Synthesis and Antiproliferative Activity against Cancer Cells of Indole-Aryl-Amide Derivatives
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Determination of the Affinity for Opioid Receptors
2.3. Molecular Docking of 5 and 2 in κ-OR
2.4. Biological Effects
2.4.1. Effect of the Amides on Cell Viability
2.4.2. Compound 5 Inhibits HT29 Colon Cancer Cells Proliferation and Progression in the Cell Cycle
2.4.3. Effect of 5 on Histone Acetylation
2.4.4. Compound 5 Induces Gene and Protein Expression Modulations
3. Materials and Methods
3.1. General Methods
3.1.1. General Protocol for Reductive Amination
3.1.2. General Protocol for Amide Bond Formation
- 1H NMR (400 MHz, CDCl3), (Bn = benzyl, Ind = indole, a = conformer A, b = conformer B) δ 8.07 (bs, 0.53H, IndH1a), 8.04 (bs, 0.47H, IndH1b), 7.55 (d, J = 7.6 Hz, 0.47H, IndH4b), 7.45 (d, J = 7.6 Hz, 0.53H, IndH4a), 7.38–6.65 (m, 6H + 6H + 1H, ArHa + ArHb + PheOH), 6.92 (bs, 0.53H, IndH2a), 6.85 (bs, 0.47H, IndH2b), 4.64 (s, 1.06H, BnCH2a), 4.32 (s, 0.94H, BnCH2b), 3.67 (t, J = 7.8 Hz, 0.92H, NCH2b), 3.47 (t, J = 7.1 Hz, 1.08H, NCH2a), 3.01 (t, J = 7.6 Hz, 0.94H, IndCH2b), 2.97–2.85 (m, 0.94H + 1.06H, PheCH2b + IndCH2a), 2.80 (t, J = 7.7 Hz, 1.06H, PheCH2a), 2.62 (t, J = 7.6 Hz, 0.98H, COCH2b), 2.44 (t, J = 7.7 Hz, 1.02H, COCH2a). MS (ESI) m/z [M + H] + calcd: 399.2; found: 399.2.
- 1H NMR (400 MHz, DMSO-d6) δ 10.91 (s, 0.6H, IndH1a), 10.79 (s, 0.4H, IndH1b), 7.48 (m, 1H, IndH4a + IndH4b), 7.41–7.35 (m, 1H, IndH7), 7.36–7.28 (m, 2H, BnArH3,5), 7.28–7.16 (m, 3H, BnArH2,4,6), 7.14 (d, J = 2.4 Hz, 0.6H, IndH2a), 7.13–7.08 (m, 1H, IndH6), 7.07–7.02 + 6.99–6.91 (m, 2H + 2H, anilineH3,5 + anilineH4,6), 7.07 (d, J = 3.3 Hz, 0.4H, IndH2b), 7.02–6.99 (m, 1H, IndH5), 4.62 (s, 2H, BnCH2), 3.71 (s, 2H, anilineCH2), 3.50 (m, 2H, NCH2), 2.78–3.01 (m, 2H, IndCH2). MS (ESI) m/z [M + H] + calcd: 384.2; found: 384.2.
- 1H NMR (400 MHz, DMSO-d6) δ 10.88 (s, 0.62H, IndH1a), 10.78 (s, 0.38H, IndH1b), 10.06 (s, 0.39H, CONHb), 10.03 (s, 0.61H, CONHa), 7.54–7.43 (m, 1H, IndH4a + IndH4b), 7.48–7.44 (m, 1H, IndH7), 7.18–6.86 (m, 3H, 2anilineH × 3), 7.38–7.27 (m, 3H, BnH2,4,6), 7.27–7.20 (m, 2H, BnH3,5), 7.18 (d, J = 7.5 Hz, 1H, 2anilineH × 1), 7.16–7.00 (m, 4H, IndH5 + IndH2a + IndH2b + 1anilineH × 2), 6.96 (d, J = 8.8 Hz, 1H, IndH6), 6.77 (d, J = 8.1 Hz, 2H, 1anilineH × 2), 4.60 (d, J = 7.7 Hz, 2H, BnCH2), 3.53–3.43 (m, 2H + 2H + 2H, 1anilineCH2 × 2 + anilineCH2 × 2 + NCH2 × 2), 2.93–2.78 (m, 2H, IndCH2). MS (ESI) m/z [M + H] + calcd: 517.2; found: 517.2.
- 1H NMR (400 MHz, DMSO-d6) δ 10.84 (s, 1H, IndH1), 8.15 (t, J = 4Hz, 1H, CONH), 7.54 (d, J = 7.9 Hz, 1H, IndH4), 7.33 (d, J = 8.1 Hz, 1H, IndH7), 7.17 (d, J = 2.3 Hz, 1H, IndH2), 7.05 (t, J = 7.4 Hz, 1H, IndH6), 6.95 (t, J = 7.4 Hz, 1H, IndH5), 6.88 (d, J = 7.9 Hz, 2H, Ar3,5), 6.47 (d, J = 8.1 Hz, 2H, Ar2,6), 4.94 (s, 2H, anilineNH2), 4.13–3.98 (dd, J = 8.0, 5.7 Hz, 2H, anilineCH2), 3.52 (s, 2H, IndCH2). MS (ESI) m/z [M + H] + calcd: 280.1; found: 280.0.
- 1H NMR (400 MHz, DMSO-d6) δ 10.89 (s, 1H, IndH1), 9.40(s, 0.42H, PheOHa), 9.31(s, 0.58H, PheOHb), 7.53 (d, J = 7.7 Hz, 1H, IndH4), 7.40–7.30 (m, 1H, IndH7), 7.23–7.12 (m, 1H, IndH2), 7.12–7.02 (m, 1H, IndH6), 7.01–6.91 (m, 3H, IndH5 + anilineH3,5), 6.91–6.80 (m, 2H, PheH3,5), 6.78–6.54 (m, 2H + 2H, PheH2,4 + anilineH2,4), 4.43–4.24 (m, 2H + 2H, anilineNH2 + PheCH2), 3.83 (s, 2H, anilineCH2), 3.02 (ddd, J = 6.0, 2.9, 1.4 Hz, 1H, IndCH2 × 1), 2.82 (ddd, J = 6.0, 2.9, 1.4 Hz, 1H, IndCH2 × 1). MS (ESI) m/z M + H] + calcd: 386.2; found: 386.1.
- 1H NMR (401 MHz, DMSO-d6) δ 10.89 (s, 1H, IndH1), 7.50 (dd, J = 21.2, 7.9 Hz, 1H, IndH4a + IndH4b), 7.44 (s, 1H, CONH2), 7.37–7.29 (m, 1.5H, IndH7 + IndH2a), 7.24 (s, 1H, CONH2), 7.15 (d, J = 7.6 Hz, 0.5H, IndH2b), 7.07 (t, J = 7.6 Hz, 1H, IndH6), 6.96 (t, J = 8.9 Hz, 1H, IndH5), 6.86–6.72 (m, 1H + 1H, ArH3,5a + ArH3,5b), 6.46 (m, 1H + 1H, ArH2,6a + ArH2,6b), 4.99 (d, J = 25.4 Hz, 2H, anilineNH2), 4.46 (d, J = 10.5 Hz, 1H, anilineCH2Ha), 4.31 (d, J = 10.7 Hz, 1H, anilineCH2Hb), 3.81 (d, J = 17.3 Hz, 2H, –NCH2), 3.70 (d, J = 21.7 Hz, 2H, IndCH2). MS (ESI) m/z [M + H] + calcd: 337.2; found: 337.0.
- 1H NMR (401 MHz, DMSO-d6) δ 10.88 (s, 1H, IndH1), 7.56 (d, J = 7.9 Hz, 0.56H, IndH4a), 7.49 (d, J = 7.9 Hz, 0.44H, IndH4b), 7.34 (dd, J = 8.2, 2.7 Hz, 1H, IndH7a + IndH7b), 7.15 (dd, J = 8.8, 2.3 Hz, 1H, IndH2a + IndH2b), 7.07 (t, J = 7.5 Hz, 1H, IndH6), 6.96 (t, J = 7.4, 1H, IndH5), 6.90–6.78 (m, 2H, anilineH3,5), 6.66–6.34 (m, 2H, anilineH2,4), 4.38 (d, J = 30.3 Hz, 2H, anilineCH2), 3.78 (d, J = 15.3 Hz, 2H, IndCH2), 3.44–3.20 (m, 2H + 2H, αCH2 × 2 + γCH2 × 2), 1.68–1.57 (m, 1H, βCH2 × 1), 1.57–1.45 (m, 1H, βCH2 × 1). MS (ESI) m/z [M + H] + calcd: 338.2; found: 338.1.
3.1.3. Radioligand Binding Assays
3.1.4. Molecular Docking
3.2. Biology
3.2.1. Cell culture and Treatments
3.2.2. MTT Assay
3.2.3. Cell Cycle Analysis
3.2.4. Histone Post-Translational Modification
3.2.5. Quantitative Real-Time PCR
3.2.6. Total Protein Extraction and Western Blot
3.2.7. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kaushik, N.K.; Kaushik, N.; Attri, P.; Kumar, N.; Kim, C.H.; Verma, A.K.; Choi, E.H. Biomedical Importance of Indoles. Molecules 2013, 18, 6620–6662. [Google Scholar] [CrossRef]
- Kumar, S.; Ritika. A brief review of the biological potential of indole derivatives. FJPS 2020, 6, 121. [Google Scholar] [CrossRef]
- Heravi, M.M.; Amiri, Z.; Kafshdarzadeh, K.; Zadsirjan, V. Synthesis of indole derivatives as prevalent moieties present in selected alkaloids. RSC Adv. 2021, 11, 33540–33612. [Google Scholar]
- Verardi, L.; Fiori, J.; Andrisano, V.; Locatelli, A.; Morigi, R.; Naldi, M.; Bertucci, C.; Strocchi, E.; Boga, C.; Micheletti, G.; et al. Indole Derivative Interacts with Estrogen Receptor Beta and Inhibits Human Ovarian Cancer Cell Growth. Molecules 2020, 25, 4438. [Google Scholar] [CrossRef]
- Takayama, H.; Ishikawa, H.; Kurihara, M.; Kitajima, M.; Aimi, N.; Ponglux, D.; Koyama, F.; Matsumoto, K.; Moriyama, T.; Yamamoto, L.T.; et al. Studies on the synthesis and opioid agonistic activities of mitragynine-related indole alkaloids: Discovery of opioid agonists structurally different from other opioid ligands. J. Med. Chem. 2002, 45, 1949–1956. [Google Scholar] [CrossRef]
- Saito, T.; Hirai, H.; Kim, Y.-J.; Kojima, Y.; Matsunaga, Y.; Nishida, H.; Sakakibara, T.; Suga, O.; Sujaku, T.; Kojima, N. CJ-15,208, a novel kappa opioid receptor antagonist from a fungus, Ctenomyces serratus ATCC15502. J. Antibiot. 2002, 55, 847–854. [Google Scholar] [CrossRef] [Green Version]
- De Marco, R.; Tolomelli, A.; Spampinato, S.; Bedini, A.; Gentilucci, L. Opioid activity profiles of oversimplified peptides lacking in the protonable N-terminus. J. Med. Chem. 2012, 55, 10292–10296. [Google Scholar] [CrossRef]
- De Marco, R.; Bedini, A.; Spampinato, S.; Cavina, L.; Pirazzoli, E.; Gentilucci, L. Versatile Picklocks To Access All Opioid Receptors: Tuning the Selectivity and Functional Profile of the Cyclotetrapeptide c[Phe-D-Pro-Phe-Trp] (CJ-15,208). J. Med. Chem. 2016, 59, 9255–9261. [Google Scholar] [CrossRef]
- Cardillo, G.; Gentilucci, L.; Tolomelli, A.; Spinosa, R.; Calienni, M.; Qasem, A.R.; Spampinato, S. Synthesis and evaluation of the affinity toward μ-opioid receptors of atypical, lipophilic ligands based on the sequence c[Tyr-Pro-Trp-Phe-Gly]. J. Med. Chem. 2004, 47, 5198–5203. [Google Scholar] [CrossRef]
- Bedini, A.; Baiula, M.; Gentilucci, L.; Tolomelli, A.; De Marco, R.; Spampinato, S. Peripheral antinociceptive effects of the cyclic endomorphin-1 analog c[YpwFG] in a mouse visceral pain model. Peptides 2010, 31, 2135–2140. [Google Scholar]
- Bedini, A.; Di Cesare Mannelli, L.; Micheli, L.; Baiula, M.; Vaca, G.; De Marco, R.; Gentilucci, L.; Ghelardini, C.; Spampinato, S. Functional Selectivity and Antinociceptive Effects of a Novel KOPr Agonist. Front. Pharmacol. 2020, 11, 188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gentilucci, L.; Tolomelli, A.; De Marco, R.; Artali, R. Molecular docking of opiates and opioid peptides, a tool for the design of selective agonists and antagonists, and for the investigation of atypical ligand-receptor interactions. Curr. Med. Chem. 2012, 19, 1587–1601. [Google Scholar] [CrossRef] [PubMed]
- De Marco, R.; Gentilucci, L. Tryptophan-Containing Non-Cationizable Opioid Peptides-a new chemotype with unusual structure and in vivo activity. Future Med. Chem. 2017, 9, 2099–2115. [Google Scholar] [CrossRef] [PubMed]
- De Marco, R.; Bedini, A.; Spampinato, S.; Gentilucci, L. Synthesis of tripeptides containing D-Trp substituted at the indole. J. Med. Chem. 2014, 57, 6861–6866. [Google Scholar] [CrossRef] [PubMed]
- De Marco, R.; Bedini, A.; Spampinato, S.; Gentilucci, L. Synthesis of Tripeptides Containing d-Trp Substituted at the Indole Ring, Assessment of Opioid Receptor Binding and in Vivo Central Antinociception. J. Med. Chem. 2014, 57, 6861–6866. [Google Scholar] [CrossRef]
- Gentilucci, L.; Squassabia, F.; De Marco, R.; Artali, R.; Cardillo, G.; Tolomelli, A.; Spampinato, S.; Bedini, A. Investigation of the interaction between the atypical agonist c[YpwFG] and MOR. FEBS J. 2008, 275, 2315–2337. [Google Scholar] [CrossRef]
- Gentilucci, L.; Tolomelli, A.; De Marco, R.; Spampinato, S.; Bedini, A.; Artali, R. The inverse type II beta-turn on D-Trp-Phe, a pharmacophoric motif for MOR agonists. ChemMedChem 2011, 6, 1640–1653. [Google Scholar] [CrossRef]
- Devi, N.; Kaur, K.; Biharee, A.; Jaitak, V. Recent Development in Indole Derivatives as Anticancer Agent: A Mechanistic Approach. Anti-Cancer Agents Med. Chem. 2021, 21, 1802–1824. [Google Scholar] [CrossRef]
- Ishikawa, H.; Colby, D.A.; Boger, D.L. Direct Coupling of Catharanthine and Vindoline to Provide Vinblastine: Total Synthesis of (+)- and ent-(−)-Vinblastine. J. Am. Chem. Soc. 2008, 130, 420–421. [Google Scholar] [CrossRef] [Green Version]
- Jia, Y.; Wen, X.; Gong, Y.; Wang, X. Current scenario of indole derivatives with potential anti-drugresistant cancer activity. Eur. J. Med. Chem. 2020, 200, 112359. [Google Scholar] [CrossRef]
- Martin, D.B.C.; Vanderwal, C.D. Efficient Access to the Core of the Strychnos, Aspidosperma and Iboga Alkaloids. A Short Synthesis of Norfluorocurarine. J. Am. Chem. Soc. 2009, 131, 3472–3473. [Google Scholar] [CrossRef]
- Wu, H.; Wacker, D.; Mileni, M.; Katritch, V.; Han, G.W.; Vardy, E.; Liu, W.; Thompson, A.A.; Huang, X.P.; Carroll, F.I.; et al. Structure of the human kappa-opioid receptor in complex with JDTic. Nature 2012, 485, 327–332. [Google Scholar] [CrossRef]
- Gentilucci, L.; Tolomelli, A. Recent Advances in the Investigation of the Bioactive Conformation of Peptides Active at the mu-opioid Receptor. Conformational Analysis of Endomorphins. Curr. Top. Med. Chem. 2004, 4, 105–121. [Google Scholar] [CrossRef]
- Piekielna-Ciesielska, J.; Artali, R.; Azzam, A.A.H.; Lambert, D.G.; Kluczyk, A.; Gentilucci, L.; Janecka, A. Pharmacological Characterization of µ-Opioid Receptor Agonists with Biased G Protein or β-Arrestin Signaling, and Computational Study of Conformational Changes during Receptor Activation. Molecules 2020, 26, 13. [Google Scholar] [CrossRef]
- Chen, D.; Chen, Y.; Yan, Y.; Pan, J.; Xing, W.; Li, Q.; Zeng, W. Down-regulation of the tumour suppressor κ-opioid receptor predicts poor prognosis in hepatocellular carcinoma patients. BMC Cancer 2017, 17, 553. [Google Scholar] [CrossRef]
- Zagon, I.S.; Hytrek, S.D.; McLaughlin, P.J. Opioid growth factor tonically inhibits human colon cancer cell proliferation in tissue culture. Am. J. Physiol. 1996, 271, R511–R518. [Google Scholar] [CrossRef]
- Tripolt, S.; Neubauer, H.A.; Knab, V.M.; Elmer, D.P.; Aberger, F.; Moriggl, R.; Fux, D.A. Opioids drive breast cancer metastasis through the δ-opioid receptor and oncogenic STAT3. Neoplasia 2021, 23, 270–279. [Google Scholar] [CrossRef] [PubMed]
- Fichna, J.; Janecka, A. Opioid peptides in cancer. Cancer Metastasis Rev. 2004, 23, 351–366. [Google Scholar] [CrossRef]
- Waldhoer, M.; Bartlett, S.E.; Whistler, J.L. Opioid receptors. Annu. Rev. Biochem. 2004, 73, 953–990. [Google Scholar] [CrossRef] [Green Version]
- Carroll, F.I.; Carlezon, W.A., Jr. Development of κ opioid receptor antagonists. J. Med. Chem. 2013, 56, 2178–2195. [Google Scholar] [CrossRef]
- Yamamizu, K.; Hamada, Y.; Narita, M. κ Opioid receptor ligands regulate angiogenesis in development and in tumours. Br. J. Pharmacol. 2015, 172, 268–276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, Y.; Luo, J.; Tian, J.; Zou, Q.; Wang, X. The kappa opioid receptor may be a potential tumor suppressor by regulating angiogenesis in breast cancer. Med. Hypotheses 2021, 150, 110568. [Google Scholar] [CrossRef] [PubMed]
- Belcheva, M.M.; Clark, A.L.; Haas, P.D.; Serna, J.S.; Hahn, J.W.; Kiss, A.; Coscia, C.J. Mu and kappa opioid receptors activate ERK/MAPK via different protein kinase C isoforms and secondary messengers in astrocytes. J Biol Chem. 2005, 280, 27662–27669. [Google Scholar] [CrossRef] [Green Version]
- Bruchas, M.R.; Macey, T.A.; Lowe, J.D.; Chavkin, C. Kappa opioid receptor activation of p38 MAPK is GRK3- and arrestin-dependent in neurons and astrocytes. J. Biol. Chem. 2006, 281, 18081–18089. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kam, A.Y.; Chan, A.S.; Wong, Y.H. Kappa-opioid receptor signals through Src and focal adhesion kinase to stimulate c-Jun N-terminal kinases in transfected COS-7 cells and human monocytic THP-1 cells. J. Pharmacol. Exp. Ther. 2004, 310, 301–310. [Google Scholar] [CrossRef]
- Bruchas, M.R.; Chavkin, C. Kinase cascades and ligand-directed signaling at the kappa opioid receptor. Psychopharmacology 2010, 210, 137–147. [Google Scholar] [CrossRef] [Green Version]
- Melief, E.J.; Miyatake, M.; Carroll, F.I.; Beguin, C.; Carlezon, W.A., Jr.; Cohen, B.M.; Grimwood, S.; Mitch, C.H.; Rorick-Kehn, L.; Chavkin, C. Duration of Action of a Broad Range of Selective kappa-Opioid Receptor Antagonists Is Positively Correlated with c-Jun N-Terminal Kinase-1 Activation. Mol. Pharmacol. 2011, 80, 920–929. [Google Scholar] [CrossRef] [Green Version]
- Johnson, D.G.; Walker, C.L. Cyclins and cell cycle checkpoints. Annu. Rev. Pharmacol. Toxicol. 1999, 39, 295–312. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z.; Zhang, D.; Lee, H.; Menon, A.A.; Wu, J.; Hu, K.; Jin, Y. Macrophage-derived apoptotic bodies promote the proliferation of the recipient cells via shuttling microRNA-221/222. J. Leukoc. Biol. 2017, 101, 1349–1359. [Google Scholar] [CrossRef] [Green Version]
- Thompson, C.B. Apoptosis in the Pathogenesis and Treatment of Disease. Science 1995, 267, 1456–1462. [Google Scholar] [CrossRef]
- Zhu, Z.; Davidson, K.T.; Brittingham, A.; Wakefield, M.R.; Bai, Q.; Xiao, H.; Fang, Y. Trichomonas vaginalis: A possible foe to prostate cancer. Med. Oncol. 2016, 33, 115. [Google Scholar] [CrossRef]
- Neese, F. The ORCA program system. WIREs Comput. Mol. Sci. 2012, 2, 73–78. [Google Scholar] [CrossRef]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eberhardt, J.; Santos-Martins, D.; Tillack, A.F.; Forli, S. AutoDock Vina 1.2. 0: New docking methods, expanded force field, and python bindings. J. Chem. Inf. Model. 2021, 61, 3891–3898. [Google Scholar] [CrossRef]
- PacDOCK. Available online: https://pegasus.lbic.unibo.it/pacdock/ (accessed on 12 October 2022).
- Carbone, J.; Ghidini, A.; Romano, A.; Gentilucci, L.; Musiani, F. PacDOCK: A Web Server for Positional Distance-Based and Interaction-Based Analysis of Docking Results. Molecules 2022, 27, 6884. [Google Scholar] [CrossRef]
- Daura, X.; Gademann, K.; Jaun, B.; Seebach, D.; van Gunsteren, W.F.; Mark, A.E. Peptide Folding: When Simulation Meets Experiment. Angew. Chem. Int. Ed. 1999, 38, 236–240. [Google Scholar] [CrossRef]
- Calonghi, N.; Farruggia, G.; Boga, C.; Micheletti, G.; Fini, E.; Romani, L.; Telese, D.; Faraci, E.; Bergamini, C.; Cerini, S.; et al. Root Extracts of Two Cultivars of Paeonia Species: Lipid Composition and Biological Effects on Different Cell Lines: Preliminary Results. Molecules 2021, 26, 655. [Google Scholar] [CrossRef] [PubMed]
- Calonghi, N.; Boga, C.; Telese, D.; Bordoni, S.; Sartor, G.; Torsello, C.; Micheletti, G. Synthesis of 9-Hydroxystearic Acid Derivatives and Their Antiproliferative Activity on HT 29 Cancer Cells. Molecules 2019, 24, 3714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amellem, O.; Stokke, T.; Sandvik, J.A.; Pettersen, E.O. The retinoblastoma gene product is reversibly dephosphorylated and bound in the nucleus in S and G2 phases during hypoxic stress. Exp. Cell Res. 1996, 227, 106–115. [Google Scholar] [CrossRef]
- Micheletti, G.; Calonghi, N.; Farruggia, G.; Strocchi, E.; Palmacci, V.; Telese, D.; Bordoni, S.; Frisco, G.; Boga, C. Synthesis of Novel Structural Hybrids between Aza-Heterocycles and Azelaic Acid Moiety with a Specific Activity on Osteosarcoma Cells. Molecules 2020, 25, 404. [Google Scholar] [CrossRef]
Entry | Ki (µM) | ||
---|---|---|---|
μ-OR | δ-OR | κ-OR | |
1 | na a | 37.1 ± 1.4 | 5.0 ± 2.9 |
2 | 54.6 ± 3.5 | 9.0 ± 0.6 | 2.5 ± 0.4 |
3 | 10.7± 1.7 | 6.5 ± 0.8 | 7.8 ± 0.2 |
4 | na | na | 7.4 ± 1.3 |
5 | na | 10.8 ± 1.3 | 3.8 ± 0.52 |
6 | 451 ± 11 | 85.5 ± 2.0 | 26.7 ± 9.5 |
7 | na | 114.8 ± 45 | 3.8 ± 0.3 |
Compounds | IC50 [µM] | |||||||
---|---|---|---|---|---|---|---|---|
3T3 | I407 | HT29 | HeLa | IGROV-1 | MCF7 | PC3 | J6 | |
1 | 164.3 ± 0.01 | 63.0 ± 0.06 | 0.31 ± 0.06 | 25.0 ± 0.06 | na a | na | na | na |
2 | na | 0.35 ± 0.03 | na | na | na | 0.81 ± 0.03 | 2.13 ± 0.04 | na |
3 | 0.50 ± 0.04 | 75.0 ± 0.07 | na | 5.64 ± 0.01 | na | na | na | na |
4 | 0.63 ± 0.02 | na | 0.96 ± 0.04 | 1.87 ± 0.02 | na | 0.84 ± 0.03 | na | na |
5 | 32.0 ± 0.02 | na | 2.61 ± 0.05 | na | na | na | 0.39 ± 0.07 | 0.37 ± 0.04 |
6 | 0.11 ± 0.03 | na | na | na | na | na | 166 ± 0.03 | na |
7 | na | na | na | na | na | 0.49 ± 0.01 | na | na |
Selectivity Index | |||||||||
---|---|---|---|---|---|---|---|---|---|
Compounds | IC503T3/ IC50HT29 | IC503T3/ IC50HeLa | IC503T3/ IC50MCF7 | IC503T3/ IC50PC3 | IC503T3/ IC50J6 | IC50I407/ IC50HT29 | IC50I407/ IC50HeLa | IC50I407/ IC50MCF7 | IC50I407/ IC50PC3 |
1 | 530 | 6.572 | --- | --- | --- | 203.23 | 2.52 | --- | --- |
2 | --- | --- | --- | --- | --- | --- | --- | 0.432 | 0.164 |
3 | --- | 0.089 | --- | --- | --- | --- | 13.29 | --- | --- |
4 | 0.656 | 0.337 | 0.75 | --- | --- | --- | --- | --- | --- |
5 | 12.26 | --- | --- | 82.051 | 86.487 | --- | --- | --- | --- |
6 | --- | --- | --- | 0.001 | --- | --- | --- | --- | --- |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, J.; Carbone, J.; Farruggia, G.; Janecka, A.; Gentilucci, L.; Calonghi, N. Synthesis and Antiproliferative Activity against Cancer Cells of Indole-Aryl-Amide Derivatives. Molecules 2023, 28, 265. https://doi.org/10.3390/molecules28010265
Zhao J, Carbone J, Farruggia G, Janecka A, Gentilucci L, Calonghi N. Synthesis and Antiproliferative Activity against Cancer Cells of Indole-Aryl-Amide Derivatives. Molecules. 2023; 28(1):265. https://doi.org/10.3390/molecules28010265
Chicago/Turabian StyleZhao, Junwei, Jacopo Carbone, Giovanna Farruggia, Anna Janecka, Luca Gentilucci, and Natalia Calonghi. 2023. "Synthesis and Antiproliferative Activity against Cancer Cells of Indole-Aryl-Amide Derivatives" Molecules 28, no. 1: 265. https://doi.org/10.3390/molecules28010265
APA StyleZhao, J., Carbone, J., Farruggia, G., Janecka, A., Gentilucci, L., & Calonghi, N. (2023). Synthesis and Antiproliferative Activity against Cancer Cells of Indole-Aryl-Amide Derivatives. Molecules, 28(1), 265. https://doi.org/10.3390/molecules28010265