrahydrocannabinols. Tetrahedron 1966, 22, 1481–1488. [Google Scholar] [CrossRef]
- Broecker, S.; Pragst, F. Isomerization of cannabidiol and Delta(9)-tetrahydrocannabinol during positive electrospray ionization. In-source hydrogen/deuterium exchange experiments by flow injection hybrid quadrupole-time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 2012, 26, 1407–1414. [Google Scholar] [CrossRef] [PubMed]
- Radwan, M.M.; Ross, S.A.; Slade, D.; Ahmed, S.A.; Zulfiqar, F.; ElSohly, M.A. Isolation and characterization of new cannabis constituents form high potency variety. Planta Medica 2008, 74, 267–272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brunetti, P.; Lo Faro, A.F.; Pirani, F.; Berretta, P.; Pacifici, R.; Pichini, S.; Busardo, F.P. Pharmacology and legal status of cannabidiol. Ann. I Super. Sanita 2020, 56, 285–291. [Google Scholar]
- Liu, C.; Li, H.F.; Xu, F.; Jiang, X.; Ma, H.; Seeram, N.P. Cannabidiol Protects Human Skin Keratinocytes from Hydrogen-Peroxide-Induced Oxidative Stress via Modulation of the Caspase-1-IL-1 beta Axis. J. Nat. Prod. 2021, 84, 1563–1572. [Google Scholar] [CrossRef]
- Muscara, C.; Smeriglio, A.; Trombetta, D.; Mandalari, G.; La Camera, E.; Grassi, G.; Circosta, C. Phytochemical characterization and biological properties of two standardized extracts from a non-psychotropic Cannabis sativa L. cannabidiol (CBD)-chemotype. Phytother. Res. 2021, 35, 5269–5281. [Google Scholar] [CrossRef]
- Žitek, T.; Leitgeb, M.; Golle, A.; Dariš, B.; Knez, Ž.; Knez Hrnčič, M. The Influence of Hemp Extract in Combination with Ginger on the Metabolic Activity of Metastatic Cells and Microorganisms. Molecules 2020, 25, 4992. [Google Scholar] [CrossRef]
- Cintosun, A.; Lara-Corrales, I.; Pope, E. Mechanisms of Cannabinoids and Potential Applicability to Skin Diseases. Clin. Drug Investig. 2020, 40, 293–304. [Google Scholar] [CrossRef]
- Sangiovanni, E.; Fumagalli, M.; Pacchetti, B.; Piazza, S.; Magnavacca, A.; Khalilpour, S.; Melzi, G.; Martinelli, G.; Dell’Agli, M. Cannabis sativa L. extract and cannabidiol inhibit in vitro mediators of skin inflammation and wound injury. Phytother. Res. 2019, 33, 2083–2093. [Google Scholar] [CrossRef]
- Baswan, S.M.; Klosner, A.E.; Glynn, K.; Rajgopal, A.; Malik, K.; Yim, S.; Stern, N. Therapeutic Potential of Cannabidiol (CBD) for Skin Health and Disorders. Clin. Cosmet. Investig. Dermatol. 2020, 13, 927–942. [Google Scholar] [CrossRef]
- Jastrzab, A.; Jarocka-Karpowicz, I.; Markowska, A.; Wronski, A.; Gegotek, A.; Skrzydlewska, E. Antioxidant and Anti-inflammatory Effect of Cannabidiol Contributes to the Decreased Lipid Peroxidation of Keratinocytes of Rat Skin Exposed to UV Radiation. Oxidative Med. Cell. Longev. 2021, 2021, 6647222. [Google Scholar] [CrossRef]
- Gruber, J.V.; Holtz, R. Purified Cannabidiol isolate does not inhibit active caspase-1 release in NLRP inflammasome-mediated UVB or ATP-activated keratinocytes or appear to reduce key inflammatory cytokines in UVB-irradiate keratinocytes. Int. J. Cosmet. Sci. 2021, 43, 283–291. [Google Scholar] [CrossRef]
- Blaskovich, M.A.T.; Kavanagh, A.M.; Elliott, A.G.; Zhang, B.; Ramu, S.; Amado, M.; Lowe, G.J.; Hinton, A.O.; Pham, D.M.T.; Zuegg, J.; et al. The antimicrobial potential of cannabidiol. Commun. Biol. 2021, 4, 7. [Google Scholar] [CrossRef]
- Zagozen, M.; Cerenak, A.; Kreft, S. Cannabigerol and cannabichromene in Cannabis sativa L. Acta Pharm. 2021, 71, 355–364. [Google Scholar] [CrossRef]
- Sampson, P.B. Phytocannabinoid Pharmacology: Medicinal Properties of Cannabis sativa Constituents Aside from the “Big Two”. J. Nat. Prod. 2021, 84, 142–160. [Google Scholar] [CrossRef]
- Cai, C.; Yu, W.; Wang, C.; Liu, L.; Li, F.; Tan, Z. Green extraction of cannabidiol from industrial hemp (Cannabis sativa L.) using deep eutectic solvents coupled with further enrichment and recovery by macroporous resin. J. Mol. Liq. 2019, 287, 110957. [Google Scholar] [CrossRef]
- ElSohly, M.A.; Slade, D. Chemical constituents of marijuana: The complex mixture of natural cannabinoids. Life Sci. 2005, 78, 539–548. [Google Scholar] [CrossRef]
- Szalata, M.; Dreger, M.; Zielińska, A.; Banach, J.; Szalata, M.; Wielgus, K. Simple Extraction of Cannabinoids from Female Inflorescences of Hemp (Cannabis sativa L.). Molecules 2022, 27, 5868. [Google Scholar] [CrossRef]
- Sedan, D.; Vaccarini, C.; Demetrio, P.; Morante, M.; Montiel, R.; Sauri, A.; Andrinolo, D. Cannabinoid Content in Cannabis Flowers and Homemade Cannabis-Based Products Used for Therapeutic Purposes in Argentina. Cannabis Cannabinoid Res. 2021. [Google Scholar] [CrossRef]
- Ben-Shabat, S.; Hanuš, L.O.; Katzavian, G.; Gallily, R. New Cannabidiol Derivatives: Synthesis, Binding to Cannabinoid Receptor, and Evaluation of Their Antiinflammatory Activity. J. Med. Chem. 2006, 49, 1113–1117. [Google Scholar] [CrossRef]
- Mascal, M.; Hafezi, N.; Wang, D.; Hu, Y.; Serra, G.; Dallas, M.L.; Spencer, J.P.E. Synthetic, non-intoxicating 8,9-dihydrocannabidiol for the mitigation of seizures. Sci. Rep. 2019, 9, 7778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crombie, L.; Crombie, W.M.L.; Firth, D.F. Terpenylations using (R)-(–)-α-phellandrene. Synthesis of the (3S,4R)-8,9-dihydro-o- and -p-cannabidiols, their iso-THC’s, and the natural dihydrochalcone (3S,4R)-(+)-linderatin. J. Chem. Soc. Perkin Trans. 1988, 1, 1251–1253. [Google Scholar] [CrossRef]
- Marzullo, P.; Foschi, F.; Coppini, D.A.; Fanchini, F.; Magnani, L.; Rusconi, S.; Luzzani, M.; Passarella, D. Cannabidiol as the Substrate in Acid-Catalyzed Intramolecular Cyclization. J. Nat. Prod. 2020, 83, 2894–2901. [Google Scholar] [CrossRef] [PubMed]
- Martinenghi, L.D.; Jonsson, R.; Lund, T.; Jenssen, H. Isolation, Purification, and Antimicrobial Characterization of Cannabidiolic Acid and Cannabidiol from Cannabis sativa L. Biomolecules 2020, 10, 900. [Google Scholar] [CrossRef] [PubMed]
- Kosgodage, U.S.; Matewele, P.; Awamaria, B.; Kraev, I.; Warde, P.; Mastroianni, G.; Nunn, A.V.; Guy, G.W.; Bell, J.D.; Inal, J.M.; et al. Cannabidiol Is a Novel Modulator of Bacterial Membrane Vesicles. Front. Cell Infect. Microbiol. 2019, 9, 324. [Google Scholar] [CrossRef]
- Nigro, E.; Pecoraro, M.T.; Formato, M.; Piccolella, S.; Ragucci, S.; Mallardo, M.; Russo, R.; Di Maro, A.; Daniele, A.; Pacifico, S. Cannabidiolic acid in Hemp Seed Oil Table Spoon and Beyond. Molecules 2022, 27, 2566. [Google Scholar] [CrossRef]
- Zheljazkov, V.D.; Sikora, V.; Dincheva, I.; Kacaniova, M.; Astatkie, T.; Semerdjieva, I.B.; Latkovic, D. Industrial, CBD, and Wild Hemp: How Different Are Their Essential Oil Profile and Antimicrobial Activity? Molecules 2020, 25, 4631. [Google Scholar] [CrossRef]
- Wassmann, C.S.; Hojrup, P.; Klitgaard, J.K. Cannabidiol is an effective helper compound in combination with bacitracin to kill Gram-positive bacteria. Sci. Rep. 2020, 10, 4112. [Google Scholar] [CrossRef] [Green Version]
- Atalay, S.; Gegotek, A.; Nski, A.W.; Domigues, P.; Skrzydlewska, E. Therapeutic application of cannabidiol on UVA and UVB irradiated rat skin. A proteomic study (vol 192, pg 1, 2021). J. Pharm. Biomed. 2021, 200, 114038. [Google Scholar] [CrossRef]
- Atalay, S.; Gegotek, A.; Skrzydlewska, E. Protective Effects of Cannabidiol on the Membrane Proteome of UVB-Irradiated Keratinocytes. Antioxidants 2021, 10, 402. [Google Scholar] [CrossRef]
- Perez, E.; Fernandez, J.R.; Fitzgerald, C.; Rouzard, K.; Tamura, M.; Savile, C. In Vitro and Clinical Evaluation of Cannabigerol (CBG) Produced via Yeast Biosynthesis: A Cannabinoid with a Broad Range of Anti-Inflammatory and Skin Health-Boosting Properties. Molecules 2022, 27, 491. [Google Scholar] [CrossRef]
- Atalay, S.; Jarocka-Karpowicz, I.; Skrzydlewska, E. Antioxidative and Anti-Inflammatory Properties of Cannabidiol. Antioxidants 2020, 9, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rajan, T.S.; Giacoppo, S.; Iori, R.; De Nicola, G.R.; Grassi, G.; Pollastro, F.; Bramanti, P.; Mazzon, E. Anti-inflammatory and antioxidant effects of a combination of cannabidiol and moringin in LPS-stimulated macrophages. Fitoterapia 2016, 112, 104–115. [Google Scholar] [CrossRef]
- Krzyzewska, A.; Baranowska-Kuczko, M.; Jastrzab, A.; Kasacka, I.; Kozlowska, H. Cannabidiol Improves Antioxidant Capacity and Reduces Inflammation in the Lungs of Rats with Monocrotaline-Induced Pulmonary Hypertension. Molecules 2022, 27, 3327. [Google Scholar] [CrossRef]
- Iffland, K.; Grotenhermen, F. An Update on Safety and Side Effects of Cannabidiol: A Review of Clinical Data and Relevant Animal Studies. Cannabis Cannabinoid 2017, 2, 139–154. [Google Scholar] [CrossRef] [Green Version]
- Appendino, G.; Gibbons, S.; Giana, A.; Pagani, A.; Grassi, G.; Stavri, M.; Smith, E.; Rahman, M. Antibacterial cannabinoids from Cannabis sativa: A structure-activity study. J. Nat. Prod. 2008, 71, 1427–1430. [Google Scholar] [CrossRef]
- Magdalena, D.; Edyta, R.; Elżbieta, G.; Robert, T.; Katarzyna, G.E.; Andrzej, P. Protective influence of hyaluronic acid on focal adhesion kinase activity in human skin fibroblasts exposed to ethanol. Drug Des. Dev. Ther. 2017, 11, 669–676. [Google Scholar]
- Sowmya, R.; Sachindra, N.M. Evaluation of antioxidant activity of carotenoid extract from shrimp processing byproducts by in vitro assays and in membrane model system. Food Chem. 2012, 134, 308–314. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Murzakhmetova, M.; Moldakarimov, S.; Tancheva, L.; Abarova, S.; Serkedjieva, J. Antioxidant and prooxidant properties of a polyphenol-rich extract from Geranium sanguineum L. in vitro and in vivo. Phytother. Res. 2008, 22, 746–751. [Google Scholar] [CrossRef]
Run | Catalyst | Catalyst: Olivetol (mol %) | Solvent | H2CBD Production Yield (%) | 6,6,8,9-THC Production Yield (%) |
---|---|---|---|---|---|
1 | FeCl3 | 30 | benzene | 73.4 | 10.5 |
2 | FeCl3 | 30 | toluene | 70.0 | 12.5 |
3 | FeCl3 | 30 | chloroform | 85.3 | Trace |
4 | FeCl3 | 10 | chloroform | 85.2 | Trace |
5 | FeCl3 | 5 | chloroform | 80.7 | Trace |
6 | AlCl3 | 30 | benzene | 69.2 | 12.6 |
7 | BF3·H2O | 30 | benzene | 48.2 | 8.7 |
8 | CuCl2·2H2O | 30 | benzene | 32.7 | Trace |
9 | TsOH | 30 | benzene | 70.5 | 14.7 |
Entry | Phenol/ Naphthol | Product | Compound A Yield (%) | Compound B Yield (%) |
---|---|---|---|---|
1 | 55 | 25 | ||
2 | 44 | 30 | ||
3 | 65 | 20 | ||
4 | 72 | / |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Q.; Guo, M.; Zou, L.; Wang, Q.; Xia, Y. 8,9-Dihydrocannabidiol, an Alternative of Cannabidiol, Its Preparation, Antibacterial and Antioxidant Ability. Molecules 2023, 28, 445. https://doi.org/10.3390/molecules28010445
Wu Q, Guo M, Zou L, Wang Q, Xia Y. 8,9-Dihydrocannabidiol, an Alternative of Cannabidiol, Its Preparation, Antibacterial and Antioxidant Ability. Molecules. 2023; 28(1):445. https://doi.org/10.3390/molecules28010445
Chicago/Turabian StyleWu, Qi, Maoyue Guo, Lianghua Zou, Qiqi Wang, and Yongmei Xia. 2023. "8,9-Dihydrocannabidiol, an Alternative of Cannabidiol, Its Preparation, Antibacterial and Antioxidant Ability" Molecules 28, no. 1: 445. https://doi.org/10.3390/molecules28010445
APA StyleWu, Q., Guo, M., Zou, L., Wang, Q., & Xia, Y. (2023). 8,9-Dihydrocannabidiol, an Alternative of Cannabidiol, Its Preparation, Antibacterial and Antioxidant Ability. Molecules, 28(1), 445. https://doi.org/10.3390/molecules28010445