Phytochemical Constituents, Folk Medicinal Uses, and Biological Activities of Genus Angelica: A Review
Abstract
:1. Introduction
1.1. Distribution
1.2. Morphology
1.3. Traditional Uses
1.4. Toxicity and Side Effects of Genus Angelica
2. Effects of Drying Methods on Contents of Bioactive Compounds and Antioxidant Activities of Angelica dahurica
3. Phytochemical Constituents
3.1. Essential Oil (Table 2)
Angelica Species | Part Used | Essential Oil Components | Reference(s) |
---|---|---|---|
A. archangelica | roots, flower heads, and seeds | α-pinene, camphene, β-pinene, β-myrcene, α-phellandrene, Δ3-carene, β-phellandrene, β-cis-ocimene, β-transocimene, β-copaene, β-bourbonene, β-elemene, α-cedrene, -α-bergamotene, β-cedrene, cis-γelemene, β-(Z)-farnesene, β-humulene, germacrene D, bicyclogermacrene, (E,E)-α-farnesene, γ-cadinene, δ-cadinene, α-cadinene, and α-cadinol | [51,56,57] |
rhizome | Dillapiole and nothoapiole | [39] | |
A. archangelica subsp. archangelica | root | α- and β-phellandrene | [58] |
A. dahurica | root | α-pinene, sabinene, myrcene, 1-dodecanol, and terpinen-4-ol. | [42,52] |
root | cis-anethol, undecanol, α-muurolene, and (2E)-2-decenal | [68] | |
A. pubescentis | root | α-pinene, p-cymene, limonene and cryptone. | [42,52] |
A. sinensis | rhizome and root | 3-N-butylphthalide, butylidene phthalide, ligustilide, di-iso-octyl phthalate, ferulic acid, nicotinic acid, and succinic acid | [53,54,55] |
rhizome | Butylidene dihydro-phthalide, butylidene phthalide, furfural, and camphene | [61] | |
root | E-ligustilide and (-)-spathulenol | [68] | |
A. glauca | whole plant | α-phellandrene, trans-carveol, β-pinene, β-caryophyllene, and β-caryophyllene oxide | [59] |
aerial parts | α-phellandrene, trans-carveol, and β-pinene | [40] | |
root | (Z)-ligustilide and (Z)-butylidene phthalide | [60] | |
A. gigas | rhizome | Decursinol angelate, decursin, lomatin, and marmesin | [61] |
root | α-pinene, β-eudesmol, nonane, γ-eudesmol, decursin, and decursinol angelate | [36,62] | |
A. acutiloba | rhizome | Butylidenephthalide and furfural | [61] |
roots, stems, and leaves | n-butyl phthalide, γ-terpinene, p-cymene, and cis-β-ocimene (steam distillation) γ-terpinene and p-cymene (HS-SPME) | [63] | |
A. major | root | α-pinene and cis-β-ocimene | [64] |
A. urumiensis | leaves | α-cadinol, hexahydrofarnesyl acetone, and 1-dodecanol | [65] |
stem | α-cadinol and δ-cadenine | [65] | |
A. pancicii | aerial parts | β-phellandrene, α-pinene, and α-phellandrene | [66] |
A. viridiflora A. cincta | aerial parts | Caryophyllene oxide and α-pinene | |
A. pubescens | root | Osthole, obepin, undecanol, α-muurolene, cis-anethol, E-ligustilide, (-)-spathulenol, (-)-terpinen-4-ol, 2-butylthiolane, and α-bisabolol | [68] |
3.2. Coumarins and Furanocoumarins (Table 3)
No. | Compound Name | Reference(s) |
---|---|---|
1 | Dahurin B | [70] |
2 | Isoimperatorin | [71,73,74,77,80,81] |
3 | Imperatorin | [71,73,75,77,81] |
4 | Oxypeucedanin | [71,73,75,77] |
5 | Oxypeucedanin hydrate | [71,74] |
6 | Bergapten | [71] |
7 | Byakangelicin | [71,77] |
8 | Phellopterin | [71] |
9 | Byakangelicol | [71,77] |
10 | Isopimpinellin | [71] |
11 | Xanthotoxol | [71,82] |
12 | Xanthotoxin | [71] |
13 | Pimpinellin | [71] |
14 | Scopoletin | [71] |
15 | Oxypeucedanin hydrate-3”-butyl ether | [74] |
16 | Knidilin | [74] |
17 | Akangelicin | [75] |
18 | Xanthoarnol-3′-O-β-D-glucopyranoside | [76] |
19 | Angedahuricoside A | [76] |
20 | Angedahuricoside B | [76] |
21 | Isofraxidin-7-O-β-D-glucopyranoside | [76] |
22 | Fraxidin-8-O-β-D-glucopyranoside | [76] |
23 | (-)-Marmesinin | [76] |
24 | (2′S,3′R)-3′-Hydroxymarmesinin | [76] |
25 | Hyuganoside V | [76] |
26 | (+)-Aviprin | [77] |
27 | Angelicosides I–IV | [78] |
28 | Psoralen | [81] |
29 | Isopsoralen | [81] |
30 | Phellopterin | [81] |
31 | Cnidilin | [81] |
32 | Angedahurin A | [83] |
3.3. Phthalides
3.4. Polysaccharides
3.5. Benzofurans
3.6. Polyacetylenes
4. Pharmacological Activities
4.1. Analgesic and Anti-Inflammatory Activity
4.2. Cytotoxic Activity
4.3. Anti-Oxidant Activity
4.4. Antimicrobial Activity
4.5. Effects on Cardio- and Cerebrovascular Systems
4.6. Neuroprotective Action
4.7. Immune Support and Hematopoiesis
4.8. Antifibrotic Action
4.9. Antispasmodic Activity
4.10. Hepatoprotective Activity
4.11. Antidiabetic
4.12. Skin Permeation Enhancer
4.13. Estrogenic Activity
4.14. Skin Whitening
4.15. Immunomodulatory Activity
4.16. Effect on Gut Flora
4.17. Insecticidal Activity
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Reduron, J.-P. Taxonomy, origin and importance of the Apiaceae family. In Carrots and Related Apiaceae Crops; CABI: Wallingford, UK, 2020; pp. 1–8. [Google Scholar]
- Feng, T.; Downie, S.R.; Yu, Y.; Zhang, X.; Chen, W.; He, X.; Liu, S. Molecular systematics of Angelica and allied genera (Apiaceae) from the Hengduan mountains of China based on nrDNA its sequences: Phylogenetic affinities and biogeographic implications. J. Plant Res. 2009, 122, 403–414. [Google Scholar] [CrossRef]
- Trineeva, O. Features quality assessment and prospects standartization fatty oils and oil extracts for pharmaceutical purposes. Drug Dev. Regist. 2016, 2, 114–134. [Google Scholar]
- Younis, I.Y.; El-Hawary, S.S.; Eldahshan, O.A.; Abdel-Aziz, M.M.; Ali, Z.Y. Green synthesis of magnesium nanoparticles mediated from Rosa floribunda charisma extract and its antioxidant, antiaging and antibiofilm activities. Sci. Rep. 2021, 11, 16868. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.-h.; Zhang, Z.-l.; Wang, Y.-q.; Yang, M.; Wang, C.-h.; Li, X.-w.; Guo, Y.-w. Chemical constituents from mycelia and spores of fungus Cordyceps cicadae. Chin. Herb. Med. 2017, 9, 188–192. [Google Scholar] [CrossRef]
- Saiki, Y.; Morinaga, K.; Okegawa, O.; Sakai, S.; Amaya, Y. On the coumarins of the roots of Angelica dahurica Benth. et Hook. Yakugaku Zasshi J. Pharm. Soc. Jpn. 1971, 91, 1313–1317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, N.-H.; Yoshizaki, K.; Baba, K. Seven new bifuranocoumarins, dahuribirin AG, from Japanese Bai Zhi. Chem. Pharm. Bull. 2001, 49, 1085–1088. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kimura, Y.; Ohminami, H.; Arichi, H.; Okuda, H.; Baba, K.; Kozawa, M.; Arichi, S. Effects of various coumarins from roots of Angelica dahurica on actions of adrenaline, ACTH and insulin in fat cells. Planta Med. 1982, 45, 183–187. [Google Scholar] [CrossRef]
- Kwon, Y.-S.; Kobayashi, A.; Kajiyama, S.-I.; Kawazu, K.; Kanzaki, H.; Kim, C.-M. Antimicrobial constituents of Angelica dahurica roots. Phytochemistry 1997, 44, 887–889. [Google Scholar] [CrossRef]
- Lechner, D.; Stavri, M.; Oluwatuyi, M.; Pereda-Miranda, R.; Gibbons, S. The anti-staphylococcal activity of Angelica dahurica (Bai Zhi). Phytochemistry 2004, 65, 331–335. [Google Scholar] [CrossRef]
- Kim, Y.K.; Kim, Y.S.; Ryu, S.Y. Antiproliferative effect of furanocoumarins from the root of Angelica dahurica on cultured human tumor cell lines. Phytother. Res. 2007, 21, 288–290. [Google Scholar] [CrossRef]
- Kim, J.-O.; Lee, G.-D.; Kwon, J.-H.; Kim, K.-S. Clinical Traditional Herbalogy, 99-689, 1997. Biol. Pharm. Bull. 2009, 32, 421–426. [Google Scholar] [CrossRef]
- Song, D.-K.; Kim, J.-Y.; Li, G.; Lee, K.-S.; Seo, C.-S.; Yan, J.-J.; Jung, J.-S.; Kim, H.-J.; Chang, H.-W.; Son, J.-K. Agents protecting against sepsis from the roots of Angelica dahurica. Biol. Pharm. Bull. 2005, 28, 380–382. [Google Scholar] [CrossRef] [Green Version]
- Sharifi-Rad, J.; Quispe, C.; Durazzo, A.; Lucarini, M.; Souto, E.B.; Santini, A.; Imran, M.; Moussa, A.Y.; Mostafa, N.M.; El-Shazly, M. Resveratrol’biotechnological applications: Enlightening its antimicrobial and antioxidant properties. J. Herb. Med. 2022, 32, 100550. [Google Scholar] [CrossRef]
- Germann, I.; Hagelauer, D.; Kelber, O.; Vinson, B.; Laufer, S.; Weiser, D.; Heinle, H. Antioxidative properties of the gastrointestinal phytopharmaceutical remedy STW 5 (Iberogast®). Phytomedicine 2006, 13, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Wei, A.; Shibamoto, T. Antioxidant activities and volatile constituents of various essential oils. J. Agric. Food Chem. 2007, 55, 1737–1742. [Google Scholar] [CrossRef]
- Ka, M.-H.; Choi, E.H.; Chun, H.-S.; Lee, K.-G. Antioxidative activity of volatile extracts isolated from Angelica tenuissimae roots, peppermint leaves, pine needles, and sweet flag leaves. J. Agric. Food Chem. 2005, 53, 4124–4129. [Google Scholar] [CrossRef]
- Abdallah, S.H.; Mostafa, N.M.; Mohamed, M.A.E.H.; Nada, A.S.; Singab, A.N.B. UPLC-ESI-MS/MS profiling and hepatoprotective activities of Stevia leaves extract, butanol fraction and stevioside against radiation-induced toxicity in rats. Nat. Prod. Res. 2021, 36, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Hanelt, P.; Institute of Plant Genetics And Crop Plant Research (Eds.) Mansfeld’s Encyclopedia of Agricultural and Horticultural Crops; Springer: Berlin, Germany, 2017; Volume 1, p. 3716. [Google Scholar]
- Bai, Y.-J.; Kong, M.; Xu, J.-D.; Zhang, X.-L.; Zhou, S.-S.; Wang, X.-N.; Liu, L.-F.; Li, S.-L. Effect of different drying methods on the quality of Angelicae sinensis radix evaluated through simultaneously determining four types of major bioactive components by high performance liquid chromatography photodiode array detector and ultra-high performance liquid chromatography quadrupole time-of-flight mass spectrometry. J. Pharm. Biomed. Anal. 2014, 94, 77–83. [Google Scholar]
- Watanabe, A.; Araki, S.; Kobari, S.; Sudo, H.; Tsuchida, T.; Uno, T.; Kosaka, N.; Shimomura, K.; Yamazaki, M.; Saito, K. In vitro propagation, restriction fragment length polymorphism, and random amplified polymorphic DNA analyses of Angelica plants. Plant Cell Rep. 1998, 18, 187–192. [Google Scholar] [CrossRef]
- Menglan, S.; Fading, P.; Zehui, P.; Watson, M.F.; Cannon, J.F.; Holmes-Smith, I.; Kljuykov, E.V.; Phillippe, L.R.; Pimenov, M.G. Apiaceae (Umbelliferae). Flora China 2005, 14, 1–205. [Google Scholar]
- Wei, W.; Gong, S.; Zhang, T.; Hu, J. Research progress on the compositions of Angelica polysaccharide and their pharmacological action. Drug Eval. Res. 2009, 32, 130–134. [Google Scholar]
- Ma, J.; Clemants, S. A history and overview of the Flora Reipublicae Popularis Sinicae (FRPS, Flora of China, Chinese edition, 1959–2004). Taxon 2006, 55, 451–460. [Google Scholar] [CrossRef]
- Zhang, H.; Luo, L.; Yu, Y.; Qiu, J.; Hu, Z.; Liao, W. The study of the germplasm survey of Angelica sinensis. J. Chin. Med. Mat. 2009, 32, 335–337. [Google Scholar]
- Maurya, A.; Verma, S.C.; Gupta, V.; Shankar, M. Angelica archangelica L.-A phytochemical and pharmacological review. Asian J. Res. Chem. 2017, 10, 852–856. [Google Scholar] [CrossRef]
- Park, Y.; Park, P.S.; Jeong, D.H.; Sim, S.; Kim, N.; Park, H.; Jeon, K.S.; Um, Y.; Kim, M.-J. The characteristics of the growth and the active compounds of Angelica gigas Nakai in cultivation sites. Plants 2020, 9, 823. [Google Scholar] [CrossRef]
- Kumar, P.; Rana, V.; Singh, A.N. Angelica glauca Edgew—A comprehensive review. J. Appl. Res. Med. Aromat. Plants 2022, 31, 100397. [Google Scholar] [CrossRef]
- Matsubara, K.; Shindo, S.; Watanabe, H.; Ikegami, F. Identification of Angelica acutiloba and related species by analysis of inter-and intra-specific sequence variations in chloroplast and nuclear DNA sequences. Am. J. Plant Sci. 2012, 3, 1260–1265. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.; Shin, M.S.; Ham, I.; Choi, H.-Y. Investigation of the mechanisms of Angelica dahurica root extract-induced vasorelaxation in isolated rat aortic rings. BMC Complement. Altern. Med. 2015, 15, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Tseng, A.; Yang, S. Chinese Herbal Medicine: Modern Applications of Traditional Formulas; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
- Mostafa, N.M.; Edmond, M.P.; El-Shazly, M.; Fahmy, H.A.; Sherif, N.H.; Singab, A.N.B. Phytoconstituents and renoprotective effect of Polyalthia longifolia leaves extract on radiation-induced nephritis in rats via TGF-β/smad pathway. Nat. Prod. Res. 2022, 36, 4187–4192. [Google Scholar] [CrossRef]
- Chen, J.; Li, H.; Wang, D.; Yang, C.; Liu, Y. Determination of sucrose in radix Angelicae sinensis by HPLC-ELSD. Mod. Chin. Med. 2008, 10, 19–20. [Google Scholar]
- Hook, I.L. Danggui to Angelica sinensis root: Are potential benefits to European women lost in translation? A review. J. Ethnopharmacol. 2014, 152, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Sowndhararajan, K.; Kim, S. Neuroprotective and cognitive enhancement potentials of Angelica gigas Nakai root: A review. Sci. Pharm. 2017, 85, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sowndhararajan, K.; Seo, M.; Kim, M.; Kim, H.; Kim, S. Effect of essential oil and supercritical carbon dioxide extract from the root of Angelica gigas on human EEG activity. Complement. Ther. Clin. Pract. 2017, 28, 161–168. [Google Scholar] [CrossRef]
- Abdelghffar, E.A.; El-Nashar, H.A.; Al-Mohammadi, A.G.; Eldahshan, O.A. Orange fruit (Citrus sinensis) peel extract attenuates chemotherapy-induced toxicity in male rats. Food Funct. 2021, 12, 9443–9455. [Google Scholar] [CrossRef]
- Hatano, R.; Takano, F.; Fushiya, S.; Michimata, M.; Tanaka, T.; Kazama, I.; Suzuki, M.; Matsubara, M. Water-soluble extracts from Angelica acutiloba Kitagawa enhance hematopoiesis by activating immature erythroid cells in mice with 5-fluorouracil-induced anemia. Exp. Hematol. 2004, 32, 918–924. [Google Scholar] [CrossRef]
- Chauhan, R.S.; Nautiyal, M.C.; Cecotti, R.; Mella, M.; Tava, A. Variation in the essential oil composition of Angelica archangelica from three different altitudes in Western Himalaya, India. Ind. Crops Prod. 2016, 94, 401–404. [Google Scholar] [CrossRef]
- Agnihotri, V.K.; Thappa, R.K.; Meena, B.; Kapahi, B.K.; Saxena, R.K.; Qazi, G.N.; Agarwal, S.G. Essential oil composition of aerial parts of Angelica glauca growing wild in North-West Himalaya (India). Phytochemistry 2004, 65, 2411–2413. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Sun, J.; Li, H.; Yang, X.; Liu, H.; Chen, J. In vivo anti-inflammatory activities of the essential oil from radix Angelicae dahuricae. J. Nat. Med. 2016, 70, 563–570. [Google Scholar] [CrossRef] [PubMed]
- Tabanca, N.; Gao, Z.; Demirci, B.; Techen, N.; Wedge, D.E.; Ali, A.; Sampson, B.J.; Werle, C.; Bernier, U.R.; Khan, I.A. Molecular and phytochemical investigation of Angelica dahurica and Angelica pubescentis essential oils and their biological activity against Aedes aegypti, Stephanitis pyrioides, and Colletotrichum species. J. Agric. Food Chem. 2014, 62, 8848–8857. [Google Scholar] [CrossRef]
- Gamal El-Din, M.I.; Youssef, F.S.; Ashour, M.L.; Eldahshan, O.A.; Singab, A.N.B. Comparative analysis of volatile constituents of Pachira aquatica Aubl. and Pachira glabra Pasq., their anti-Mycobacterial and anti-Helicobacter pylori activities and their metabolic discrimination using chemometrics. J. Essent. Oil Bear. Plants 2018, 21, 1550–1567. [Google Scholar] [CrossRef]
- Ahn, J.; Ahn, M.-J.; Chin, Y.-W.; Kim, J. Pharmaceutical Studies on “Dang-Gui” in Korean Journals. Nat. Prod. Sci. 2019, 25, 285–292. [Google Scholar] [CrossRef] [Green Version]
- China, P.C. Pharmacopoeia of the People’s Republic of China; Chemical Industry Press: Beijing, China, 2000. [Google Scholar]
- Schmidt, M. Recent developments in risk assessments of herbal medicinal products: Unlimited limitation? Planta Med. 2007, 73, 1006. [Google Scholar] [CrossRef]
- Dymowski, W. Assessment Report on Angelica Sinensis (Oliv.) Diels, Radix; EMA/HMPC/614586/2012; Committee on Herbal Medicinal Products: London, UK, 2013. [Google Scholar]
- Zhao, H.; Feng, Y.-L.; Wang, M.; Wang, J.-J.; Liu, T.; Yu, J. The Angelica dahurica: A review of traditional uses, phytochemistry and pharmacology. Front. Pharmacol. 2022, 2367. [Google Scholar] [CrossRef]
- Liang, W.-H.; Chang, T.-W.; Charng, Y.-C. Effects of drying methods on contents of bioactive compounds and antioxidant activities of Angelica dahurica. Food Sci. Biotechnol. 2018, 27, 1085–1092. [Google Scholar] [CrossRef] [PubMed]
- Sarker, U.; Rabbani, M.; Oba, S.; Eldehna, W.M.; Al-Rashood, S.T.; Mostafa, N.M.; Eldahshan, O.A. Phytonutrients, colorant pigments, phytochemicals, and antioxidant potential of orphan leafy Amaranthus species. Molecules 2022, 27, 2899. [Google Scholar] [CrossRef] [PubMed]
- Shchipitsyna, O.; Efremov, A. Composition of ethereal oil isolated from various vegetative parts of Angelica from the Siberian region. Russ. J. Bioorganic Chem. 2011, 37, 888–892. [Google Scholar] [CrossRef]
- Mostafa, N.M.; Mostafa, A.M.; Ashour, M.L.; Elhady, S.S. Neuroprotective effects of black pepper cold-pressed oil on scopolamine-induced oxidative stress and memory impairment in rats. Antioxidants 2021, 10, 1993. [Google Scholar] [CrossRef] [PubMed]
- Champakaew, D.; Junkum, A.; Chaithong, U.; Jitpakdi, A.; Riyong, D.; Sanghong, R.; Intirach, J.; Muangmoon, R.; Chansang, A.; Tuetun, B. Angelica sinensis (Umbelliferae) with proven repellent properties against Aedes aegypti, the primary dengue fever vector in Thailand. Parasitol. Res. 2015, 114, 2187–2198. [Google Scholar] [CrossRef] [PubMed]
- Ashmawy, A.; Mostafa, N.; Eldahshan, O. GC/MS analysis and molecular profiling of lemon volatile oil against breast cancer. J. Essent. Oil Bear. Plants 2019, 22, 903–916. [Google Scholar] [CrossRef]
- Vibrans, H. Principals and practice of phytotherapy. Modern herbal medicine-Simon Mills, Kerry Bone. Churchill Livingstone, London. 2000. 643+ xx p. ISBN 0-443-060169. US $79.00. J. Ethnopharmacol. 2002, 1, 140–141. [Google Scholar] [CrossRef]
- Nivinskienë, O.; Butkienë, R.; Mockutë, D. Chemical composition of seed (fruit) essential oils of Angelica archangelica L. growing wild in Lithuania. Chemija 2005, 16, 51–54. [Google Scholar]
- Fraternale, D.; Flamini, G.; Ricci, D. Essential oil composition and antimicrobial activity of Angelica archangelica L.(Apiaceae) roots. J. Med. Food 2014, 17, 1043–1047. [Google Scholar] [CrossRef] [PubMed]
- Pasqua, G.; Monacelli, B.; Silvestrini, A. Accumulation of essential oils in relation to root differentiation in Angelica archangelica L. Eur. J. Histochem. 2003, 47, 87–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Irshad, M.; Shahid, M.; Aziz, S.; Ghous, T. Antioxidant, antimicrobial and phytotoxic activities of essential oil of Angelica glauca. Asian J. Chem. 2011, 23, 1947. [Google Scholar]
- Purohit, V.K.; Andola, H.C.; Haider, S.Z.; Tiwari, D.; Bahuguna, Y.M.; Gairola, K.C.; Arunachalam, K. Essential oil constituents of Angelica glauca Edgew. Roots: An endangered species from Uttarakhand Himalaya (India). Natl. Acad. Sci. Lett. 2015, 38, 445–447. [Google Scholar] [CrossRef]
- Kim, M.; Abd El-Aty, A.; Kim, I.; Shim, J. Determination of volatile flavor components in danggui cultivars by solvent free injection and hydrodistillation followed by gas chromatographic–mass spectrometric analysis. J. Chromatogr. A 2006, 1116, 259–264. [Google Scholar] [CrossRef]
- Seo, H.-Y.; Yang, S.-H.; Shim, S.-L.; No, K.-M.; Park, K.-S.; Song, K.-D.; Kim, K.-S. Volatile organic compounds of Angelica gigas Nakai, Korean medicinal herb. Nat. Prod. Res. 2007, 21, 265–273. [Google Scholar] [CrossRef]
- Chen, H.-C.; Tsai, Y.-J.; Lin, L.-Y.; Wu, C.-S.; Tai, S.-P.; Chen, Y.-C.; Chiang, H.-M. Volatile compounds from roots, stems and leaves of Angelica acutiloba growing in Taiwan. Nat. Prod. Commun. 2014, 9, 1934578X1400900441. [Google Scholar] [CrossRef]
- Cavaleiro, C.; Salgueiro, L.; Gonçalves, M.-J.; Hrimpeng, K.; Pinto, J.; Pinto, E. Antifungal activity of the essential oil of Angelica major against Candida, Cryptococcus, Aspergillus and dermatophyte species. J. Nat. Med. 2015, 69, 241–248. [Google Scholar] [CrossRef]
- Mohammadi, M.; Yousefi, M.; Habibi, Z. Essential oils from stem and leaves of Angelica urumiensis (Mozaffarian) from Iran. Nat. Prod. Res. 2010, 24, 1347–1351. [Google Scholar] [CrossRef]
- Simonović, S.R.; Stankov-Jovanović, V.P.; Mitić, V.D.; Ilić, M.D.; Petrović, G.M.; Stojanović, G.S. Chemical composition of Angelica pancicii essential oil determined by liquid and headspace GC-MS techniques. Nat. Prod. Commun. 2014, 9, 1934578X1400900235. [Google Scholar] [CrossRef] [Green Version]
- Suleimen, E.; Iskakova, Z.B.; Dudkin, R.; Gorovoi, P.; Wang, M.; Khan, I.; Ross, S.; Martins, C. Composition and biological activity of essential oils from East-Asian species Angelica viridiflora, A. cincta, and Coelopleurum gmelinii. Chem. Nat. Compd. 2014, 50, 1136–1139. [Google Scholar] [CrossRef]
- Li, C.; Cai, Q.; Wu, X.; Tan, Z.; Yao, L.; Huang, S.; Zhang, W.; Hong, Z.; Chen, Z.; Zhang, L. Anti-inflammatory Study on the Constituents of Angelica sinensis (Oliv.) Diels, Angelica dahurica (Hoffm.) Benth. & Hook. f. ex Franch. & Sav., Angelica pubescence Maxim and Foeniculum vulgare Mill. essential oils. J. Oleo Sci. 2022, 71, 1207–1219. [Google Scholar] [PubMed]
- Zhao, X.Z.; Feng, X.; Jia, X.D.; Dong, Y.F.; Wang, M. Neolignan glycoside from Angelica dahurica. Chin. Chem. Lett. 2007, 18, 168–170. [Google Scholar] [CrossRef]
- Zhao, X.; Feng, X.; Jia, X.; Wang, M.; Shan, Y.; Dong, Y. New coumarin glucoside from Angelica dahurica. Chem. Nat. Compd. 2007, 43, 399–401. [Google Scholar] [CrossRef]
- Li, D.; Wu, L. Coumarins from the roots of Angelica dahurica cause anti-allergic inflammation. Exp. Ther. Med. 2017, 14, 874–880. [Google Scholar] [CrossRef] [Green Version]
- Edmond, M.P.; Mostafa, N.M.; El-Shazly, M.; Singab, A.N.B. Two clerodane diterpenes isolated from Polyalthia longifolia leaves: Comparative structural features, anti-histaminic and anti-Helicobacter pylori activities. Nat. Prod. Res. 2021, 35, 5282–5286. [Google Scholar] [CrossRef]
- Kim, D.K.; Lim, J.P.; Yang, J.H.; Eom, D.O.; Eun, J.S.; Leem, K.H. Acetylcholinesterase inhibitors from the roots of Angelica dahurica. Arch. Pharmacal Res. 2002, 25, 856–859. [Google Scholar] [CrossRef]
- Baek, N.-I.; Ahn, E.-M.; Kim, H.-Y.; Park, Y.-D. Furanocoumarins from the root of Angelica dahurica. Arch. Pharmacal Res. 2000, 23, 467–470. [Google Scholar] [CrossRef]
- Yang, L.; Li, Q.; Feng, Y.; Qiu, D. Simultaneous determination of three coumarins in Angelica dahurica by 1H-qNMR method: A fast and validated method for crude drug quality control. J. Anal. Methods Chem. 2020, 2020, 8987560. [Google Scholar] [CrossRef] [Green Version]
- Zhao, A.-h.; Yang, X.-w. New coumarin glucopyranosides from roots of Angelica dahurica. Chin. Herb. Med. 2018, 10, 103–106. [Google Scholar] [CrossRef]
- Oh, H.; Lee, H.-S.; Kim, T.; Chai, K.-Y.; Chung, H.-T.; Kwon, T.-O.; Jun, J.-Y.; Jeong, O.-S.; Kim, Y.-C.; Yun, Y.-G. Furocoumarins from Angelica dahurica with hepatoprotective activity on tacrine-induced cytotoxicity in Hep G2 cells. Planta Med. 2002, 68, 463–464. [Google Scholar] [CrossRef] [PubMed]
- Shu, P.; Li, J.; Fei, Y.; Zhu, H.; Zhang, L.; Niu, H.; Li, Y.; Liu, H.; Ju, Z.; Wei, X. Angelicosides I-IV, four undescribed furanocoumarin glycosides from Angelica dahurica roots and their tyrosinase inhibitory activities. Phytochem. Lett. 2020, 36, 32–36. [Google Scholar] [CrossRef]
- Matsuo, Y.; Yamaguchi, E.; Hakamata, R.; Ootomo, K.; Takatori, K.; Fukaya, H.; Mimaki, Y. Benzofuran and coumarin derivatives from the root of Angelica dahurica and their PPAR-γ ligand-binding activity. Phytochemistry 2020, 173, 112301. [Google Scholar] [CrossRef]
- Kim, N.Y.; Jung, Y.Y.; Yang, M.H.; Um, J.-Y.; Sethi, G.; Ahn, K.S. Isoimperatorin down-regulates epithelial mesenchymal transition through modulating NF-κB signaling and CXCR4 expression in colorectal and hepatocellular carcinoma cells. Cell. Signal. 2022, 99, 110433. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Hou, M.; Yu, Y.; Xie, W.; Chang, R.; Zhang, G.; Zhang, H.; Yu, H.; Chen, A. Simultaneous separation and determination of six furanocoumarins in radix Angelicae dahuricae by CZE with dual CDs system. Anal. Biochem. 2022, 655, 114869. [Google Scholar] [CrossRef]
- Lin, X.; Liu, J.; Zou, Y.; Tao, C.; Chen, J. Xanthotoxol suppresses non-small cell lung cancer progression and might improve patients’ prognosis. Phytomedicine 2022, 105, 154364. [Google Scholar] [CrossRef]
- Chen, W.; Wang, G.; Mei, K.; Zhu, J. Coumarins from Angelica dahurica and their antitumor activities in human MG-63 osteosarcoma cells. Rec. Nat. Prod. 2021, 15, 356–362. [Google Scholar] [CrossRef]
- Al-Madhagy, S.A.; Mostafa, N.M.; Youssef, F.S.; Awad, G.E.; Eldahshan, O.A.; Singab, A.N.B. Metabolic profiling of a polyphenolic-rich fraction of Coccinia grandis leaves using LC-ESI-MS/MS and in vivo validation of its antimicrobial and wound healing activities. Food Funct. 2019, 10, 6267–6275. [Google Scholar] [CrossRef]
- Elhawary, E.A.; Mostafa, N.M.; Labib, R.M.; Singab, A.N. Metabolomic profiles of essential oils from selected Rosa varieties and their antimicrobial activities. Plants 2021, 10, 1721. [Google Scholar] [CrossRef]
- Zhang, W.L.; Zheng, K.Y.; Zhu, K.Y.; Zhan, J.Y.; Bi, C.W.; Chen, J.; Dong, T.T.; Choi, R.C.; Lau, D.T.; Tsim, K.W. Chemical and biological assessment of Angelica roots from different cultivated regions in a chinese herbal decoction danggui buxue tang. Evid.-Based Complement. Altern. Med. 2013, 2013, 483286. [Google Scholar]
- Chao, W.-W.; Lin, B.-F. Bioactivities of major constituents isolated from Angelica sinensis (Danggui). Chin. Med. 2011, 6, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Xu, C.; Wang, W.; Wang, X.; Guo, Q.; Shi, J. Phthalide-derived oxaspiroangelioic acids A–C with an unprecedented carbon skeleton from an aqueous extract of the Angelica sinensis root head. Chin. Chem. Lett. 2021, 32, 3257–3260. [Google Scholar] [CrossRef]
- Moussa, A.Y.; Mostafa, N.M.; Singab, A.N.B. Pulchranin A: First report of isolation from an endophytic fungus and its inhibitory activity on cyclin dependent kinases. Nat. Prod. Res. 2020, 34, 2715–2722. [Google Scholar] [CrossRef]
- Wang, H.; Wang, X.; Zhou, L.; Zhang, S.; An, L.; Bao, J.; Li, Z.; Sun, Y.; Li, Y.; Cui, J. Structural characteristics and in vitro and in vivo immunoregulatory properties of a gluco-arabinan from Angelica dahurica. Int. J. Biol. Macromol. 2021, 183, 90–100. [Google Scholar] [CrossRef]
- Pang, X.; Jing, Y.; Li, P.; Qiu, X.; Zheng, Y.; Wang, Q.; Wu, L. Structural characterization and antioxidant activities of polysaccharides from Angelica dahurica as extracted by optimized ultrasonic-assisted method. Int. J. Food Prop. 2022, 25, 1635–1649. [Google Scholar] [CrossRef]
- Dong, X.-d.; Liu, Y.-n.; Zhao, Y.; Liu, A.-j.; Ji, H.-y.; Yu, J. Structural characterization of a water-soluble polysaccharide from Angelica dahurica and its antitumor activity in H22 tumor-bearing mice. Int. J. Biol. Macromol. 2021, 193, 219–227. [Google Scholar] [CrossRef]
- Choi, S.Y.; Ahn, E.M.; Song, M.C.; Kim, D.W.; Kang, J.H.; Kwon, O.S.; Kang, T.C.; Baek, N.I. In vitro GABA-transaminase inhibitory compounds from the root of Angelica dahurica. Phytother. Res. Int. J. Devoted Pharmacol. Toxicol. Eval. Nat. Prod. Deriv. 2005, 19, 839–845. [Google Scholar]
- Lin, C.; Chang, C.; Wang, C.; Chang, M.; Yang, L. Byakangelicol, isolated from Angelica dahurica, inhibits both the activity and induction of cyclooxygenase-2 in human pulmonary epithelial cells. J. Pharm. Pharmacol. 2002, 54, 1271–1278. [Google Scholar] [CrossRef]
- Choi, I.-H.; Song, Y.-k.; Lim, H.-H. Analgesic and anti-inflammatory effect of the aqueous extract of Angelica dahurica. J. Korean Med. 2008, 29, 32–40. [Google Scholar] [CrossRef]
- Hua, J.M.; Moon, T.C.; Hong, T.G.; Park, K.M.; Son, J.K.; Chang, H.W. 5-Methoxy-8-(2-hydroxy-3-buthoxy-3-methylbutyloxy)-psoralen isolated from Angelica dahurica inhibits cyclooxygenase-2 and 5-lipoxygenase in mouse bone marrow-derived mast cells. Arch. Pharmacal Res. 2008, 31, 617–621. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.-Y.; Seo, C.-S.; Lee, J.-A.; Lee, N.-H.; Kim, J.-H.; Ha, H.; Zheng, M.-S.; Son, J.-K.; Shin, H.-K. Anti-asthmatic effects of Angelica dahurica against ovalbumin-induced airway inflammation via upregulation of heme oxygenase-1. Food Chem. Toxicol. 2011, 49, 829–837. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.q.; Hua, Y.l.; Zhang, M.; Ji, P.; Li, J.x.; Zhang, L.; Li, P.l.; Wei, Y.m. Metabonomic analysis of the anti-inflammatory effects of volatile oils of Angelica sinensis on rat model of acute inflammation. Biomed. Chromatogr. 2015, 29, 902–910. [Google Scholar] [CrossRef]
- Zhong, L.-J.; Hua, Y.-L.; Ji, P.; Yao, W.-L.; Zhang, W.-Q.; Li, J.; Wei, Y.-M. Evaluation of the anti-inflammatory effects of volatile oils from processed products of Angelica sinensis radix by GC–MS-based metabolomics. J. Ethnopharmacol. 2016, 191, 195–205. [Google Scholar] [CrossRef]
- Hua, Y.-l.; Ji, P.; Xue, Z.-y.; Wei, Y.-m. Construction and analysis of correlation networks based on gas chromatography-mass spectrometry metabonomics data for lipopolysaccharide-induced inflammation and intervention with volatile oil from Angelica sinensis in rats. Mol. BioSystems 2015, 11, 3174–3187. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Hua, Y.; Ji, P.; Yao, W.; Zhao, H.; Zhong, L.; Wei, Y. Effects of volatile oils of Angelica sinensis on an acute inflammation rat model. Pharm. Biol. 2016, 54, 1881–1890. [Google Scholar] [CrossRef] [Green Version]
- Mao, W.-A.; Sun, Y.-Y.; Mao, J.-Y.; Wang, L.; Zhang, J.; Zhou, J.; Rahman, K.; Ye, Y. Inhibitory effects of Angelica polysaccharide on activation of mast cells. Evid.-Based Complement. Altern. Med. 2016, 2016, 6063475. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.; Liu, Y.; Xu, Y.; Zhang, M.; Guo, S.; Zhang, G. Isoimperatorin exerts anti-inflammatory activity by targeting the LPS-TLR4/MD-2-NF-κB pathway. Eur. J. Inflamm. 2021, 19, 20587392211000573. [Google Scholar] [CrossRef]
- Sun, J.; Huang, S.; Qin, Y.; Zhang, P.; Li, Z.; Zhang, L.; Wang, X.; Wu, R.; Qin, S.; Huo, J. Anti-allergic actions of a Chinese patent medicine, huoxiangzhengqi oral liquid, in RBL-2H3 cells and in mice. Pharm. Biol. 2021, 59, 670–680. [Google Scholar] [CrossRef]
- Zhu, C.; Wang, M.; Guo, J.; Su, S.L.; Yu, G.; Yang, Y.; Zhou, Y.; Tang, Z. Angelica dahurica extracts attenuate CFA-induced inflammatory pain via TRPV1 in mice. Evid.-Based Complement. Altern. Med. 2022, 2022, 4684830. [Google Scholar] [CrossRef]
- Okada, R.; Abe, H.; Okuyama, T.; Nishidono, Y.; Ishii, T.; Sato, T.; Shirako, S.; Tanaka, K.; Ikeya, Y.; Nishizawa, M. Comparison of the anti-inflammatory activities of furanocoumarins from the roots of Angelica dahurica. Bioact. Compd. Health Dis. 2021, 4, 287–300. [Google Scholar] [CrossRef]
- Lee, S.H.; Han, A.-R.; Kang, U.; Kim, J.-B.; Seo, E.K.; Jung, C.-H. Inhibitory effects of furanocoumarins from the roots of Angelica dahurica on ionizing radiation-induced migration of A549 human non-small cell lung cancer cells. Nat. Prod. Commun. 2020, 15, 1934578X20915036. [Google Scholar]
- Zheng, Y.M.; Shen, J.Z.; Wang, Y.; Lu, A.X.; Ho, W.S. Anti-oxidant and anti-cancer activities of Angelica dahurica extract via induction of apoptosis in colon cancer cells. Phytomedicine 2016, 23, 1267–1274. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Yang, L.; Zhang, C.; Yang, Y. Studies on the mechanism of alloimperatorin on the proliferation and apoptosis of Hela cells. J. Oncol. 2021, 2021, 6617312. [Google Scholar] [CrossRef] [PubMed]
- Pervin, M.; Hasnat, M.A.; Debnath, T.; Park, S.R.; Kim, D.H.; Lim, B.O. Antioxidant, Anti-Inflammatory and antiproliferative activity of Angelica dahurica root extracts. J. Food Biochem. 2014, 38, 281–292. [Google Scholar] [CrossRef]
- Yang, W.-T.; Ke, C.-Y.; Wu, W.-T.; Tseng, Y.-H.; Lee, R.-P. Antimicrobial and anti-inflammatory potential of Angelica dahurica and Rheum officinale extract accelerates wound healing in Staphylococcus aureus-infected wounds. Sci. Rep. 2020, 10, 5596. [Google Scholar] [CrossRef] [Green Version]
- El-Nashar, H.A.; Mostafa, N.M.; El-Badry, M.A.; Eldahshan, O.A.; Singab, A.N.B. Chemical composition, antimicrobial and cytotoxic activities of essential oils from Schinus polygamus (Cav.) cabrera leaf and bark grown in Egypt. Nat. Prod. Res. 2021, 35, 5369–5372. [Google Scholar] [CrossRef]
- Roh, J.; Shin, S. Antifungal and antioxidant activities of the essential oil from Angelica koreana Nakai. Evid.-Based Complement. Altern. Med. 2014, 2014, 398503. [Google Scholar] [CrossRef] [Green Version]
- Fraternale, D.; Flamini, G.; Ricci, D. Essential oil composition of Angelica archangelica L.(Apiaceae) roots and its antifungal activity against plant pathogenic fungi. Plant Biosyst.-Int. J. Deal. All Asp. Plant Biol. 2016, 150, 558–563. [Google Scholar] [CrossRef]
- Prakash, B.; Singh, P.; Goni, R.; Raina, A.K.P.; Dubey, N. Efficacy of Angelica archangelica essential oil, phenyl ethyl alcohol and α-terpineol against isolated molds from walnut and their antiaflatoxigenic and antioxidant activity. J. Food Sci. Technol. 2015, 52, 2220–2228. [Google Scholar] [CrossRef] [Green Version]
- Mullen, K.; Lee, A.; Lyman, R.; Mason, S.; Washburn, S.; Anderson, K. An in vitro assessment of the antibacterial activity of plant-derived oils. J. Dairy Sci. 2014, 97, 5587–5591. [Google Scholar] [CrossRef]
- Krishnaraj, C.; Young, G.M.; Yun, S.-I. In vitro embryotoxicity and mode of antibacterial mechanistic study of gold and copper nanoparticles synthesized from Angelica keiskei (Miq.) Koidz. leaves extract. Saudi J. Biol. Sci. 2022, 29, 2552–2563. [Google Scholar] [CrossRef]
- Zou, J.; Liu, Y.; Guo, R.; Tang, Y.; Shi, Z.; Zhang, M.; Wu, W.; Chen, Y.; Hou, K. An in vitro coumarin-antibiotic combination treatment of Pseudomonas aeruginosa biofilms. Nat. Prod. Commun. 2021, 16, 1934578X20987744. [Google Scholar] [CrossRef]
- Lee, B.W.; Ha, T.K.Q.; Cho, H.M.; An, J.-P.; Kim, S.K.; Kim, C.-S.; Kim, E.; Oh, W.K. Antiviral activity of furanocoumarins isolated from Angelica dahurica against influenza a viruses H1N1 and H9N2. J. Ethnopharmacol. 2020, 259, 112945. [Google Scholar] [CrossRef]
- Liu, C.-X.; Pei-Gen, X.; Da-Peng, L. Modern Research and Application of Chinese Medicinal Plants; Hong Kong Medical Publ.: Hong Kong, China, 2000. [Google Scholar]
- Yin, Z.; Zhang, L.; Xu, L. The effect of Dang-Gui (Angelica sinensis) and its ingredient ferulic acid on rat platelet aggregation and release of 5-HT (author’s transl). Yao Xue Xue Bao Acta Pharm. Sin. 1980, 15, 321–326. [Google Scholar]
- Xu, L.; Wang, R.; Xu, D. Effects of sodium ferulate combined with acetylsalicylic acid on rat platelet aggregation and on modulation of PGI2-TXA2 balance. Yao Xue Xue Bao Acta Pharm. Sin. 1985, 20, 5–9. [Google Scholar]
- DerMarderosian, A.; Beuther, J. The Review of Natural Products; Facts and comparisons; Wolters Kluwer Health Inc.: St. Louis, MO, USA, 2005. [Google Scholar]
- Huang, K.C. The Pharmacology of Chinese Herbs; CRC Press: Boca Raton, FL, USA, 1998. [Google Scholar]
- Chen, H.; Chen, X.; Ping, Z.; Jiang, X.; Ge, M.; Ma, J.; Yu, W. Promotion effect of Angelica sinensis extract on angiogenesis of chicken preovulatory follicles in vitro. Poult. Sci. 2022, 101, 101938. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Tang, J.; Khatibi, N.H.; Zhu, M.; Li, Y.; Wang, C.; Jiang, R.; Tu, L.; Wang, S. Treatment with Z-ligustilide, a component of Angelica sinensis, reduces brain injury after a subarachnoid hemorrhage in rats. J. Pharmacol. Exp. Ther. 2011, 337, 663–672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mostafa, N.M. β-Amyrin rich Bombax ceiba leaf extract with potential neuroprotective activity against scopolamine-induced memory impairment in rats. Rec. Nat. Prod. 2018, 12, 480. [Google Scholar] [CrossRef]
- Cheng, C.-Y.; Huang, H.-C.; Kao, S.-T.; Lee, Y.-C. Angelica sinensis extract promotes neuronal survival by enhancing p38 MAPK–mediated hippocampal neurogenesis and dendritic growth in the chronic phase of transient global cerebral ischemia in rats. J. Ethnopharmacol. 2021, 278, 114301. [Google Scholar] [CrossRef]
- Shen, J.; Zhang, J.; Deng, M.; Liu, Y.; Hu, Y.; Zhang, L. The antidepressant effect of Angelica sinensis extracts on chronic unpredictable mild stress-induced depression is mediated via the upregulation of the BDNF signaling pathway in rats. Evid.-Based Complement. Altern. Med. 2016, 2016, 7434692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.-j.; Huang, X.; Wang, Y.; Xie, Y.; Qiu, X.-j.; Ren, P.; Gao, L.-c.; Zhou, H.-h.; Zhang, H.-y.; Qiao, M.-q. Ferulic acid-induced anti-depression and prokinetics similar to Chaihu–Shugan–San via polypharmacology. Brain Res. Bull. 2011, 86, 222–228. [Google Scholar] [CrossRef] [PubMed]
- Wilasrusmee, C.; Siddiqui, J.; Bruch, D.; Wilasrusmee, S. In vitro immunomodulatory effects of herbal products. Am. Surg. 2002, 68, 860. [Google Scholar] [CrossRef] [PubMed]
- Wilasrusmee, C.; Kittur, S.; Siddiqui, J.; Bruch, D.; Wilasrusmee, S.; Kittur, D.S. In vitro immunomodulatory effects of ten commonly used herbs on murine lymphocytes. J. Altern. Complement. Med. 2002, 8, 467–475. [Google Scholar] [CrossRef]
- Wang, H.; Li, J.; Yu, L.; Zhao, Y.; Ding, W. Antifibrotic effect of the Chinese herbs, Astragalus mongholicus and Angelica sinensis, in a rat model of chronic puromycin aminonucleoside nephrosis. Life Sci. 2004, 74, 1645–1658. [Google Scholar] [CrossRef] [PubMed]
- Geng, Q.; Zhao, H.; Zong, C.; LI, L.; Wang, S.; Gao, Y.; Dong, R. Effects of optimized formulas of radix Astragali and radix Angelicae sinensis extracts on survival status of idiopathic pulmonary fibrosis mice and on expression of cytogenesis-related factors in lung tissues. J. Guangzhou Univ. Tradit. Chin. Med. 2017, 6, 408–412. [Google Scholar]
- Ko, W.-C. A newly isolated antispasmodic-butylidenephthahde. Jpn. J. Pharmacol. 1980, 30, 85–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, P.; Sun, J.; Sullivan, M.A.; Huang, X.; Wang, H.; Zhang, Y.; Wang, N.; Wang, K. Angelica sinensis polysaccharide protects against acetaminophen-induced acute liver injury and cell death by suppressing oxidative stress and hepatic apoptosis in vivo and in vitro. Int. J. Biol. Macromol. 2018, 111, 1133–1139. [Google Scholar] [CrossRef] [PubMed]
- Park, E.-Y.; Kim, E.-H.; Kim, C.-Y.; Kim, M.-H.; Choung, J.-S.; Oh, Y.-S.; Moon, H.-S.; Jun, H.-S. Angelica dahurica extracts improve glucose tolerance through the activation of GPR119. PLoS ONE 2016, 11, e0158796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Nashar, H.A.; Mostafa, N.M.; Eldahshan, O.A.; Singab, A.N.B. A new antidiabetic and anti-inflammatory biflavonoid from Schinus polygama (Cav.) Cabrera leaves. Nat. Prod. Res. 2022, 36, 1182–1190. [Google Scholar] [CrossRef]
- El-Nashar, H.A.; Mostafa, N.M.; El-Shazly, M.; Eldahshan, O.A. The role of plant-derived compounds in managing diabetes mellitus: A review of literature from 2014 To 2019. Curr. Med. Chem. 2021, 28, 4694–4730. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Jiang, Q.-D.; Wu, Y.-M.; Liu, P.; Yao, J.-H.; Lu, Q.; Zhang, H.; Duan, J.-A. Potential of essential oils as penetration enhancers for transdermal administration of ibuprofen to treat dysmenorrhoea. Molecules 2015, 20, 18219–18236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, Q.; Wu, Y.; Zhang, H.; Liu, P.; Yao, J.; Yao, P.; Chen, J.; Duan, J. Development of essential oils as skin permeation enhancers: Penetration enhancement effect and mechanism of action. Pharm. Biol. 2017, 55, 1592–1600. [Google Scholar] [CrossRef] [Green Version]
- Piao, X.L.; Yoo, H.H.; Kim, H.Y.; Kang, T.L.; Hwang, G.S.; Park, J.H. Estrogenic activity of furanocoumarins isolated from Angelica dahurica. Arch. Pharmacal Res. 2006, 29, 741–745. [Google Scholar] [CrossRef]
- Zhu, H.; You, J.; Wen, Y.; Jia, L.; Gao, F.; Ganesan, K.; Chen, J. Tumorigenic risk of Angelica sinensis on ER-positive breast cancer growth through ER-induced stemness in vitro and in vivo. J. Ethnopharmacol. 2021, 280, 114415. [Google Scholar] [CrossRef]
- Fang, C.-L.; Goswami, D.; Kuo, C.-H.; Day, C.H.; Lin, M.-Y.; Ho, T.-J.; Yang, L.-Y.; Hsieh, D.J.-Y.; Lin, T.-K.; Huang, C.-Y. Angelica dahurica attenuates melanogenesis in B16F0 cells by repressing Wnt/β-catenin signaling. Mol. Cell. Toxicol. 2022, 1–9. [Google Scholar] [CrossRef]
- Luo, Y.; Fang, Q.; Lai, Y.; Niu, H.; Wang, R.; Song, C. High-throughput sequencing technology reveals polysaccharides from Angelica dahurica that affect gut microbiota in mice. Biotechnol. Biotechnol. Equip. 2021, 35, 1934–1940. [Google Scholar] [CrossRef]
- Chung, I.-M.; Kim, E.-H.; Lee, J.-H.; Lee, Y.-C.; Moon, H.-I. Immunotoxicity activity from various essential oils of Angelica genus from South Korea against Aedes aegypti L. Immunopharmacol. Immunotoxicol. 2012, 34, 42–45. [Google Scholar] [CrossRef] [PubMed]
Plant Organ | Botanical Characteristics |
---|---|
Stem | Caulescent or acaulescent |
Solid or hollow | |
Leaf | Alternate |
Compound | |
Pinnate | |
Lanceolate shape | |
Petiolate | |
Exstipulate | |
Flower | Epigynous |
Small | |
Long pedicels | |
Fruit | Dry |
Cremocarp (two mericarps) | |
Mericarp is one-seeded |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Batiha, G.E.-S.; Shaheen, H.M.; Elhawary, E.A.; Mostafa, N.M.; Eldahshan, O.A.; Sabatier, J.-M. Phytochemical Constituents, Folk Medicinal Uses, and Biological Activities of Genus Angelica: A Review. Molecules 2023, 28, 267. https://doi.org/10.3390/molecules28010267
Batiha GE-S, Shaheen HM, Elhawary EA, Mostafa NM, Eldahshan OA, Sabatier J-M. Phytochemical Constituents, Folk Medicinal Uses, and Biological Activities of Genus Angelica: A Review. Molecules. 2023; 28(1):267. https://doi.org/10.3390/molecules28010267
Chicago/Turabian StyleBatiha, Gaber El-Saber, Hazem M. Shaheen, Esraa A. Elhawary, Nada M. Mostafa, Omayma A. Eldahshan, and Jean-Marc Sabatier. 2023. "Phytochemical Constituents, Folk Medicinal Uses, and Biological Activities of Genus Angelica: A Review" Molecules 28, no. 1: 267. https://doi.org/10.3390/molecules28010267
APA StyleBatiha, G. E. -S., Shaheen, H. M., Elhawary, E. A., Mostafa, N. M., Eldahshan, O. A., & Sabatier, J. -M. (2023). Phytochemical Constituents, Folk Medicinal Uses, and Biological Activities of Genus Angelica: A Review. Molecules, 28(1), 267. https://doi.org/10.3390/molecules28010267