In Vitro Evaluation of α-amylase and α-glucosidase Inhibition of 2,3-Epoxyprocyanidin C1 and Other Constituents from Pterocarpus erinaceus Poir
Abstract
:1. Introduction
2. Results
2.1. Structural Elucidation of Compound 1
2.2. Antidiabetic Activity of Extract and Compounds
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Extraction and Isolation
4.3. Evaluation of Antidiabetic Activity by In Vitro α-amylase and α-glucosidase Inhibitory Assay
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Rawat, P.; Kumar, M.; Rahuja, N.; Lal Srivastava, D.S.; Srivastava, A.K.; Maurya, R. Synthesis and antihyperglycemic activity of phenolic C-glycosides. Bioorg. Med. Chem. Lett. 2011, 21, 228–233. [Google Scholar] [CrossRef] [PubMed]
- Cho, N.H.; Shaw, J.E.; Karuranga, S.; Huang, Y.; da Rocha Fernandes, J.D.; Ohlrogge, A.W.; Malanda, B. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res. Clin. Pract. 2018, 138, 271–281. [Google Scholar] [CrossRef] [PubMed]
- Choudhury, H.; Pandey, M.; Hua, C.K.; Mun, C.S.; Jing, J.K.; Kong, L.; Ern, L.Y.; Ashraf, N.A.; Kit, S.W.; Yee, T.S.; et al. An update on natural compounds in the remedy of diabetes mellitus: A systematic review. J. Tradit. Complement. Med. 2018, 3, 361–376. [Google Scholar] [CrossRef]
- Chu, D.T.; Minh Nguyet, N.T.; Dinh, T.C.; Thai Lien, N.V.; Nguyen, K.H.; Nhu Ngoc, V.T.; Tao, Y.; Son, L.H.; Le, D.H.; Nga, V.B.; et al. An update on physical health and economic consequences of overweight and obesity. Diabetes. Metab. Syndr. 2018, 12, 1095–1100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuryłowicz, A. The role of isoflavones in type 2 diabetes prevention and treatment—A narrative review. Int. J. Mol. Sci. 2021, 22, 218. [Google Scholar] [CrossRef]
- Waheed, B.; Mukarram, S.M.; Hussain, F.; Khan, M.I.; Zeb, A.; Jan, M.S. Synthesis, antioxidant, and antidiabetic activities of ketone derivatives of succinimide. Evid. Based. Complement. Alternat. Med. 2022, 2022, 1445604. [Google Scholar]
- Gong, L.; Feng, D.; Wang, T.; Ren, Y.; Liu, Y.; Wang, J. Inhibitors of α-amylase and α-glucosidase: Potential linkage for whole cereal foods on prevention of hyperglycemia. Food Sci. Nutr. 2020, 8, 6320–6337. [Google Scholar] [CrossRef]
- Quan, N.V.; Xuan, T.D.; Tran, H.D.; Thuy, N.T.D.; Trang, L.T.; Huong, C.T.; Andriana, Y.; Tuyen, P.T. Antioxidant, α-amylase and α-glucosidase inhibitory activities and potential constituents of Canarium tramdenum bark. Molecules 2019, 24, 605. [Google Scholar] [CrossRef] [Green Version]
- Tamfu, A.N.; Ceylan, O.; Kucukaydin, S.; Ozturk, M.; Duru, M.E.; Dinica, R.M. Antibiofilm and enzyme inhibitory potentials of two annonaceous food spices, African pepper (Xylopia aethiopica) and African nutmeg (Monodora myristica). Foods 2020, 9, 1768. [Google Scholar] [CrossRef]
- Tamfu, A.N.; Kucukaydin, S.; Yeskaliyeva, B.; Ozturk, M.; Dinica, R.M. Non-alkaloid cholinesterase inhibitory compounds from natural sources. Molecules 2021, 26, 5582. [Google Scholar] [CrossRef]
- Derosa, G.; Maffioli, P. Management of diabetic patients with hypoglycemic agents α-Glucosidase inhibitors and their use in clinical practice. Arch. Med. Sci. 2012, 8, 899–906. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Mittal, A.; Babu, D.; Mittal, A. Herbal medicines for diabetes management and its secondary complications. Curr. Diabetes Rev. 2021, 17, 437–456. [Google Scholar] [CrossRef] [PubMed]
- Feunaing, R.T.; Tamfu, A.N.; Ntchapda, F.; Gade, I.S.; Mbane, M.N.; Tagatsing, M.F.; Talla, E.; Henoumont, C.; Laurent, S.; Dinica, R.M. A new abietane-type diterpenoid from roots of Burkea africana Hook (Fabaceae) with α-amylase inhibitory potential. Nat. Prod. Res. 2021, 20, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Tchuente Djoko, C.; Gade, I.S.; Atchade, A.D.T.; Tamfu, A.N.; Mihaela Dinica, R.; Sangu, E.; Tchoffo Djankou, M.; Henoumont, C.; Laurent, S.; Talla, E. An a-Sophoradiol glycoside from the root wood of Erythrina senegalensis DC. (Fabaceae) with α-amylase and α-glucosidase inhibitory potential. Nat. Prod. Com. 2021, 16, 1–6. [Google Scholar] [CrossRef]
- Carmoi, T.; Verret, C.; Debonne, J.; Klotz, F. Prise en charge du diabète de type 2 en Afrique subsaharienne: Constats actuels et perspectives. Médecine Trop. Rev. Corps St. Colonial. 2007, 67, 601–606. [Google Scholar]
- Patel, D.K.; Prasad, S.K.; Kumar, R.; Hemalatha, S. An overview on antidiabetic medicinal plants having insulin mimetic property. Asian Pac. J. Trop. Biomed. 2012, 2, 320–330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tran, N.; Pham, B.; Le, L. Bioactive compounds in anti-diabetic plants: From herbal medicine to modern drug discovery. Biology 2020, 9, 252. [Google Scholar] [CrossRef]
- Etsassala, N.; Badmus, J.A.; Marnewick, J.L.; Iwuoha, E.I.; Nchu, F.; Hussein, A.A. Alpha-glucosidase and alpha-amylase inhibitory activities, molecular docking, and antioxidant capacities of Salvia aurita constituents. Antioxidants 2020, 9, 1149. [Google Scholar] [CrossRef]
- Artasensi, A.; Pedretti, A.; Vistoli, G.; Fumagalli, L. Type 2 diabetes mellitus: A review of multi-target drugs. Molecules 2020, 25, 1987. [Google Scholar] [CrossRef]
- Orwa, C.; Mutua, A.; Jamnadass, R.; Anthony, S. Agroforestree database: A tree reference and selection guide version 4.0. 2009. Available online: http://www.worlagroforestry.org/sites/treedbs/treedatabases.asp (accessed on 15 October 2022).
- Louppe, D.; Oteng-Amoako, A.; Brink, M. Plant Ressources of Tropical Africa; Timbers Prota Foundation: Wageningen, The Netherlands; Backhuys Publishers: Leiden, The Netherlands; CTA: Wageningen, The Netherlands, 2008; p. 785. [Google Scholar]
- Noufou, O.; Wamtinga, S.; André, T.; Christine, B.; Marius, L.; Emmanuelle, H.; Jean, K.; Marie-Geneviève, D.; Pierre, G. Pharmacological properties and related constituents of stem bark of Pterocarpus erinaceus Poir. (Fabaceae). Asian Pac. J. Trop. Med. 2012, 5, 46–51. [Google Scholar] [CrossRef]
- Toukam, P.; Tagatsing, M.; Yamthe, L.; Baishya, G.; Barua, N.; Tchinda, A.; Mbafor, J. Novel saponin and benzofuran isoflavonoid with in vitro antiinflammatory and free radical scavenging activities from the stem bark of Pterocarpus erinaceus (Poir). Phytochem. Lett. 2018, 28, 69–75. [Google Scholar] [CrossRef]
- Abouelela, M.; Abdelhamid, R.; Orabi, M. Phytochemical constituents of plant species of Pterocarpus (F: Leguminosae): A Review. Int. J. Pharmacog. Phytochem. Res. 2019, 11, 264–281. [Google Scholar]
- Lijun, W.; Guodong, L.; Zhongjun, M.; Xueming, L. Chemical constituents with antioxidant activities from litchi (Litchi chinensis Sonn.) seeds. Food Chem. 2011, 126, 1081–1087. [Google Scholar]
- Toshihiko, S.; Motoh, M.; Takatoshi, N.; Tomomasa, K.; Hiroshi, A.; Yukihiro, G. Isolation and structural elucidation of some procyanidins from apple by low-temperature nuclear magnetic resonance. J. Agric. Food Chem. 2003, 51, 3806–3813. [Google Scholar]
- Barber, E.; Houghton, M.J.; Visvanathan, R.; Williamson, G. Measuring key human carbohydrate digestive enzyme activities using high-performance anion-exchange chromatography with pulsed amperometric detection. Nat. Protoc. 2022, 17, 2882–2919. [Google Scholar] [CrossRef] [PubMed]
- Tittikpina, N.K.; Nana, F.; Fontanay, S.; Philippot, S.; Batawila, K.; Akpagana, K.; Kirsch, G.; Chaimbault, P.; Jacob, C.; Duval, R. Antibacterial activity and cytotoxicity of Pterocarpus erinaceus Poir extracts, fractions and isolated compounds. J. Ethnopharmacol. 2018, 212, 200–207. [Google Scholar] [CrossRef] [PubMed]
- Aron, P.M.; Kennedy, J.A. Flavan-3-ols: Nature, occurrence and biological activity. Mol. Nutr. Food Res. 2008, 52, 79–104. [Google Scholar] [CrossRef]
- Ouedraogo, N.; Hay, A.; Ouedraogo, J.; Sawadogo, W.R.; Tibiri, A.; Lompo, M.; Nikiema, J.; Koudou, J.; Dijoux-Franca, M.; Guissou, I. Biological and phytochemical investigations of extracts from Pterocarpus erinaceus Poir (Fabaceae) root barks. African J. Trad. Compl. Alt. Med. 2017, 14, 187–195. [Google Scholar]
- Patrick, A.T.; Samson, F.P.; Jalo, K.; Thagriki, D.; Umaru, H.A.; Madusolumuo, M.A. In vitro antioxidant activity and phytochemical evaluation of aqueous and methanolic stem bark extracts of Pterocarpus erinaceus. World J. Pharm. Res. 2016, 5, 134–151. [Google Scholar]
- China, T.F.; Gbangboche, B.A.; Attindehou, S.; Olounlade, A.P. Chemical components of main used herbal remedies in Somba cattle health care in the Northern Benin. World J. Pharm. Pharmaceut. Sci. 2016, 5, 175–184. [Google Scholar]
- Al-Ishaq, R.K.; Abotaleb, M.; Kubatka, P.; Kajo, K.; Büsselberg, D. Flavonoids and their anti-diabetic effects: Cellular mechanisms and effects to improve blood sugar levels. Biomolecules 2019, 9, 430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atchou, K.; Lawson-Evi, P.; Metowogo, K.; Eklu-Gadegbeku, K.; Akli, K.K.; Gbeassor, M.J. Hypoglycemic effect and antioxidant potential of Pterocarpus erinaceus Poir. stem bark and Amaranthus spinosus L. roots extracts. J. Pharmaceut. Sci. Res. 2020, 12, 340–350. [Google Scholar]
- Tamfu, A.N.; Ceylan, O.; Kucukaydin, S.; Duru, M.E. HPLC-DAD phenolic profiles, antibiofilm, anti-quorum sensing and enzyme inhibitory potentials of Camellia sinensis (L.) O. Kuntze and Curcuma longa L. LWT—Food Sci. Technol. 2020, 133, 110150. [Google Scholar] [CrossRef]
- Beddiar, H.; Boudiba, S.; Benahmed, M.; Tamfu, A.N.; Ceylan, Ö.; Hanini, K.; Kucukaydin, S.; Elomri, A.; Bensouici, C.; Laouer, H.; et al. Chemical composition, anti-quorum sensing, enzyme inhibitory, and antioxidant properties of phenolic extracts of Clinopodium nepeta L. Kuntze. Plants 2021, 10, 1955. [Google Scholar] [CrossRef] [PubMed]
- Tamfu, A.N.; Munvera, A.M.; Botezatu, A.V.D.; Talla, E.; Ceylan, O.; Fotsing, M.T.; Mbafor, J.T.; Shaheen, F.; Dinica, R.M. Synthesis of benzoyl esters of β-amyrin and lupeol and evaluation of their antibiofilm and antidiabetic activities. Results Chem. 2022, 4, 100322. [Google Scholar] [CrossRef]
- Alain, K.Y.; Tamfu, A.N.; Kucukaydin, K.; Ceylan, O.; Pascal, A.D.C.; Félicien, A.; Dominique, S.C.K.D.; Duru, E.D.; Dinica, R.M. Phenolic profiles, antioxidant, antiquorum sensing, antibiofilm and enzyme inhibitory activities of selected Acacia species collected from Benin. LWT 2022, 171, 114162. [Google Scholar] [CrossRef]
- Tamfu, A.N.; Roland, N.; Mfifen, A.M.; Kucukaydin, S.; Gaye, M.; Botezatu, A.V.; Emin Duru, M.; Dinica, R.M. Phenolic composition, antioxidant and enzyme inhibitory activities of Parkia biglobosa (Jacq.) Benth., Tithonia diversifolia (Hemsl) A. Gray, and Crossopteryx febrifuga (Afzel.) Benth. Benth. Arab. J. Chem. 2022, 15, 103675. [Google Scholar] [CrossRef]
- Khan, S.N.; Shaheen, F.; Aleem, U.; Sheikh, S.; Tamfu, A.N.; Ashraf, S.; Ul-Haq, Z.; Ullah, S.; Choudhary, M.I.; Jahan, H. Peptide conjugates of 18β-glycyrrhetinic acid as potent inhibitors of α-glucosidase and AGEs-induced oxidation. Eur. J. Pharm. Sci. 2022, 168, 106045. [Google Scholar] [CrossRef]
- Li, X.; Liu, J.; Chang, Q.; Zhou, Z.; Han, R.; Liang, Z. Antioxidant and antidiabetic activity of proanthocyanidins from Fagopyrum dibotrys. Molecules 2021, 26, 2417. [Google Scholar] [CrossRef]
- Yamashita, Y.; Wang, L.; Nanba, F.; Ito, C.; Toda, T.; Ashida, H. Procyanidin promotes translocation of glucose Transporter 4 in muscle of mice through activation of insulin and AMPK signaling pathways. PLoS ONE 2016, 11, e0161704. [Google Scholar] [CrossRef] [Green Version]
- Kanamoto, Y.; Yamashita, Y.; Nanba, F.; Yoshida, T.; Tsuda, T.; Fukuda, I.; Nakamura-Tsuruta, S.; Ashida, H. A black soybean seed coat extract prevents obesity and glucose intolerance by up-regulating uncoupling proteins and down-regulating inflammatory cytokines in high-fat diet-fed mice. J. Agric. Food Chem. 2011, 59, 8985–8993. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Sun, P.; Wang, T.; Chen, K.; Jia, Q.; Wang, H.; Li, Y. Diverse mechanisms of antidiabetic effects of the different procyanidin oligomer types of two different cinnamon species on db/db mice. J. Agric. Food Chem. 2012, 60, 9144–9150. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, Y.; Okabe, M.; Natsume, M.; Ashida, H. Prevention mechanisms of glucose intolerance and obesity by cacao liquor procyanidin extract in high-fat diet-fed C57BL/6 mice. Arch. Biochem. Biophys. 2012, 527, 95–104. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Shen, S.; Jiang, J.; Tan, D.; Jiang, D.; Bai, B.; Sun, X.; Fu, S. Protective effects of grape seed extract fractions with different degrees of polymerisation on blood glucose, lipids and hepatic oxidative stress in diabetic rats. Nat. Prod. Res. 2015, 29, 988–992. [Google Scholar] [CrossRef]
- Sun, P.; Li, K.; Wang, T.; Ji, J.; Wang, Y.; Chen, K.X.; Jia, Q.; Li, Y.M.; Wang, H.Y. Procyanidin C1, a Component of Cinnamon Extracts, Is a Potential Insulin Sensitizer That Targets Adipocytes. J. Agric. Food Chem. 2019, 67, 8839–8846. [Google Scholar] [CrossRef]
- Dasiman, R.; Nor, N.M.; Eshak, Z.; Mutalip, S.S.M.; Suwandi, N.R.; Bidin, H. A Review of procyanidin: Updates on current bioactivities and potential health benefits. Biointerface Res. Appl. Chem. 2022, 12, 5918–5940. [Google Scholar]
- El-Alfy, A.T.; Ahmed, A.A.E.; Fatani, A.J. Protective effect of red grape seeds proanthocyanidins against induction of diabetes by alloxan in rats. Pharmacol. Res. 2005, 52, 264–270. [Google Scholar] [CrossRef]
- Caimari, A.; Mariné-Casadó, R.; Boqué, N.; Crescenti, A.; Arola, L.; Del Bas, J.M. Maternal intake of grape seed procyanidins during lactation induces insulin resistance and an adiponectin resistance-like phenotype in rat offspring. Sci. Rep. 2017, 7, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Vargas, F.V.; Guisado Requena, I.M.; Canadas De la Fuente, G.A.; Castillo, R.F.; Sanchez, E.F.; Jara, C.C.; Guisado Barrilao, R. Effects of combinational procyanidins in grape seed extract and exercise on the levels of glucose and blood lipid profile. J. Diabetes Metab. 2017, 8, 6–10. [Google Scholar] [CrossRef]
- Sunil, C.; Irudayaraj, S.S.; Duraipandiyan, V.; Alrashood, S.T.; Alharbi, S.A.; Ignacimuthu, S. Friedelin exhibits antidiabetic effect in diabetic rats via modulation of glucose metabolism in liver and muscle. J. Ethnopharmacol. 2021, 268, 113659. [Google Scholar] [CrossRef]
- Ansari, P.; Akther, S.; Hannan, J.M.A.; Seidel, V.; Nujat, N.J.; Abdel-Wahab, Y.H.A. Pharmacologically active phytomolecules isolated from traditional antidiabetic plants and their therapeutic role for the management of diabetes mellitus. Molecules 2022, 27, 4278. [Google Scholar] [CrossRef] [PubMed]
- Jadalla, B.M.I.S.; Moser, J.J.; Sharma, R.; Etsassala, N.G.E.R.; Egieyeh, S.A.; Badmus, J.A.; Marnewick, J.L.; Beukes, D.; Cupido, C.N.; Hussein, A.A. In Vitro Alpha-glucosidase and alpha-amylase inhibitory activities and antioxidant capacity of Helichrysum cymosum and Helichrysum pandurifolium Schrank constituents. Separations 2022, 9, 190. [Google Scholar] [CrossRef]
- Tian, D.; Liu, J.; Liu, N.; Wang, R.; Ai, Y.; Jin, L.; Li, F.; Wei, P.; Li, Z.; Wang, C.; et al. Daidzin decreases blood glucose and lipid in streptozotocin-induced diabetic mice. Trop. J. Pharm. Res. 2016, 15, 2435–2443. [Google Scholar] [CrossRef] [Green Version]
- Das, D.; Sarkar, S.; Bordoloi, J.; Wann, S.B.; Kalita, J.; Manna, P. Daidzein, its effects on impaired glucose and lipid metabolism and vascular inflammation associated with type 2 diabetes. Biofactors 2018, 44, 407–417. [Google Scholar] [CrossRef]
- El-Kordy, E.A.; Alshahrani, A.M. Effect of genistein, a natural soy isoflavone, on pancreatic β-cells of streptozotocin-induced diabetic rats: Histological and immunohistochemical study. J. Microsc. Ultrastruct. 2015, 3, 108–119. [Google Scholar] [CrossRef] [Green Version]
- Mezei, O.; Banz, W.J.; Steger, R.W.; Peluso, M.R.; Winters, T.A.; Shay, N. Soy isoflavones exert antidiabetic and hypolipidemic effects through the PPAR pathways in obese Zucker rats and murine RAW 264.7 cells. J. Nutr. 2003, 133, 1238–1243. [Google Scholar] [CrossRef] [Green Version]
- Ae Park, S.; Choi, M.S.; Cho, S.Y.; Seo, J.S.; Jung, U.J.; Kim, M.J.; Sung, M.K.; Park, Y.B.; Lee, M.K. Genistein and daidzein modulate hepatic glucose and lipid regulating enzyme activities in C57BL/KsJ-db/db mice. Life Sci. 2006, 79, 1207–1213. [Google Scholar] [CrossRef]
- Gilbert, E.R.; Liu, D. Anti-diabetic functions of soy isoflavone genistein: Mechanisms underlying its effects on pancreatic β-cell function. Food Funct. 2013, 4, 200–212. [Google Scholar] [CrossRef] [Green Version]
- Proença, C.; Freitas, M.; Ribeiro, D.; Oliveira, E.F.T.; Sousa, J.L.C.; Tomé, S.M.; Ramos, M.J.; Silva, A.M.S.; Fernandes, P.A.; Fernandes, E. α-Glucosidase inhibition by flavonoids: An in vitro and in silico structure–activity relationship study. J. Enzyme Inhib. Med. Chem. 2017, 32, 1216–1228. [Google Scholar] [CrossRef] [Green Version]
- Potipiranun, T.; Adisakwattana, S.; Worawalai, W.; Ramadhan, R.; Phuwapraisirisan, P. Identification of pinocembrin as an antiglycation agent and α-glucosidase inhibitor from fingerroot (Boesenbergia rotunda): The tentative structure–activity relationship towards Mg-trapping activity. Molecules 2018, 23, 3365. [Google Scholar] [CrossRef]
- Jia, Y.; Ma, Y.; Cheng, G.; Zhang, Y.; Cai, S. Comparative study of dietary flavonoids with different structures as α-glucosidase inhibitors and insulin sensitizers. J. Agric. Food Chem. 2019, 67, 10521–10533. [Google Scholar] [CrossRef] [PubMed]
- Proença, C.; Freitas, M.; Ribeiro, D.; Tomé, S.M.; Oliveira, E.F.T.; Viegas, M.F.; Araújo, A.N.; Ramos, M.J.; Silva, A.M.S.; Fernandes, P.A. Evaluation of a flavonoids library for inhibition of pancreatic α-amylase towards a structure–activity relationship. J. Enzyme Inhib. Med. Chem. 2019, 34, 577–588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmed, Q.U.; Ali, A.H.M.; Mukhtar, S.; Alsharif, M.A.; Parveen, H.; Sabere, A.S.M.; Nawi, M.S.M.; Khatib, A.; Siddiqui, M.J.; Umar, A.; et al. Medicinal potential of isoflavonoids: Polyphenols that may cure diabetes. Molecules 2020, 25, 5491. [Google Scholar] [CrossRef] [PubMed]
- Shamsudin, N.F.; Ahmed, Q.U.; Mahmood, S.; Shah, S.A.A.; Sarian, M.N.; Khattak, M.M.A.K.; Khatib, A.; Sabere, A.S.M.; Yusoff, Y.M.; Latip, J. Flavonoids as antidiabetic and anti-inflammatory agents: A review on structural activity relationship-based studies and meta-analysis. Int. J. Mol. Sci. 2022, 23, 12605. [Google Scholar] [CrossRef]
- Amor, A.J.; Gómez-Guerrero, C.; Ortega, E.; Sala-Vila, A.; Lázaro, I. Ellagic acid as a tool to limit the diabetes burden: Updated evidence. Antioxidants 2020, 9, 1226. [Google Scholar] [CrossRef]
- Sharma, V.C.; Kaushik, A.; Dey, Y.N.; Srivastava, B.; Wanjari, M.; Pawar, S.; Chougule, S. Nephroprotective potential of Anogeissus latifolia Roxb. (Dhava) against gentamicin-induced nephrotoxicity in rats. J. Ethnopharmacol. 2021, 273, 114001. [Google Scholar] [CrossRef]
- Karakaya, S.; Gözcü, S.; Güvenalp, Z.; Özbek, H.; Yuca, H.; Dursunoğlu, B.; Kazaz, C.; Kılıç, C.S. The α-amylase and α-glucosidase inhibitory activities of the dichloromethane extracts and constituents of Ferulago bracteata roots. Pharm. Biol. 2018, 56, 18–24. [Google Scholar] [CrossRef] [Green Version]
- Dirir, A.M.; Daou, M.; Yousef, A.F.; Yousef, L.F. A review of alpha-glucosidase inhibitors from plants as potential candidates for the treatment of type-2 diabetes. Phytochem. Rev. 2022, 21, 1049–1079. [Google Scholar] [CrossRef]
- Küçükaydın, S.; Çayan, F.; Tel-Çayan, G.; Duru, M.E. HPLC-DAD phytochemical profiles of Thymus cariensis and T. cilicicus with antioxidant, cytotoxic, anticholinesterase, anti-urease, anti-tyrosinase, and antidiabetic activities. S. Afr. J. Bot. 2021, 143, 155–163. [Google Scholar] [CrossRef]
- Kim, J.S.; Kwon, C.S.; Son, K.H. Inhibition of α-glucosidase and amylase by luteolin, a flavonoid. Biosci. Biotechnol. Biochem. 2010, 64, 2458–2461. [Google Scholar] [CrossRef]
Units | Position | 13C(ppm) | 1H(ppm) | HMBC | COSY |
---|---|---|---|---|---|
Unit A | 2A | 80.3 | 4.37 (1H, d, J = 8.5 Hz) | C2′B; C1′B; C6′B | H-2A/H-3A |
3A | 67.5 | 3.85 (1H, t) | C10A | H-3A/H-2A; H-3A/H-4A | |
4A | 29.8 | 2.82 (1Hα, dd, J = 4.16 Hz); 2.83 (1Hβ, brs) | C-2A; C-5A; C-10A; C-10A; C-3A | H-4A/H3A | |
5A | 155.8 | - | |||
6A | 96.5 | 6.90 (1H, s) | C-10A; C-8A; C-7A | ||
7A | 155.8 | - | |||
8A | 106.7 | - | |||
9A | 151.1 | - | |||
10A | 100.0 | - | |||
1′A | 133.2 | - | |||
2′A | 115.5 | 6.82 (1H, d, J = 8.9 Hz) | C-1′A; C-3′A | H-2′A/H-6′A | |
3′A | 145.3 | - | |||
4′A | 145.9 | - | |||
5′A | 116.1 | 6.75 (1H, d, J = 2.4 Hz) | C-1′A; C-4′A | H-5′A/H-2′A | |
6′A | 119.5 | 6.73(1H, dd, J = 8.9; 2.4 Hz) | C-2A; C-2′A; C-3′A | H-6′A/H-2′A; H-6′A/H-5′A | |
Unit B | 2B | 72.6 | 4,11 (1H, d, J = 2,0 Hz) | H-2B/H-3B | |
3B | 78.9 | 5.69 (1H, brs) | C-1′B; C-2′B; C-6′B | H-3B/H-2B; H-3B/H4-B | |
4B | 38.3 | 4.55 (1H, brs) | C-10B; C-7A; C-8A; C-9A | H-4B/H3B | |
5B | 155.5 | - | |||
6B | 96.1 | 5.80 (1H, brs) | C-10B; C-7B; C-9B | ||
7B | 156.0 | - | |||
8B | 106.4 | - | |||
9B | 151.8 | - | |||
10B | 108.9 | - | |||
1′B | 131.8 | - | |||
2′B | 115.7 | 6.63 (1H, d, J = 2.1 Hz) | C-1′BA; C-3′B | H-2′B/H-6′B | |
3′B | 145.5 | - | |||
4′B | 146.3 | - | |||
5′B | 116.7 | 7.30 (1H, d, J = 8.3 Hz) | C-1′B | H-5′B/H-2′B | |
6′B | 121.4 | 7.18 (1H, dd, J = 8.3, 21 Hz) | C-2B; C-3′A | H-6′B/H-2′B; H-6′B/H-5′B | |
Unit C | 2C | 99.9 | - | ||
3C | 67.2 | 3.28 (1H, d, J = 3.4 Hz) | C-2A; C-9A | H-3C/H-4C | |
4C | 28.9 | 4.14 (1H, d, J = 3.4 Hz) | C-7B; C-8B; C-9B; C-10C; C-9C; C-2C | H-4C/H-3C | |
5C | 156.7 | - | |||
6C | 98.3 | 5.95 (1H, d, J = 3.4 Hz) | C-10C; C-7C; C-8C | H-6C/H-8C | |
7C | 157.8 | - | |||
8C | 96.6 | 6.00 (1H, d, J = 3.3 Hz) | C-10C; C-7C; C-6C | H-8C/H-6C | |
9C | 154.2 | - | |||
10C | 104.9 | - | |||
1′C | 132.5 | - | |||
2′C | 115.7 | 7.02 (1H, d, J = 2.0 Hz) | C-2C; C-3′C | H-2′C/H-6′C | |
3′C | 145.8 | - | |||
4′C | 146.6 | - | |||
5′C | 116.0 | 6.75 (1H, d, J = 8.3 Hz) | C-1′C; C-4′C | H-5′C/H-2′C | |
6′C | 119.9 | 6.84 (1H, dd, J = 8.3, 2.1 Hz) | C-2C; C-1′C | H-6′C/H-2′C; H-6′C/H-5′C |
Sample | α-amylase (% inh. at 50 µg/mL) | IC50 µg/mL | α-glucosidase (% inh. at 50 µg/mL) | IC50 µg/mL |
---|---|---|---|---|
1 | 34.3 ± 0.7 | >50 | 53.4 ± 1.6 | 41.6 ± 1.0 |
2 | 21.5 ± 0.6 | >50 | 32.1 ± 0.1 | >50 |
3 | 19.3 ± 0.4 | >50 | 28.5 ± 0.3 | >50 |
4 | 33.7 ± 0.5 | >50 | 54.1 ± 1.3 | 43.4 ± 0.5 |
5 | 32.2 ± 1.0 | >50 | 50.6 ± 1.2 | 47.6 ± 0.9 |
6 | 34.2 ± 0.5 | >50 | 51.8 ± 0.9 | 46.3 ± 0.2 |
7 | 50.2 ± 2.0 | 48.1 ± 0.9 | 54.0 ± 1.0 | 39.5 ± 1.2 |
8 | 50.9 ± 0.8 | 48.6 ± 0.1 | 55.2 ± 1.1 | 40.9 ± 1.3 |
9 | 50.5 ± 1.2 | 50.2 ± 0.5 | 53.7 ± 0.4 | 44.8 ± 0.6 |
10 | 45.4 ± 0.3 | >50 | 51.8 ± 0.9 | 45.0 ± 0.8 |
11 | 43.5 ± 0.6 | >50 | 50.7 ± 0.2 | 47.5 ± 0.4 |
Extract | 53.2 ± 1.4 | 40.5 ± 0.8 | 66.9 ± 2.0 | 31.2 ± 0.1 |
Acarbose | 72.5 ± 1.5 | 26.4 ± 0.3 | 81.7 ± 0.8 | 22.0 ± 0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feunaing, R.T.; Tamfu, A.N.; Gbaweng, A.J.Y.; Mekontso Magnibou, L.; Ntchapda, F.; Henoumont, C.; Laurent, S.; Talla, E.; Dinica, R.M. In Vitro Evaluation of α-amylase and α-glucosidase Inhibition of 2,3-Epoxyprocyanidin C1 and Other Constituents from Pterocarpus erinaceus Poir. Molecules 2023, 28, 126. https://doi.org/10.3390/molecules28010126
Feunaing RT, Tamfu AN, Gbaweng AJY, Mekontso Magnibou L, Ntchapda F, Henoumont C, Laurent S, Talla E, Dinica RM. In Vitro Evaluation of α-amylase and α-glucosidase Inhibition of 2,3-Epoxyprocyanidin C1 and Other Constituents from Pterocarpus erinaceus Poir. Molecules. 2023; 28(1):126. https://doi.org/10.3390/molecules28010126
Chicago/Turabian StyleFeunaing, Romeo Toko, Alfred Ngenge Tamfu, Abel Joel Yaya Gbaweng, Larissa Mekontso Magnibou, Fidele Ntchapda, Celine Henoumont, Sophie Laurent, Emmanuel Talla, and Rodica Mihaela Dinica. 2023. "In Vitro Evaluation of α-amylase and α-glucosidase Inhibition of 2,3-Epoxyprocyanidin C1 and Other Constituents from Pterocarpus erinaceus Poir" Molecules 28, no. 1: 126. https://doi.org/10.3390/molecules28010126
APA StyleFeunaing, R. T., Tamfu, A. N., Gbaweng, A. J. Y., Mekontso Magnibou, L., Ntchapda, F., Henoumont, C., Laurent, S., Talla, E., & Dinica, R. M. (2023). In Vitro Evaluation of α-amylase and α-glucosidase Inhibition of 2,3-Epoxyprocyanidin C1 and Other Constituents from Pterocarpus erinaceus Poir. Molecules, 28(1), 126. https://doi.org/10.3390/molecules28010126