The Peroxymonocarbonate Anion HCO4− as an Effective Oxidant in the Gas Phase: A Mass Spectrometric and Theoretical Study on the Reaction with SO2
Abstract
:1. Introduction
2. Results
2.1. Formation and Characterisation of Peroxymonocarbonate Ion (HCO4−)
2.2. Reactivity of Peroxymonocarbonate Ion (HCO4−) towards Sulphur Dioxide (SO2)
2.2.1. Mass Spectrometric Results
2.2.2. Theoretical Calculations
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Mass Spectrometry
4.3. Computational Details
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Giguère, P.A.; Lemaire, D. Etude spectroscopique des dérivés du peroxyde d’hydrogène. V. Les percabonates KHCO4 et K2C2O6. Can. J. Chem. 1972, 50, 1472–1476. [Google Scholar] [CrossRef]
- Jones, P.; Griffith, W.P. Alkali-metal Peroxocarbonates, M2[CO3] nH2O2, M2[C2O6], M[HCO4]⸱nH2O and Li2[CO4]⸱H2O. J. Chem. Soc. Dalton Trans. 1980, 12, 2526–2532. [Google Scholar] [CrossRef]
- Flanagan, J.; Jones, D.P.; Griffith, W.P.; Skapski, A.C.; West, A.P. On the existence of peroxocarbonates in aqueous solution. J. Chem. Soc. Chem. Commun. 1986, 1, 20–21. [Google Scholar] [CrossRef]
- Adam, A.; Mehta, M. KH(O2)CO2·H2O2-An oxygen-rich salt of monoperoxocarbonic acid. Angew. Chem. Int. Ed. 1998, 37, 1387–1388. [Google Scholar] [CrossRef]
- Swern, D. Organic Peroxides; Wiley: New York, NY, USA, 1970; pp. 313–516. [Google Scholar]
- Bakhmutova-Albert, E.V.; Yao, H.; Denevan, D.E.; Richardson, D.E. Kinetics and mechanism of peroxymonocarbonate formation. Inorg. Chem. 2010, 49, 11287–11296. [Google Scholar] [CrossRef]
- Yao, H.; Richardson, D.E. Epoxidation of alkenes with bicarbonate-activated hydrogen peroxide. J. Am. Chem. Soc. 2000, 122, 3220–3221. [Google Scholar] [CrossRef]
- Balagam, B.; Richardson, D.E. The mechanism of carbon dioxide catalysis in the hydrogen peroxide N-Oxidation of amines. Inorg. Chem. 2008, 47, 1173–1178. [Google Scholar] [CrossRef] [PubMed]
- Richardson, D.E.; Yao, H.; Frank, K.M.; Bennett, D.A. Equilibria, kinetics, and mechanism in the bicarbonate activation of hydrogen peroxide: Oxidation of sulphides by peroxymonocarbonate. J. Am. Chem. Soc. 2000, 122, 1729–1739. [Google Scholar] [CrossRef]
- Bennet, D.A.; Yao, H.; Richardson, D.E. Mechanism of sulphide oxidations by peroxymonocarbonate. Inorg. Chem. 2001, 40, 2996–3001. [Google Scholar] [CrossRef]
- Richardson, D.E.; Regino, C.A.S.; Yao, H.; Johnson, J.V. Methionine oxidation by peroxymonocarbonate, a reactive oxygen species formed from CO2/bicarbonate and hydrogen peroxide. Free Radic. Biol. Med. 2003, 35, 1538–1550. [Google Scholar] [CrossRef]
- Regino, C.A.S.; Richardson, D.E. Bicarbonate-catalyzed hydrogen peroxide oxidation of cysteine and related thiols. Inorg. Chim. Acta 2007, 360, 3971–3977. [Google Scholar] [CrossRef]
- Yang, X.; Duan, Y.; Wang, J.; Wang, H.; Liu, H.; Sedlak, D.L. Impact of peroxymonocarbonate on the transformation of organic contaminants during hydrogen peroxide in situ chemical oxidation. Environ. Sci. Technol. Lett. 2019, 6, 781–786. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Xi, H.; Zuo, Y.; Wang, Q.; Wang, Z.; Yan, Z. Bicarbonate-activated hydrogen peroxide and efficient decontamination of toxic sulfur mustard and nerve gas simulants. J. Hazard Mater. 2018, 344, 136–145. [Google Scholar] [CrossRef] [PubMed]
- Pan, H.; Gao, Y.; Li, N.; Zhou, Y.; Lin, Q.; Jiang, J. Recent advances in bicarbonate-activated hydrogen peroxide system for water treatment. Chem. Eng. J. 2021, 408, 127332. [Google Scholar] [CrossRef]
- Medinas, D.B.; Cerchiaro, G.; Trindade, D.F.; Augusto, O. The Carbonate Radical and Related Oxidants Derived from Bicarbonate Buffer. IUBMB Life 2007, 59, 255–262. [Google Scholar] [CrossRef]
- Radi, R. Interplay of carbon dioxide and peroxide metabolism in mammalian cells. J. Biol. Chem. 2022, 298, 102358. [Google Scholar] [CrossRef]
- Francioso, A.; Baseggio Conrado, A.; Blarzino, C.; Foppoli, C.; Montanari, E.; Dinarelli, S.; Giorgi, A.; Mosca, L.; Fontana, M. One- and two-electron oxidations of β-Amyloid25-35 by carbonate radical anion (CO3·−) and peroxymonocarbonate (HCO4−): Role of sulfur radical reactions in peptide aggregation. Molecules 2020, 25, 961. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Joseph, J.; Gurney, M.; Becker, D.; Kalyanaraman, B. Bicarbonate Enhances Peroxidase Activity of Cu, Zn-Superoxide Dismutase. J. Biol. Chem. 2002, 277, 1013–1020. [Google Scholar] [CrossRef] [Green Version]
- Savelova, V.A.; Popov, A.F.; Vakhitova, L.N.; Solomoichenko, T.N.; Sadovskii, Y.S.; Prokop’eva, T.M.; Skrypka, A.V.; Panchenko, B.V. Nucleophilic reactivity of hydroxide and hydroperoxide ions in aqueous-alcoholic media and of HCO4− ion in water. Russ. J. Org. Chem. 2005, 41, 1773–1781. [Google Scholar] [CrossRef]
- Savelova, V.A.; Sadovskii, Y.S.; Solomoichenko, T.N.; Prokop’eva, T.M.; Kosmynin, V.V.; Piskunova, Z.P.; Bunton, C.A.; Popov, A.F. Nucleophilic activity of peroxyhydrocarbonate and peroxocarbonate ions relative to 4-nitrophenyl diethyl phosphonate. Theor. Exp. Chem. 2008, 44, 101–108. [Google Scholar] [CrossRef]
- Vakhitova, L.N.; Matvienko, K.V.; Taran, N.A.; Lakhtarenko, N.V.; Popov, A.F. Nucleophilic Oxidizing Systems Based on Hydrogen Peroxide for Decomposition of Ecotoxicants. Russ. J. Org. Chem. 2011, 47, 965–973. [Google Scholar] [CrossRef]
- Attiogbe, F.K.; Bose, S.K.; Wang, W.; McNeillie, A.; Francis, R.C. The peroxymonocarbonate anions as pulp bleaching agents. Part 1. Results with lignin model compounds and chemical pulps. BioResources 2010, 5, 2208–2220. [Google Scholar] [CrossRef]
- Wincel, H.; Mereand, E.; Castleman, A.W. Gas-Phase Reactions of HO2⸱−CO2 with Molecular Species of Possible Atmospheric Interest. J. Phys. Chem. 1995, 99, 6601–6607. [Google Scholar] [CrossRef]
- Bohme, D.K.; Goodings, J.M.; Ng, C.-W. In situ chemical ionization as a probe for neutral constituents upstream in a methane-oxygen flame. Int. J. Mass Spectrom. Ion Phys. 1977, 24, 335–354. [Google Scholar] [CrossRef]
- McAllister, T.; Nicholson, A.J.C.; Swingler, D.L. Negative ions in the flame ionization detector and the occurrence of HCO4−. Int. J. Mass Spectrom. Ion Phys. 1978, 27, 43–48. [Google Scholar] [CrossRef]
- Cody, R.B.; Laramee, J.A.; Durst, H.D. Versatile new ion source for the analysis of materials in open air under ambient conditions. Anal. Chem. 2005, 77, 2297–2302. [Google Scholar] [CrossRef]
- Ninomiya, S.; Iwamoto, S.; Usmanov, D.T.; Hiraoka, K.; Yamabe, S. Negative-mode mass spectrometric study on dc corona, ac corona and dielectric barrier discharge ionization in ambient air containing H2O2, 2,4,6-trinitrotoluene (TNT), and 1,3,5-trinitroperhydro-1,3,5-triazine (RDX). Int. J. Mass Spectrom. 2021, 459, 116440. [Google Scholar] [CrossRef]
- Sekimoto, K.; Takayama, M. Observation of different core water cluster ions Y−(H2O)n (Y = O2, HOx, NOx, COx) and magic number in atmospheric pressure negative corona discharge mass spectrometry. J. Mass Spectrom. 2011, 46, 50–60. [Google Scholar] [CrossRef]
- O’Hair, R.A.J. The 3D quadrupole ion trap mass spectrometer as a complete chemical laboratory for fundamental gas-phase studies of metal mediated chemistry. Chem. Comm. 2006, 14, 1469–1481. [Google Scholar] [CrossRef]
- Osburn, S.; Ryzhov, V. Ion−Molecule Reactions: Analytical and Structural Tool. Anal. Chem. 2013, 85, 769–778. [Google Scholar] [CrossRef]
- Schwarz, H. Ménage-à-trois: Single-atom catalysis, mass spectrometry, and computational chemistry. Catal. Sci. Technol. 2017, 7, 4302–4314. [Google Scholar] [CrossRef]
- Troiani, A.; Rosi, M.; Garzoli, S.; Salvitti, C.; de Petris, G. Iron-Promoted C-C Bond Formation in the Gas Phase. Angew. Chem. Int. Ed. 2015, 54, 14359–14362. [Google Scholar] [CrossRef] [PubMed]
- Mueller, H. Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH: Weinheim, Germany, 2000. [Google Scholar]
- Smith, S.J.; Pitcher, H.; Wigley, T.M. Global and regional anthropogenic sulfur dioxide emissions. Glob. Planet. Chang. 2001, 29, 99–119. [Google Scholar] [CrossRef]
- Troiani, A.; Rosi, M.; Garzoli, S.; Salvitti, C.; de Petris, G. Effective redox reactions by chromium oxide anions: Sulfur dioxide oxidation in the gas phase. Int. J. Mass Spectrom. 2019, 436, 18–22. [Google Scholar] [CrossRef]
- Salvitti, C.; Rosi, M.; Pepi, F.; Troiani, A.; de Petris, G. Reactivity of transition metal dioxide anions MO2− (M = Co, Ni, Cu, Zn) with sulfur dioxide in the gas phase: An experimental and theoretical study. Chem. Phys. Lett. 2021, 776, 138555. [Google Scholar] [CrossRef]
- Salvitti, C.; Pepi, F.; Troiani, A.; de Petris, G. Regioselective Bond-Forming and Hydrolysis Reactions of Doubly Charged Vanadium Oxide Anions in the Gas Phase. Reactions 2022, 3, 254–264. [Google Scholar] [CrossRef]
- Troiani, A.; Rosi, M.; Garzoli, S.; Salvitti, C.; de Petris, G. Vanadium hydroxyde cluster ions in the gas-phase: Bond-forming reactions of doubly-charged negative ions by SO2-promoted V-O activation. Chem. Eur. J. 2017, 23, 11752–11756. [Google Scholar] [CrossRef]
- Troiani, A.; Rosi, M.; Garzoli, S.; Salvitti, C.; de Petris, G. Sulphur dioxide cooperation in hydrolysis of vanadium oxide and hydroxide cluster dianions. N. J. Chem. 2018, 42, 4008–4016. [Google Scholar] [CrossRef]
- De Petris, G.; Cartoni, A.; Troiani, A.; Angelini, G.; Ursini, O. Water activation by SO2+ ions: An effective source of OH radicals. Phys. Chem. Chem. Phys. 2009, 11, 9976–9978. [Google Scholar] [CrossRef]
- Troiani, A.; Rosi, M.; Salvitti, C.; de Petris, G. The oxidation of sulfur dioxide by single and double oxygen transfer paths. Chem. Phys. Chem. 2014, 15, 2723–2731. [Google Scholar] [CrossRef]
- Troiani, A.; Salvitti, C.; de Petris, G. Gas-phase reactivity of carbonate ions with sulfur dioxide: An experimental study of cluster reactions. J. Am. Chem. Soc. Mass Spectrom. 2019, 30, 1964–1972. [Google Scholar] [CrossRef] [PubMed]
- Salvitti, C.; Pepi, F.; Troiani, A.; de Petris, G. Intracluster sulphur dioxide oxidation by sodium chlorite anions: A mass spectrometric study. Molecules 2021, 26, 7114. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Rogachev, A.Y. SO2—Yet another two-faced ligand. Phys. Chem. Chem. Phys. 2015, 17, 1987–2000. [Google Scholar] [CrossRef] [PubMed]
- Oh, J.J.; La Barge, M.S.; Matos, J.; Kampf, J.W.; Hilling II, K.W.; Kuczkowski, R.L. Structure of the Trimethylamine-Sulfur Dioxide Complex. J. Am. Chem. Soc. 1991, 113, 4732–4738. [Google Scholar] [CrossRef]
- Kubas, G.J. Diagnostic Features of Transition-Metal-SO2 Coordination Geometries. Inorg. Chem. 1979, 18, 182–188. [Google Scholar] [CrossRef]
- Fehsenlfeld, F.C.; Ferguson, E.E. Laboratory studies of negative ion reactions with atmospheric trace constituents. J. Chem. Phys. 1974, 61, 3181–3193. [Google Scholar] [CrossRef]
- Van Berkel, G.J.; Kertesz, V. Using the Electrochemistry of the Electrospray Ion Source. Anal. Chem. 2007, 79, 5510–5520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hvelplund, P.; Kadhane, U.; Nielsen, S.B.; Panja, S.; Støchkel, K. On the formation of water-containing negatively charged clusters from atmospheric pressure corona discharge in air. Int. J. Mass Spectrom. 2010, 292, 48–52. [Google Scholar] [CrossRef]
- Tinke, A.P.; Heeremans, C.E.M.; van der Hoeven, R.A.M.; Niessen, W.M.A.; van der Greef, J.; Nibbering, N.M.M. Positively and negatively charged water cluster ions generated via liquid chromatography/thermospray mass spectrometry. Rapid Comm. Mass Spectrom. 1991, 5, 188–191. [Google Scholar] [CrossRef]
- Yang, X.; Castleman Jr, A.W. Reactions of O2H− and its hydrates with CH3CN, CO2 and SO2. Chem. Phys. Lett. 1991, 179, 361–366. [Google Scholar] [CrossRef]
- England, A.H.; Duffin, A.M.; Schwartz, C.P.; Uejio, J.S.; Prendergast, D.; Saykally, R.J. On the hydration and hydrolysis of carbon dioxide. Chem. Phys. Lett. 2011, 514, 187–195. [Google Scholar] [CrossRef]
- Chemistry WebBook; NIST Standard Reference Database Number 69; Linstrom, P.; Mallar, W. (Eds.) National Institute of Standards and Technology: Gaithersburg, MD, USA, 2022. [CrossRef]
- Wang, X.-B.; Xantheas, S.S. Photodetachment of isolated bicarbonate anion: Electron binding energy of HCO3−. J. Phys. Chem. Lett. 2011, 2, 1204–1210. [Google Scholar] [CrossRef] [PubMed]
- Ruscic, B.; Bross, D.H. Active Thermochemical Tables (ATcT) Values Based on ver. 1.122q of the Thermochemical Network; Argonne National Laboratory: Lemont, IL, USA, 2021. Available online: https://atct.anl.gov/ (accessed on 15 December 2022). [CrossRef]
- Bowie, J.H.; DePuy, C.H.; Sullivan, S.A.; Bierbaum, V.M. Gas phase reactions of the hydroperoxide and peroxyformate anions. Can. J. Chem. 1986, 64, 1046–1050. [Google Scholar] [CrossRef]
- Bartmess, J.E.; Georgiadis, R. Empirical methods for determination of ionization gauge relative sensitivities for different gases. Vacuum 1983, 33, 149–153. [Google Scholar] [CrossRef]
- Kuzmic, P. Program DYNAFIT for the Analysis of Enzyme Kinetic Data: Application to HIV Proteinase. Anal. Biochem. 1996, 237, 260–273. [Google Scholar] [CrossRef] [PubMed]
- Bowers, M.T.; Su, T. Interactions between Ions and Molecules; Plenum Press: New York, NY, USA, 1975. [Google Scholar]
- Becke, A.D. A new mixing of Hartree–Fock and local density-functional theories. J. Chem. Phys. 1993, 98, 1372–1377. [Google Scholar] [CrossRef]
- Stephens, P.J.; Devlin, F.J.; Chablowski, C.F.; Frisch, M.J. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. J. Phys. Chem. 1994, 98, 11623–11627. [Google Scholar] [CrossRef]
- Dunning, T.H., Jr. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 1989, 90, 1007–1023. [Google Scholar] [CrossRef]
- Woon, D.E.; Dunning, T.H., Jr. Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon. J. Chem. Phys. 1993, 98, 1358–1371. [Google Scholar] [CrossRef] [Green Version]
- Kendall, R.A.; Dunning, T.H., Jr.; Harrison, J.R. Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J. Chem. Phys. 1992, 96, 6796–6806. [Google Scholar] [CrossRef] [Green Version]
- Bauschlicher, C.W., Jr.; Partridge, H. The sensitivity of B3LYP atomization energies to the basis set and a comparison of basis set requirements for CCSD(T) and B3LYP. Chem. Phys. Lett. 1995, 240, 533–540. [Google Scholar] [CrossRef]
- Martin, J.M.L.; Uzan, O. Basis set convergence in second-row compounds. The importance of core polarization functions. Chem. Phys. Lett. 1998, 282, 16–24. [Google Scholar] [CrossRef]
- Bartlett, R.J. Many-Body Perturbation Theory and Coupled Cluster Theory for Electron Correlation in Molecules. Annu. Rev. Phys. Chem. 1981, 32, 359–401. [Google Scholar] [CrossRef]
- Raghavachari, K.; Trucks, G.W.; Pople, J.A.; Head-Gordon, M. A fifth-order perturbation comparison of electron correlation theories. Chem. Phys. Lett. 1989, 157, 479–483. [Google Scholar] [CrossRef]
- Olsen, J.; Jorgensen, P.; Koch, H.; Balkova, A.; Bartlett, R.J. Full configuration–interaction and state of the art correlation calculations on water in a valence double-zeta basis with polarization functions. J. Chem. Phys. 1996, 104, 8007–8015. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09, Revision A.02; Gaussian, Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Flükiger, P.; Lüthi, H.P.; Portmann, S.; Weber, J. MOLEKEL. version 4.3. Swiss Center for Scientific Computing: Manno, Switzerland, 2000. [Google Scholar]
- Portmann, S.; Lüthi, H.P. MOLEKEL: An Interactive Molecular Graphics Tool. Chimia 2000, 54, 766–769. [Google Scholar] [CrossRef]
Rate Const. (×10−10) a | Eff.% b | Branching Ratio% | |
---|---|---|---|
kdec | 7.2 | 54.8 | |
k1 | 4.6 | 35.1 | 64.5 |
k2 | 2.5 | 19.1 | 34.8 |
k3 | 0.050 | 0.4 | 0.70 |
k4 | 14.0 c | >100 |
ΔH°298.15 | Barrier Height | |||
---|---|---|---|---|
B3LYP | CCSD (T) | B3LYP | CCSD (T) | |
HCO4− + SO2 → HCO3− + SO3 | −28.2 | −28.9 | ||
HCO4− + SO2 → HCO3 + SO3− | −1.7 | 5.9 | ||
HCO4− + SO2 → HSO4− + CO2 | −77.5 | −81.0 | ||
HCO4− + SO2 → MIN1 | −12.9 | −12.7 | ||
MIN1 → MIN2 | −2.2 | −3.0 | −0.7 | −0.9 |
MIN2 → MIN3 | −65.8 | −72.6 | 5.0 | 5.7 |
MIN3 → MIN4 | −1.2 | −0.7 | 4.8 | 5.3 |
MIN4 → HSO4− + CO2 | 4.7 | 8.1 | ||
MIN3 → HCO3− + SO3 | 52.8 | 59.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salvitti, C.; Pepi, F.; Troiani, A.; Rosi, M.; de Petris, G. The Peroxymonocarbonate Anion HCO4− as an Effective Oxidant in the Gas Phase: A Mass Spectrometric and Theoretical Study on the Reaction with SO2. Molecules 2023, 28, 132. https://doi.org/10.3390/molecules28010132
Salvitti C, Pepi F, Troiani A, Rosi M, de Petris G. The Peroxymonocarbonate Anion HCO4− as an Effective Oxidant in the Gas Phase: A Mass Spectrometric and Theoretical Study on the Reaction with SO2. Molecules. 2023; 28(1):132. https://doi.org/10.3390/molecules28010132
Chicago/Turabian StyleSalvitti, Chiara, Federico Pepi, Anna Troiani, Marzio Rosi, and Giulia de Petris. 2023. "The Peroxymonocarbonate Anion HCO4− as an Effective Oxidant in the Gas Phase: A Mass Spectrometric and Theoretical Study on the Reaction with SO2" Molecules 28, no. 1: 132. https://doi.org/10.3390/molecules28010132
APA StyleSalvitti, C., Pepi, F., Troiani, A., Rosi, M., & de Petris, G. (2023). The Peroxymonocarbonate Anion HCO4− as an Effective Oxidant in the Gas Phase: A Mass Spectrometric and Theoretical Study on the Reaction with SO2. Molecules, 28(1), 132. https://doi.org/10.3390/molecules28010132