Recent Advances of Polyphenol Oxidases in Plants
Abstract
:1. Introduction
2. Distribution and Functional Domain of PPO
3. Optimal Conditions of PPO
3.1. Optimal pH of PPO
3.2. Optimum Temperature of PPO
4. Substrate Specificity and Molecular Weight of PPO
5. Activated PPO and Enzymic Browning
5.1. Active and Latent States of PPO
5.2. PPO in Enzymatic Browning
6. Physiological Functions of PPO
6.1. Response to Biotic Stresses
6.2. Response to Abiotic Stresses
6.3. Role in Physiological Metabolism
7. Regulation of PPO Genes
8. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ono, E.; Hatayama, M.; Isono, Y.; Sato, T.; Watanabe, R.; Yonekura-Sakakibara, K.; Fukuchi-Mizutani, M.; Tanaka, Y.; Kusumi, T.; Nishino, T.; et al. Localization of a flavonoid biosynthetic polyphenol oxidase in vacuoles. Plant J. 2006, 45, 133–143. [Google Scholar] [CrossRef] [PubMed]
- Mayer, A.M. Polyphenol oxidases in plants and fungi: Going places? A review. Phytochemistry 2006, 67, 2318–2331. [Google Scholar] [CrossRef] [PubMed]
- Batista, K.A.; Batista, G.L.; Alves, G.L.; Fernandes, K.F. Extraction, partial purification and characterization of polyphenol oxidase from Solanum lycocarpum fruits. J. Mol. Catal. B Enzym. 2014, 102, 211–217. [Google Scholar] [CrossRef]
- Hunt, M.D.; Eannetta, N.T.; Yu, H.; Newman, S.M.; Steffens, J.C. cDNA cloning and expression of potato polyphenol oxidase. Plant Mol. Biol. 1993, 21, 59–68. [Google Scholar] [CrossRef] [PubMed]
- Thygesen, P.W.; Dry, I.B.; Robinson, S.P. Polyphenol Oxidase in Potato: A Multigene Family That Exhibits Differential Expression Patterns. Plant Physiol. 1995, 109, 525–531. [Google Scholar] [CrossRef] [Green Version]
- Chi, M.; Basdeo, B.; David, L.; Tang, G.; Su, Y.; Sun, R.; Oomah, B.D.; Wiersma, P.A.; Xiang, Y. Reduced polyphenol oxidase gene expression and enzymatic browning in potato (Solanum tuberosum L.) with artificial microRNAs. BMC Plant Biol. 2014, 14, 62. [Google Scholar] [CrossRef] [Green Version]
- Gooding, P.S.; Bird, C.; Robinson, S.P. Molecular cloning and characterization of banana fruit polyphenol oxidase. Planta 2001, 213, 748–757. [Google Scholar] [CrossRef]
- Newman, S.M.; Eannetta, N.T.; Yu, H.; Prince, J.P.; Carmen de Vicente, M.; Tanksley, S.D.; Steffens, J.C. Organization of the tomato polyphenol oxidase gene family. Plant Mol. Biol. 1993, 21, 1035–1051. [Google Scholar] [CrossRef]
- Huang, S.; Li, R.; Zhang, Z.; Li, L.; Gu, X.; Fan, W.; Lucas, W.J.; Wang, X.; Xie, B.; Ni, P.; et al. The genome of the cucumber, Cucumis sativus L. Nat. Genet. 2009, 41, 1275–1281. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.-X.; Shi, W.-K.; Guo, R.; Zhang, Y.-J.; Guo, H.-B. Screening and verification of proteins of Salvia miltiorrhiza polyphenol oxidase interaction. China J. Chin. Mater. Med. 2020, 45, 2523–2532. [Google Scholar]
- Bertrand, G. Sur une nouvelle oxydase, ou ferment soluble oxidant, d’origine végétale. CR Acad. Sci. 1896, 122, 1215–1217. [Google Scholar]
- Mishra, B.B.; Gautam, S. Polyphonel oxidases: Biochemical and molecular characterization, distribution, role and its control. Enzym. Eng. 2016, 5, 141–149. [Google Scholar]
- Pretzler, M.; Rompel, A. What causes the different functionality in type-III-copper enzymes? A state of the art perspective. Inorg. Chim. Acta 2018, 481, 25–31. [Google Scholar] [CrossRef]
- Tomás-Barberán, F.A.; Espín, J.C. Phenolic compounds and related enzymes as determinants of quality in fruits and vegetables. J. Sci. Food Agric. 2001, 81, 853–876. [Google Scholar] [CrossRef]
- Ramaswamy, H.; Riahi, E. High-pressure inactivation kinetics of polyphenol oxidase in apple juice. Appl. Biotechnol. Food Sci. Policy 2003, 1, 189–197. [Google Scholar]
- Torres, A.; Aguilar-Osorio, G.; Camacho, M.; Basurto, F.; Navarro-Ocana, A. Characterization of polyphenol oxidase from purple sweet potato (Ipomoea batatas L. Lam) and its affinity towards acylated anthocyanins and caffeoylquinic acid derivatives. Food Chem. 2021, 356, 129709. [Google Scholar] [CrossRef]
- Terefe, N.S.; Buckow, R.; Versteeg, C. Quality-Related Enzymes in Fruit and Vegetable Products: Effects of Novel Food Processing Technologies, Part 1: High-Pressure Processing. Crit. Rev. Food Sci. Nutr. 2014, 54, 24–63. [Google Scholar] [CrossRef]
- Iqbal, A.; Murtaza, A.; Hu, W.; Ahmad, I.; Ahmed, A.; Xu, X. Activation and inactivation mechanisms of polyphenol oxidase during thermal and non-thermal methods of food processing. Food Bioprod. Process. 2019, 117, 170–182. [Google Scholar] [CrossRef]
- Panadare, D.; Rathod, V.K. Extraction and purification of polyphenol oxidase: A review. Biocatal. Agric. Biotechnol. 2018, 14, 431–437. [Google Scholar] [CrossRef]
- Adhikary, T.; Gill, P.; Jawandha, S.; Bhardwaj, R.; Anurag, R. Efficacy of postharvest sodium nitroprusside application to extend storability by regulating physico-chemical quality of pear fruit. Food Chem. 2021, 346, 128934. [Google Scholar] [CrossRef]
- Cheng, D.; Wang, G.; Tang, J.; Yao, C.; Li, P.; Song, Q.; Wang, C. Inhibitory effect of chlorogenic acid on polyphenol oxidase and browning of fresh-cut potatoes. Postharvest Biol. Technol. 2020, 168, 111282. [Google Scholar] [CrossRef]
- Huang, G.-L.; Sun, L.-X.; Ma, J.-J.; Sui, S.-Y.; Wang, Y.-N. Anti-polyphenol oxidase properties of total flavonoids from young loquat fruits: Inhibitory activity and mechanism. Bioengineered 2021, 12, 640–647. [Google Scholar] [CrossRef]
- Zhang, J.; Sun, X. Recent advances in polyphenol oxidase-mediated plant stress responses. Phytochemistry 2021, 181, 112588. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Steffens, J.C. Overexpression of polyphenol oxidase in transgenic tomato plants results in enhanced bacterial disease resistance. Planta 2002, 215, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Bhonwong, A.; Stout, M.J.; Attajarusit, J.; Tantasawat, P. Defensive Role of Tomato Polyphenol Oxidases against Cotton Bollworm (Helicoverpa armigera) and Beet Armyworm (Spodoptera exigua). J. Chem. Ecol. 2009, 35, 28–38. [Google Scholar] [CrossRef]
- Felton, G.W.; Donato, K.; Del Vecchio, R.J.; Duffey, S.S. Activation of plant foliar oxidases by insect feeding reduces nutritive quality of foliage for noctuid herbivores. J. Chem. Ecol. 1989, 15, 2667–2694. [Google Scholar] [CrossRef]
- Jukanti, A. Polyphenol Oxidases (PPOs) in Plants; Springer: Singapore, 2017. [Google Scholar]
- Tinello, F.; Lante, A. Recent advances in controlling polyphenol oxidase activity of fruit and vegetable products. Innov. Food Sci. Emerg. Technol. 2018, 50, 73–83. [Google Scholar] [CrossRef]
- McLarin, M.-A.; Leung, I.K.H. Substrate specificity of polyphenol oxidase. Crit. Rev. Biochem. Mol. Biol. 2020, 55, 274–308. [Google Scholar] [CrossRef]
- Yoruk, R.; Marshall, M.R. Physicochemical properties and function of plant polyphenol oxidase: A review. J. Food Biochem. 2003, 27, 361–422. [Google Scholar] [CrossRef]
- Arnon, D.I. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 1949, 24, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Murata, M.; Tsurutani, M.; Hagiwara, S.; Homma, S. Subcellular Location of Polyphenol Oxidase in Apples. Biosci. Biotechnol. Biochem. 1997, 61, 1495–1499. [Google Scholar] [CrossRef]
- Onsa, G.H.; Saari, N.B.; Selamat, J.; Bakar, J.; Mohammed, A.S.; Bahri, S. Histochemical localization of polyphenol oxidase and peroxidase from Metroxylon sagu. Asia Paci. J. Mol. Bio. Biotechnol. 2007, 15, 91–98. [Google Scholar]
- Nicolas, J.J.; Richard-Forget, F.C.; Goupy, P.M.; Amiot, M.J.; Aubert, S.Y. Enzymatic browning reactions in apple and apple products. Crit. Rev. Food Sci. Nutr. 1994, 34, 109–157. [Google Scholar] [CrossRef]
- Bisswanger, H. Enzyme assays. Perspect. Sci. 2014, 1, 41–55. [Google Scholar] [CrossRef] [Green Version]
- Ortega-García, F.; Blanco, S.; Peinado, M.Á.; Peragón, J. Polyphenol oxidase and oleuropein in olives and their changes during olive ripening. In Olives and Olive Oil in Health and Disease Prevention; Academic Press: Cambridge, MA, USA, 2021; pp. 123–129. [Google Scholar]
- Tran, L.T.; Taylor, J.S.; Constabel, C.P. The polyphenol oxidase gene family in land plants: Lineage-specific duplication and expansion. BMC Genom. 2012, 13, 395. [Google Scholar] [CrossRef] [Green Version]
- Boeckx, T.; Winters, A.L.; Webb, K.J.; Kingston-Smith, A.H. Polyphenol oxidase in leaves: Is there any significance to the chloroplastic localization? J. Exp. Bot. 2015, 66, 3571–3579. [Google Scholar] [CrossRef] [Green Version]
- Liao, T.; Zhou, L.; Liu, J.; Zou, L.; Dai, T.; Liu, W. Inhibitory mechanism of salicylic acid on polyphenol oxidase: A cooperation between acidification and binding effects. Food Chem. 2021, 348, 129100. [Google Scholar] [CrossRef]
- Koussevitzky, S.; Ne’eman, E.; Sommer, A.; Steffens, J.C.; Harel, E. Purification and properties of a novel chloroplast stromal peptidase: Processing of polyphenol oxidase and other imported precursors. J. Biol. Chem. 1998, 273, 27064–27069. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Li, Y.; Yan, M.; Zhang, H.; Wang, R.; Ke, W.; Guo, H. Identification and analysis of PPO gene family members in Lotus (Nelumbo nucifera). J. Agricul. Biotech. 2022, 30, 38–49. [Google Scholar]
- Rathjen, A.H.; Robinson, S. Aberrant Processing of Polyphenol Oxidase in a Variegated Grapevine Mutant. Plant Physiol. 1992, 99, 1619–1625. [Google Scholar] [CrossRef]
- Robinson, S.; Dry, I.B. Broad Bean Leaf Polyphenol Oxidase Is a 60-Kilodalton Protein Susceptible to Proteolytic Cleavage. Plant Physiol. 1992, 99, 317–323. [Google Scholar] [CrossRef] [PubMed]
- Laveda, F.; Núñez-Delicado, E.; García-Carmona, F.; Sánchez-Ferrer, A. Proteolytic Activation of Latent Paraguaya Peach PPO. Characterization of Monophenolase Activity. J. Agric. Food Chem. 2001, 49, 1003–1008. [Google Scholar] [CrossRef] [PubMed]
- Faccio, G.; Arvas, M.; Thöny-Meyer, L.; Saloheimo, M. Experimental and bioinformatic investigation of the proteolytic degradation of the C-terminal domain of a fungal tyrosinase. J. Inorg. Biochem. 2013, 121, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Benaceur, F.; Chaibi, R.; Berrabah, F.; Neifar, A.; Leboukh, M.; Benaceur, K.; Nouioua, W.; Rezzoug, A.; Bouazzara, H.; Gouzi, H.; et al. Purification and characterization of latent polyphenol oxidase from truffles (Terfezia arenaria). Int. J. Biol. Macromol. 2020, 145, 885–893. [Google Scholar] [CrossRef]
- Guo, Y.; Pan, Y.; Zhang, Z.; Zhang, W. Isolation, purification and characterization of polyphenol oxidase from areca nut kernel. Food Sci. Technol. 2018, 43(11), 235–245. [Google Scholar]
- Adeseko, C.J.; Sanni, D.M.; Salawu, S.O.; Kade, I.J.; Bamidele, S.O.; Lawal, O.T. Purification and biochemical characterization of polyphenol oxidase of African bush mango (Irvingia gabonensis) fruit peel. Biocatal. Agric. Biotechnol. 2021, 36, 102119. [Google Scholar] [CrossRef]
- Lee, J.H.; Kasote, D.M.; Jayaprakasha, G.K.; Avila, C.A.; Crosby, K.M.; Patil, B.S. Effect of production system and inhibitory potential of aroma volatiles on polyphenol oxidase and peroxidase activity in tomatoes. J. Sci. Food Agric. 2020, 101, 307–314. [Google Scholar] [CrossRef]
- Wang, X.; Yang, L.; Liu, J.; Wang, R.; Zhang, Q.; Shan, Y.; Ding, S. Comparison of the biochemical properties and thermal inactivation of polyphenol oxidase from three lily bulb cultivars. J. Food Biochem. 2020, 44, e13431. [Google Scholar] [CrossRef]
- Karakus, Y.Y.; Yildirim, B.; Acemi, A. Characterization of polyphenol oxidase from fennel (Foeniculum vulgare Mill.) seeds as a promising source. Int. J. Biol. Macromol. 2020, 170, 261–271. [Google Scholar] [CrossRef]
- Palma-Orozco, G.; Marrufo-Hernández, N.A.; Tobías, I.; Nájera, H. Purification and biochemical characterization of polyphenol oxidase from soursop (Annona muricata L.) and its inactivation by microwave and ultrasound treatments. J. Food Biochem. 2019, 43, e12770. [Google Scholar] [CrossRef]
- Peng, X.; Du, C.; Yu, H.; Zhao, X.; Zhang, X.; Wang, X. Purification and characterization of polyphenol oxidase (PPO) from water yam (Dioscorea alata). CyTA J. Food 2019, 17, 676–684. [Google Scholar] [CrossRef] [Green Version]
- Teng, J.; Gong, Z.; Deng, Y.; Chen, L.; Li, Q.; Shao, Y.; Lin, L.; Xiao, W. Purification, characterization and enzymatic synthesis of theaflavins of polyphenol oxidase isozymes from tea leaf (Camellia sinensis). LWT 2017, 84, 263–270. [Google Scholar] [CrossRef]
- Su, F.; Lei, J.; Liu, J.; Hu, L.; Zhang, S.; Li, W. Study on enzymatic characteristics of polyphenol oxidase in snow pear and inhibiting technology of fruit juice browning. LWT 2020, 45, 303–310. [Google Scholar]
- Whitaker, J.R. Principles of Enzymology for the Food Sciences; Marcel Dekker, Inc.: New York, NY, USA, 2018. [Google Scholar]
- Macheix, J.J.; Fleuriet, A.; Billot, J. Phenolic Compounds in Fruit Processing (Fruit Phenolics); Routledge: Abingdon, UK, 2018. [Google Scholar]
- Li, J.; Deng, Z.-Y.; He, Y.; Fan, Y.; Dong, H.; Chen, R.; Liu, R.; Tsao, R.; Liu, X. Differential specificities of polyphenol oxidase from lotus seeds (Nelumbo nucifera Gaertn.) toward stereoisomers, (−)-epicatechin and (+)-catechin: Insights from comparative molecular docking studies. LWT 2021, 148, 111728. [Google Scholar] [CrossRef]
- Ioniţă, E.; Gurgu, L.; Aprodu, I.; Stănciuc, N.; Dalmadi, I.; Bahrim, G.; Râpeanu, G. Characterization, purification, and temperature/pressure stability of polyphenol oxidase extracted from plums (Prunus domestica). Process Biochem. 2017, 56, 177–185. [Google Scholar] [CrossRef]
- Cui, X.; Peng, X.; He, H.; Zhang, M.; Zhang, X. Separation, purification and enzymatic characterization of polyphenol oxidase from taro. Food Sci. 2021, 42, 9. [Google Scholar]
- Panis, F.; Kampatsikas, I.; Bijelic, A.; Rompel, A. Conversion of walnut tyrosinase into a catechol oxidase by site directed mutagenesis. Sci. Rep. 2020, 10, 1659. [Google Scholar] [CrossRef] [Green Version]
- Kaya, E.D.; Bağci, O. Purification and biochemical characterization of polyphenol oxidase extracted from Kirmizi Kismis grape (Vitis vinifera L.). J. Food Biochem. 2021, 45, e13627. [Google Scholar] [CrossRef]
- Singh, A.; Wadhwa, N. Biochemical characterization and thermal inactivation of polyphenol oxidase from elephant foot yam (Amorphophallus paeoniifolius). J. Food Sci. Technol. 2017, 54, 2085–2093. [Google Scholar] [CrossRef]
- Siddiq, M.; Dolan, K. Characterization of polyphenol oxidase from blueberry (Vaccinium corymbosum L.). Food Chem. 2017, 218, 216–220. [Google Scholar] [CrossRef]
- Marrufo-Hernández, N.A.; Palma-Orozco, G.; Beltrán, H.I.; Nájera, H. Purification, partial biochemical characterization and inactivation of polyphenol oxidase from Mexican Golden Delicious apple (Malus domestica). J. Food Biochem. 2017, 41, e12356. [Google Scholar] [CrossRef]
- Rayan, A.; Morsy, N. Thermal inactivation kinetics of peroxidase and polyphenol oxidase from pomegranate arils (Punica granatum L. cv. Wonderful). J. Food Biochem. 2020, 44, e13428. [Google Scholar] [CrossRef] [PubMed]
- Derardja, A.E.; Pretzler, M.; Kampatsikas, I.; Radovic, M.; Fabisikova, A.; Zehl, M.; Barkat, M.; Rompel, A. Polyphenol oxidase and enzymatic browning in apricot (Prunus armeniaca L.): Effect on phenolic composition and deduction of main substrates. Curr. Res. Food Sci. 2022, 5, 196–206. [Google Scholar] [CrossRef] [PubMed]
- Derardja, A.E.; Pretzler, M.; Kampatsikas, I.; Barkat, M.; Rompel, A. Purification and Characterization of Latent Polyphenol Oxidase from Apricot (Prunus armeniaca L.). J. Agric. Food Chem. 2017, 65, 8203–8212. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Zhang, J.; Liao, T.; Zhou, L.; Zou, L.; Liu, Y.; Zhang, L.; Liu, W. Thermal Inactivation Kinetics of Kudzu (Pueraria lobata) Polyphenol Oxidase and the Influence of Food Constituents. Foods 2021, 10, 1320. [Google Scholar] [CrossRef]
- Winters, A.L.; Minchin, F.R.; Michaelson-Yeates, T.P.T.; Lee, M.R.F.; Morris, P. Latent and Active Polyphenol Oxidase (PPO) in Red Clover (Trifolium pratense) and Use of a Low PPO Mutant to Study the Role of PPO in Proteolysis Reduction. J. Agric. Food Chem. 2008, 56, 2817–2824. [Google Scholar] [CrossRef]
- Flurkey, W.H.; Inlow, J.K. Proteolytic processing of polyphenol oxidase from plants and fungi. J. Inorg. Biochem. 2008, 102, 2160–2170. [Google Scholar] [CrossRef]
- Kampatsikas, I.; Bijelic, A.; Rompel, A. Biochemical and structural characterization of tomato polyphenol oxidases provide novel insights into their substrate specificity. Sci. Rep. 2019, 9, 4022. [Google Scholar] [CrossRef] [Green Version]
- Nozue, M.; Arakawa, D.; Iwata, Y.; Shioiri, H.; Kojima, M. Activation by Proteolysis in vivo of 60-ku Latent Polyphenol Oxidases in Sweet Potato Cells in Suspension Culture. J. Plant Physiol. 1999, 155, 297–301. [Google Scholar] [CrossRef]
- Liu, F.; Zhao, J.; Zhu, M.; Gan, Z. Advances in research of the structure and browning mechanism of polyphenol oxidase. Food Res. Dev. 2015, 36, 113–119. [Google Scholar]
- Thipyapong, P.; Joel, D.M.; Steffens, J.C. Differential Expression and Turnover of the Tomato Polyphenol Oxidase Gene Family during Vegetative and Reproductive Development. Plant Physiol. 1997, 113, 707–718. [Google Scholar] [CrossRef] [Green Version]
- Shimizu, M.M.; Melo, G.A.; Brombini, D.; Bottcher, A.; Cesarino, I.; Araújo, P.; Magalhaes, S.; Mazzafera, P. Enzyme characterisation, isolation and cDNA cloning of polyphenol oxidase in the hearts of palm of three commercially important species. Plant Physiol. Biochem. 2011, 49, 970–977. [Google Scholar] [CrossRef]
- Gong, Z.; Wang, W. Research advancement of enzymatic browning machanism after harvest of the fruit and vegetable and its influence factors. Food Nutr. China 2012, 18, 30–33. [Google Scholar]
- Harbowy, M.E.; Balentine, D.A.; Davies, A.P.; Cai, Y. Tea chemistry. CRC. Crit. Rev. Plant Sci. 2010, 16, 415–480. [Google Scholar] [CrossRef]
- Kamal, A.; Gasmalla, M.A.; Alyousef, H. Efficient methods for polyphenol oxidase production. Int. J. Nutr. Food Sci. 2015, 4, 656–659. [Google Scholar]
- Rawson, A.; Patras, A.; Tiwari, B.; Noci, F.; Koutchma, T.; Brunton, N. Effect of thermal and non thermal processing technologies on the bioactive content of exotic fruits and their products: Review of recent advances. Food Res. Int. 2011, 44, 1875–1887. [Google Scholar] [CrossRef]
- Ali, S.; Khan, A.S.; Malik, A.U.; Anjum, M.A.; Nawaz, A.; Shah, H.M.S. Modified atmosphere packaging delays enzymatic browning and maintains quality of harvested litchi fruit during low temperature storage. Sci. Hortic. 2019, 254, 14–20. [Google Scholar] [CrossRef]
- Zhao, X.; Zhou, J.; Chen, X.; Xu, L.; Yang, X.; Liu, J. Effect of different gas compositions in the OPP/CPP film on preservation of fresh-cut potato chips. Sci. Technol. Food Ind. 2017, 38, 207–211. [Google Scholar]
- Li, D.; Zhan, Z.; Zhou, X.; Li, Y.; Li, L.; Lin, X.; Xu, Y.; Luo, Z. Mechanism of the inhibition of elevated CO2 atmosphere on enzymatic browning of fresh-cut lotus roots. J. Zhejiang Univ. Agric. Life Sci. 2020, 46, 101–110,118. [Google Scholar]
- Wang, L.; Tian, X.; Tian, X.; Wu, H.; Li, R.; Liu, J.; Ren, X. Effect of different O2/CO2 proportions on the physiological characteristics of ‘Fuji’ apple fruit during modified atmosphere storage. J. Fruit Sci. 2020, 37, 909–919. [Google Scholar]
- Podrepšek, G.H.; Knez, Z.; Leitgeb, M. The Influence of Supercritical Carbon Dioxide on Graham Flour Enzyme Polyphenol Oxidase Activity. Molecules 2020, 25, 5981. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhang, B.; Zhu, J.; Wang, Y.; Meng, X. Effects of ultrahigh pressure treatment on total phenol content of blueberry juice. J. Food Eng. Tech. 2016, 5, 2. [Google Scholar]
- Woolf, A.B.; Wibisono, R.; Farr, J.; Hallett, I.; Richter, L.; Oey, I.; Wohlers, M.; Zhou, J.; Fletcher, G.C.; Requejo-Jackman, C. Effect of high pressure processing on avocado slices. Innov. Food Sci. Emerg. Technol. 2013, 18, 65–73. [Google Scholar] [CrossRef]
- Islam, N.; Zhang, M.; Adhikari, B. The Inactivation of Enzymes by Ultrasound—A Review of Potential Mechanisms. Food Rev. Int. 2013, 30, 1–21. [Google Scholar] [CrossRef]
- Erihemu; Wang, M.; Zhang, F.; Wang, D.; Zhao, M.; Cui, N.; Gao, G.; Guo, J.; Zhang, Q. Optimization of the process parameters of ultrasound on inhibition of polyphenol oxidase activity in whole potato tuber by response surface methodology. LWT 2021, 144, 111232. [Google Scholar] [CrossRef]
- Cervantes-Elizarrarás, A.; Piloni-Martini, J.; Ramírez-Moreno, E.; Alanís-García, E.; Güemes-Vera, N.; Gómez-Aldapa, C.A.; Zafra-Rojas, Q.Y.; Cruz-Cansino, N.D.S. Enzymatic inactivation and antioxidant properties of blackberry juice after thermoultrasound: Optimization using response surface methodology. Ultrason. Sonochem. 2017, 34, 371–379. [Google Scholar] [CrossRef]
- Cao, X.; Cai, C.; Wang, Y.; Zheng, X. The inactivation kinetics of polyphenol oxidase and peroxidase in bayberry juice during thermal and ultrasound treatments. Innov. Food Sci. Emerg. Technol. 2018, 45, 169–178. [Google Scholar] [CrossRef]
- Ji, D.; Wang, Q.; Lu, T.; Ma, H.; Chen, X. The effects of ultrasonication on the phytochemicals, antioxidant, and polyphenol oxidase and peroxidase activities in coffee leaves. Food Chem. 2021, 373, 131480. [Google Scholar] [CrossRef]
- Xu, B.; Chen, J.; Azam, S.M.R.; Feng, M.; Wei, B.; Yan, W.; Zhou, C.; Ma, H.; Bhandari, B.; Ren, G.; et al. Flat dual-frequency sweeping ultrasound enhances the inactivation of polyphenol oxidase in strawberry juice. J. Food Meas. Charact. 2021, 16, 762–771. [Google Scholar] [CrossRef]
- Ru, X.; Tao, N.; Feng, Y.; Li, Q.; Wang, Q. A novel anti-browning agent 3-mercapto-2-butanol for inhibition of fresh-cut potato browning. Postharvest Biol. Technol. 2020, 170, 111324. [Google Scholar] [CrossRef]
- Huang, X.; Ou, S.; Li, Q.; Luo, Y.; Lin, H.; Li, J.; Zhu, M.; Wang, K. The R2R3 Transcription Factor CsMYB59 Regulates Polyphenol Oxidase Gene CsPPO1 in Tea Plants (Camellia sinensis). Front. Plant Sci. 2021, 12, 739951. [Google Scholar] [CrossRef]
- Xiao, Y.; He, J.; Zeng, J.; Yuan, X.; Zhang, Z.; Wang, B. Application of citronella and rose hydrosols reduced enzymatic browning of fresh-cut taro. J. Food Biochem. 2020, 44, e13283. [Google Scholar] [CrossRef]
- Yu, K.; Zhou, L.; Sun, Y.; Zeng, Z.; Chen, H.; Liu, J.; Zou, L.; Liu, W. Anti-browning effect of Rosa roxburghii on apple juice and identification of polyphenol oxidase inhibitors. Food Chem. 2021, 359, 129855. [Google Scholar] [CrossRef]
- Aksoy, M. A new insight into purification of polyphenol oxidase and inhibition effect of curcumin and quercetin on potato polyphenol oxidase. Protein Expr. Purif. 2020, 171, 105612. [Google Scholar] [CrossRef]
- Lee, M.-K.; Hwang, Y.-H.; Ryu, H.; Lee, A.; Jeong, H.H.; Baek, J.; Kim, M.-J.; Lee, J.Y.; Van, J.Y.; Liu, Y.; et al. Galla rhois water extract inhibits enzymatic browning in apple juice partly by binding to and inactivating polyphenol oxidase. Food Chem. 2022, 383, 132277. [Google Scholar] [CrossRef]
- Castañera, P.; Steffens, J.C.; Tingey, W.M. Biological performance of Colorado potato beetle larvae on potato genotypes with differing levels of polyphenol oxidase. J. Chem. Ecol. 1996, 22, 91–101. [Google Scholar] [CrossRef]
- Babu, A.N.; Jogaiah, S.; Ito, S.-I.; Nagaraj, A.K.; Tran, L.-S.P. Improvement of growth, fruit weight and early blight disease protection of tomato plants by rhizosphere bacteria is correlated with their beneficial traits and induced biosynthesis of antioxidant peroxidase and polyphenol oxidase. Plant Sci. 2015, 231, 62–73. [Google Scholar] [CrossRef]
- Ngadze, E.; Icishahayo, D.; Coutinho, T.A.; van der Waals, J.E. Role of Polyphenol Oxidase, Peroxidase, Phenylalanine Ammonia Lyase, Chlorogenic Acid, and Total Soluble Phenols in Resistance of Potatoes to Soft Rot. Plant Dis. 2012, 96, 186–192. [Google Scholar] [CrossRef] [Green Version]
- Khodadadi, F.; Tohidfar, M.; Vahdati, K.; Dandekar, A.M.; Leslie, C.A. Functional analysis of walnut polyphenol oxidase gene (JrPPO1) in transgenic tobacco plants and PPO induction in response to walnut bacterial blight. Plant Pathol. 2020, 69, 756–764. [Google Scholar] [CrossRef]
- Huang, C.; Chen, S.; Cheng, X.; Zhang, X.; Li, X.; Kong, X. Cloning and expression analysis of the laccase genes CsLAC4 and CsLAC12 from the tea plant. J. Plant Protect. 2018, 45, 1069–1077. [Google Scholar]
- Thipyapong, P.; Melkonian, J.; Wolfe, D.W.; Steffens, J.C. Suppression of polyphenol oxidases increases stress tolerance in tomato. Plant Sci. 2004, 167, 693–703. [Google Scholar] [CrossRef]
- Liang, M.; Haroldsen, V.; Cai, X.; Wu, Y. Expression of a putative laccase gene, ZmLAC1, in maize primary roots under stress. Plant Cell Environ. 2006, 29, 746–753. [Google Scholar] [CrossRef]
- Bhardwaj, R.; Hundal, G.; Sharma, N.; Sharma, I. 28-Homobrassinolide alters protein content and activities of glutathione-S-transferase and polyphenol oxidase in Raphanus sativus L. plants under heavy metal stress. Toxicol. Int. 2014, 21, 45–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.; Wang, B.; Huang, W.; Wang, T.; Zhong, Z.; Yang, L.; Li, S.; Tian, J. Comparative proteomic analysis reveals elevated capacity for photosynthesis in polyphenol oxidase expression-silenced clematis terniflora DC. Leaves. Int. J. Mol. Sci. 2018, 19, 3897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szymborska-Sandhu, I.; Przybył, J.L.; Pióro-Jabrucka, E.; Jędrzejuk, A.; Węglarz, Z.; Bączek, K. Effect of Shading on Development, Yield and Quality of Bastard Balm Herb (Melittis melissophyllum L.). Molecules 2020, 25, 2142. [Google Scholar] [CrossRef]
- Richard, W.J.I.V.; Munetaka, S.; Fukuda, H.; Komamine, A. Cloning and characterization of polyphenol oxidase cDNAs of Phytolacca americana. Plant Physiol. 1995, 107, 1083–1089. [Google Scholar]
- Araji, S.; Grammer, T.A.; Gertzen, R.; Anderson, S.D.; Mikulic-Petkovsek, M.; Veberic, R.; Phu, M.L.; Solar, A.; Leslie, C.A.; Dandekar, A.M.; et al. Novel Roles for the Polyphenol Oxidase Enzyme in Secondary Metabolism and the Regulation of Cell Death in Walnut. Plant Physiol. 2014, 164, 1191–1203. [Google Scholar] [CrossRef] [Green Version]
- Cho, M.-H.; Moinuddin, S.G.A.; Helms, G.L.; Hishiyama, S.; Eichinger, D.; Davin, L.B.; Lewis, N.G. (+)-Larreatricin hydroxylase, an enantio-specific polyphenol oxidase from the creosote bush (Larrea tridentata). Proc. Natl. Acad. Sci. USA 2003, 100, 10641. [Google Scholar] [CrossRef] [Green Version]
- Almada, C.C.; Kazachenko, A.; Fongarland, P.; Da Silva Perez, D.; Kuznetsov, B.N.; Djakovitch, L. Oxidative depolymerization of lignins for producing aromatics: Variation of botanical origin and extraction methods. Biomass Convers. Biorefinery 2020, 12, 3795–3808. [Google Scholar] [CrossRef]
- Nakayama, T.; Yonekura-Sakakibara, K.; Sato, T.; Kikuchi, S.; Fukui, Y.; Fukuchi-Mizutani, M.; Ueda, T.; Nakao, M.; Tanaka, Y.; Kusumi, T.; et al. Aureusidin Synthase: A Polyphenol Oxidase Homolog Responsible for Flower Coloration. Science 2000, 290, 1163–1166. [Google Scholar] [CrossRef]
- Robertl, S. Phenol oxidase, peroxidase and organic matter dynamics of soil. Soil Biol. Biochem. 2010, 42, 391–404. [Google Scholar]
- Lu, S.; Sun, Y.-H.; Chiang, V.L. Stress-responsive microRNAs in Populus. Plant J. 2008, 55, 131–151. [Google Scholar] [CrossRef]
- Wang, M.; Li, C.; Lu, S. Origin and evolution of MIR1444 genes in Salicaceae. Sci. Rep. 2017, 7, 39740. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Li, D.; Li, J.; Shao, F.; Lu, S. Characterization of the polyphenol oxidase gene family reveals a novel microRNA involved in posttranscriptional regulation of PPOs in Salvia miltiorrhiza. Sci. Rep. 2017, 7, 44622. [Google Scholar] [CrossRef] [Green Version]
- Ren, G.; Wang, B.; Zhu, X.; Mu, Q.; Wang, C.; Tao, R.; Fang, J. Cloning, expression, and characterization of miR058 and its target PPO during the development of grapevine berry stone. Gene 2014, 548, 166–173. [Google Scholar] [CrossRef]
- Liu, D.; Meng, S.; Xiang, Z.; Yang, G.; He, N. An R1R2R3 MYB Transcription Factor, MnMYB3R1, Regulates the Polyphenol Oxidase Gene in Mulberry (Morus notabilis). Int. J. Mol. Sci. 2019, 20, 2602. [Google Scholar] [CrossRef] [Green Version]
- He, F.; Shi, Y.-J.; Zhao, Q.; Zhao, K.-J.; Cui, X.-L.; Chen, L.-H.; Yang, H.-B.; Zhang, F.; Mi, J.-X.; Huang, J.-L.; et al. Genome-wide investigation and expression profiling of polyphenol oxidase (PPO) family genes uncover likely functions in organ development and stress responses in Populus trichocarpa. BMC Genom. 2021, 22, 731. [Google Scholar] [CrossRef]
Species | Substrate | Optimal pH | Reference | |
---|---|---|---|---|
African bush mango (Irvingia gabonensis) fruit peel | catechol | 7.0 | [48] | |
Tomato (Solanum lycopersicum) | catechol | 7.0 | [49] | |
Sweet potato (Ipomoea batatas L. Lam) | catechol | 7.0 | [16] | |
Lily | Lilium lancifolium Thunb | catechol | 4.0 | [50] |
Lilium brownie var. viridulum | 4.0 | |||
Lilium davidii var. unicolor | 6.5–7.0 | |||
Fennel (Foeniculum vulgare Mill.) seeds | catechol | 6.0 | [51] | |
4-methylcatechol | 5.0 | |||
4-tertbutylcatechol | 5.0 | |||
pyrogallol | 7.0 | |||
Truffles (Terfezia arenaria) | 4-methylcatechol | 4.0 | [46] | |
L-tyrosine | 6.0 | |||
pyrogallol | 6.5 | |||
catechol | 7.0 | |||
Soursop (Annona muricata L.) | catechol | 6.5 | [52] | |
Water yam (Dioscorea alata) | catechol | 6.0 | [53] | |
Areca nut (Areca catechu L) kernel | catechol | 7.0 | [47] | |
Tea leaf (Camellia sinensis) | catechol | PPO1: 5.5 PPO2: 6.0 | [54] | |
Apricot (Prunus armeniaca L.) | catechol | 4.5 | [55] | |
Blueberry (Vaccinium corymbosum L.) | catechol | 6.1–6.3 | [56] | |
Mexican Golden Delicious apple (Malus domestica) | catechol | 6.0 | [57] | |
Elephant foot yam (Amorphophallus paeoniifolius) | catechol | 6.0 | [58] | |
Plums (Prunus domestica) | catechol | 6.0 | [59] | |
Taro (Colocasia esculenta L.) | catechol | 6.8 | [60] | |
Snow pear (Pyrus nivalis) | catechol | 4.5 | [61] | |
Kirmizi Kismis grape (Vitis vinifera L.) | 4-methylcatechol | 5.0 | [62] |
Species | Substrate | Optimal Temperature (°C) | Reference |
---|---|---|---|
African bush mango (Irvingia gabonensis) fruit peel | catechol | 50 | [48] |
Tomato (Solanum lycopersicum) | catechol | 50 | [49] |
Soursop (Annona muricata L.) | catechol | 25 | [52] |
Water yam (Dioscorea alata) | catechol | 35 | [53] |
Sweet potato (Ipomoea batatas L. Lam) | catechol | 20–30 | [16] |
Fennel (Foeniculum vulgare Mill.) seeds | catechol, 4-methylcatechol, 4-tertbutylcatechol, and pyrogallol | 30 | [51] |
Lily (Lilium lancifolium Thunb, Lilium brownie var. viridulum, Lilium davidii var. unicolor) cotton | catechol | 15 | [50] |
Truffles (Terfezia arenaria) | 4-methylcatechol | 30 | [46] |
L-tyrosine | 35 | ||
pyrogallol | 40 | ||
catechol | 45 | ||
Areca nut (Areca catechu L.) kernel | catechol | 20 | [47] |
Tea leaf (Camellia sinensis) | catechol | PPO1: 33 PPO2: 38 | [52] |
Apricot (Prunus armeniaca L.) | catechol | 45 | [55] |
Blueberry (Vaccinium corymbosum L.) | catechol | 35 | [56] |
Mexican Golden Delicious apple (Malus domestica) | catechol | 35 | [57] |
Elephant foot yam (Amorphophallus paeoniifolius) | catechol | 35 | [58] |
Plums (Prunus domestica) | catechol | 25 | [59] |
Taro (Colocasia esculenta L.) | catechol | 30 | [60] |
Snow pear (Pyrus nivalis) | catechol | 30 | [61] |
Kirmizi Kismis grape (Vitis vinifera L.) | 4-methylcatechol | 30 | [62] |
Substrate | Relative activities (%) | ||||
---|---|---|---|---|---|
African Bush Mango (Irvingia Gabonensis) | Elephant Foot Yam (Amorphophallus Paeoniifolius) | Pomegranate Arils (Punica Granatum L. cv. Wonderful) | Mexican Golden Delicious Apple (Malus Domestica) | Blueberry (Vaccinium Corymbosum L.) | |
Monophenol | |||||
Tyrosine | 50.2 ± 3.34 | below 1% | 84.72 | ||
Vanillin | 53 ± 1.44 | ||||
Diphenol | |||||
Catechol | 100 ± 0 | 100 | 100 | 100 | 100 |
4-methylcatechol | 200.06 | 354.78 | 26.14 ± 0.69 | ||
Caffeic acid | 91 ± 8.03 | 14.79 | |||
Catechin | 77.1 ± 4.65 | ||||
L-DOPA | 82.6 ± 6.40 | 54.39 | 16.59 ± 0.41 | ||
Chlorogenic acid | 51.55 | 156.93 | |||
resorcinol | 35.69 | 2.08 ± 0.16 | |||
Trihydroxyphenol | |||||
Gallic acid | 78.6 ± 4.74 | 5.78 | 176.90 | ||
Pyrogallol | 60.5 ± 4.42 | 5.36 | 296.45 | 150.43 | 7.55 ± 0.34 |
Reference | [48] | [58] | [67] | [57] | [56] |
Enzyme Source | Molecular Weight (kDa) | Reference |
---|---|---|
African bush mango (Irvingia gabonensis) fruit peel | 53 | [48] |
Fennel (Foeniculum vulgare Mill) seeds | 27.8 | [51] |
Kirmizi Kismis grape (Vitis vinifera L.) | 38.1 | [62] |
Kudzu (Pueraria lobata) | 21 | [69] |
Truffles (Terfezia arenaria) | 67 | [46] |
Water yam (Dioscorea alata) | 32 | [53] |
Areca nut (Areca catechu L.) kernel | 29.2 | [47] |
Tea leaf (Camellia sinensis) | PPO1:85 PPO2:42 | [54] |
Apricot (Prunus armeniaca L.) | 37.5 | [55] |
Mexican Golden Delicious apple (Malus domestica) | 58 | [57] |
elephant foot yam (Amorphophallus paeoniifolius) | 40 | [58] |
Plums (Prunus domestica) | 65 | [59] |
Taro (Colocasia esculenta L.) | 24 | [60] |
Potato (Solanum tuberosum L.) | 50 | [70] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S. Recent Advances of Polyphenol Oxidases in Plants. Molecules 2023, 28, 2158. https://doi.org/10.3390/molecules28052158
Zhang S. Recent Advances of Polyphenol Oxidases in Plants. Molecules. 2023; 28(5):2158. https://doi.org/10.3390/molecules28052158
Chicago/Turabian StyleZhang, Song. 2023. "Recent Advances of Polyphenol Oxidases in Plants" Molecules 28, no. 5: 2158. https://doi.org/10.3390/molecules28052158
APA StyleZhang, S. (2023). Recent Advances of Polyphenol Oxidases in Plants. Molecules, 28(5), 2158. https://doi.org/10.3390/molecules28052158