Bioactive Components and Anticancer Activities of Spray-Dried New Zealand Tamarillo Powder
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Spray-Drying of Tamarillo Fruits
2.3. Scanning Electron Microscope
2.4. Preparation of Tamarillo Extracts
2.5. Ferric Reducing–Antioxidant Power (FRAP) Assay
2.6. Cupric-Reducing Antioxidant Capacity (CUPRAC) Assay
2.7. Total Phenolic Content (TPC)
2.8. Phosphomolybdenum Total Antioxidant Capacity
2.9. Total Flavonoids
2.10. Total Carotenoids
2.11. LC-MS Analysis of Polyphenols
2.12. MTT Assay
2.13. Statistical Analysis
3. Results and Discussion
3.1. Surface Morphology of Tamarillo Powder (SEM)
3.2. Polyphenols and Antioxidant Activities
3.3. Antioxidant Capacity, Total Polyphenolic, Total Flavonoid and Total Carotenoid Content
3.4. Anticancer Capacity
3.5. Relationship between Anticancer Activity and Bioactive Compounds
3.6. Optimisation of Spray-Drying Parameters for Tamarillo Powders with Anticancer Activities
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
Appendix A
References
- Espin, S.; Gonzalez-Manzano, S.; Taco, V.; Poveda, C.; Ayuda-Duran, B.; Gonzalez-Paramas, A.M.; Santos-Buelga, C. Phenolic composition and antioxidant capacity of yellow and purple-red Ecuadorian cultivars of tree tomato (Solanum betaceum Cav.). Food Chem. 2016, 194, 1073–1080. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Fedrizzi, B.; Kilmartin, P.A.; Quek, S.Y. Development of volatile organic compounds and their glycosylated precursors in tamarillo (Solanum betaceum Cav.) during fruit ripening: A prediction of biochemical pathway. Food Chem. 2021, 339, 128046. [Google Scholar] [CrossRef] [PubMed]
- Mutalib, M.A.; Rahmat, A.; Ali, F.; Othman, F.; Ramasamy, R. Nutritional compositions and antiproliferative activities of different solvent fractions from ethanol extract of Cyphomandra betacea (Tamarillo) fruit. Malays. J. Med. Sci. MJMS 2017, 24, 19. [Google Scholar]
- Diep, T.; Pook, C.; Yoo, M. Phenolic and anthocyanin compounds and antioxidant activity of tamarillo (Solanum betaceum Cav.). Antioxidants 2020, 9, 169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atiqah, N.A.A.K.; Mutalib, M.A.; Asmah, R. Comparison of antioxidant properties of tamarillo (Cyphomandra betacea), cherry tomato (Solanumly copersicum var. cerasiform) and tomato (Lyopersicon esulentum). Int. Food Res. J. 2014, 21, 2355–2362. [Google Scholar]
- Marques, M.P.M.; Borges, F.; Sousa, J.; Calheiros, R.; Garrido, J.; Gaspar, A.; Antunes, F.; Diniz, C.; Fresco, P. Cytotoxic and COX-2 inhibition properties of hydroxycinnamic derivatives. Lett. Drug Des. Discov. 2006, 3, 316. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.; Liu, J.; Cao, M.; Deng, J.; Kou, J. Extrication process of chlorogenic acid in Crofton weed and antibacterial mechanism of chlorogenic acid on Escherichia coli. J. Environ. Biol. 2016, 37, 1049. [Google Scholar]
- Elansary, H.O.; Szopa, A.; Klimek-Szczykutowicz, M.; Jafernik, K.; Ekiert, H.; Mahmoud, E.A.; Abdelmoneim Barakat, A.; El-Ansary, D.O. Mammillaria species—Polyphenols studies and anti-cancer, anti-oxidant, and anti-bacterial activities. Molecules 2020, 25, 131. [Google Scholar] [CrossRef] [Green Version]
- Yamagata, K.; Izawa, Y.; Onodera, D.; Tagami, M. Chlorogenic acid regulates apoptosis and stem cell marker-related gene expression in A549 human lung cancer cells. Mol. Cell. Biochem. 2018, 441, 9–19. [Google Scholar] [CrossRef]
- Fási, L.; Di Meo, F.; Kuo, C.-Y.; Stojkovic Buric, S.; Martins, A.; Kúsz, N.; Béni, Z.; Dékány, M.; Balogh, G.R.T.; Pesic, M. Antioxidant-inspired drug discovery: Antitumor metabolite is formed in situ from a hydroxycinnamic acid derivative upon free-radical scavenging. J. Med. Chem. 2019, 62, 1657–1668. [Google Scholar] [CrossRef] [Green Version]
- Mutalib, M.A.; Ali, F.; Othman, F.; Ramasamy, R.; Rahmat, A. Phenolics profile and anti-proliferative activity of Cyphomandra betacea fruit in breast and liver cancer cells. SpringerPlus 2016, 5, 2105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romero-Gonzalez, J.; Shun Ah-Hen, K.; Lemus-Mondaca, R.; Munoz-Farina, O. Total phenolics, anthocyanin profile and antioxidant activity of maqui, Aristotelia chilensis (Mol.) Stuntz, berries extract in freeze-dried polysaccharides microcapsules. Food Chem 2020, 313, 126115. [Google Scholar] [CrossRef] [PubMed]
- Shishir, M.R.I.; Chen, W. Trends of spray drying: A critical review on drying of fruit and vegetable juices. Trends Food Sci. Technol. 2017, 65, 49–67. [Google Scholar] [CrossRef]
- Turkiewicz, I.P.; Wojdyło, A.; Tkacz, K.; Lech, K.; Michalska-Ciechanowska, A.; Nowicka, P. The influence of different carrier agents and drying techniques on physical and chemical characterization of Japanese quince (Chaenomeles japonica) microencapsulation powder. Food Chem. 2020, 323, 126830. [Google Scholar] [CrossRef]
- Jokić, S.; Nastić, N.; Vidović, S.; Flanjak, I.; Aladić, K.; Vladić, J. An approach to value cocoa bean by-product based on subcritical water extraction and spray drying using different carriers. Sustainability 2020, 12, 2174. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.Y.; Zhao, Y.; Zhu, L.L.; Fang, Z.X.; Shi, Q.L. Effect of carrier types on the physicochemical and antioxidant properties of spray-dried black mulberry juice powders. J. Food Meas. Charact. 2020, 14, 1201–1212. [Google Scholar] [CrossRef]
- Correia, R.; Grace, M.H.; Esposito, D.; Lila, M.A. Wild blueberry polyphenol-protein food ingredients produced by three drying methods: Comparative physico-chemical properties, phytochemical content, and stability during storage. Food Chem. 2017, 235, 76–85. [Google Scholar] [CrossRef]
- Pasrija, D.; Ezhilarasi, P.N.; Indrani, D.; Anandharamakrishnan, C. Microencapsulation of green tea polyphenols and its effect on incorporated bread quality. LWT-Food Sci. Technol. 2015, 64, 289–296. [Google Scholar] [CrossRef]
- Iannone, M.; Mare, R.; Paolino, D.; Gagliardi, A.; Froiio, F.; Cosco, D.; Fresta, M. Characterization and in vitro anticancer properties of chitosan-microencapsulated flavan-3-ols-rich grape seed extracts. Int. J. Biol. Macromol. 2017, 104, 1039–1045. [Google Scholar] [CrossRef]
- Rezende, Y.; Nogueira, J.P.; Narain, N. Microencapsulation of extracts of bioactive compounds obtained from acerola (Malpighia emarginata DC) pulp and residue by spray and freeze drying: Chemical, morphological and chemometric characterization. Food Chem. 2018, 254, 281–291. [Google Scholar] [CrossRef]
- Assefa, A.D.; Ko, E.Y.; Moon, S.H.; Keum, Y.-S. Antioxidant and antiplatelet activities of flavonoid-rich fractions of three citrus fruits from Korea. 3 Biotech 2016, 6, 109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belwal, T.; Dhyani, P.; Bhatt, I.D.; Rawal, R.S.; Pande, V. Optimization extraction conditions for improving phenolic content and antioxidant activity in Berberis asiatica fruits using response surface methodology (RSM). Food Chem. 2016, 207, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Prieto, P.; Pineda, M.; Aguilar, M. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: Specific application to the determination of vitamin E. Anal. Biochem. 1999, 269, 337–341. [Google Scholar] [CrossRef] [PubMed]
- Moo-Huchin, V.M.; Moo-Huchin, M.I.; Estrada-Leon, R.J.; Cuevas-Glory, L.; Estrada-Mota, I.A.; Ortiz-Vazquez, E.; Betancur-Ancona, D.; Sauri-Duch, E. Antioxidant compounds, antioxidant activity and phenolic content in peel from three tropical fruits from Yucatan, Mexico. Food Chem. 2015, 166, 17–22. [Google Scholar] [CrossRef]
- Farrés, M.; Platikanov, S.; Tsakovski, S.; Tauler, R. Comparison of the variable importance in projection (VIP) and of the selectivity ratio (SR) methods for variable selection and interpretation. J. Chemom. 2015, 29, 528–536. [Google Scholar] [CrossRef]
- Otalora, M.C.; Carriazo, J.G.; Iturriaga, L.; Nazareno, M.A.; Osorio, C. Microencapsulation of betalains obtained from cactus fruit (Opuntia ficus-indica) by spray drying using cactus cladode mucilage and maltodextrin as encapsulating agents. Food Chem. 2015, 187, 174–181. [Google Scholar] [CrossRef]
- Lee, K.C.; Yoon, Y.S.; Li, F.Z.; Eun, J.B. Effects of inlet air temperature and concentration of carrier agents on physicochemical properties, sensory evaluation of spray-dried mandarin (Citrus unshiu) beverage powder. Appl. Biol. Chem. 2017, 60, 33–40. [Google Scholar] [CrossRef]
- Luis Villacrez, J.; Carriazo, J.G.; Osorio, C. Microencapsulation of Andes Berry (Rubus glaucus Benth.) Aqueous Extract by Spray Drying. Food Bioprocess Technol. 2014, 7, 1445–1456. [Google Scholar] [CrossRef]
- Aguiar, J.; Goncalves, J.L.; Alves, V.L.; Camara, J.S. Chemical Fingerprint of Free Polyphenols and Antioxidant Activity in Dietary Fruits and Vegetables Using a Non-Targeted Approach Based on QuEChERS Ultrasound-Assisted Extraction Combined with UHPLC-PDA. Antioxidants 2020, 9, 22. [Google Scholar] [CrossRef] [Green Version]
- Mishra, P.; Mishra, S.; Mahanta, C.L. Effect of maltodextrin concentration and inlet temperature during spray drying on physicochemical and antioxidant properties of amla (Emblica officinalis) juice powder. Food Bioprod. Processing 2014, 92, 252–258. [Google Scholar] [CrossRef]
- Murakami, M.; Yamaguchi, T.; Takamura, H.; Atoba, T. Effects of thermal treatment on radical-scavenging activity of single and mixed polyphenolic compounds. J. Food Sci. 2004, 69, FCT7–FCT10. [Google Scholar] [CrossRef]
- Georgetti, S.R.; Casagrande, R.; Souza, C.R.F.; Oliveira, W.P.; Fonseca, M.J.V. Spray drying of the soybean extract: Effects on chemical properties and antioxidant activity. LWT-Food Sci. Technol. 2008, 41, 1521–1527. [Google Scholar] [CrossRef]
- Sahin-Nadeem, H.; Dincer, C.; Torun, M.; Topuz, A.; Ozdemir, F. Influence of inlet air temperature and carrier material on the production of instant soluble sage (Salvia fruticosa Miller) by spray drying. LWT-Food Sci. Technol. 2013, 52, 31–38. [Google Scholar] [CrossRef]
- Looi, Y.F.; Ong, S.P.; Julkifle, A.; Alias, M.S. Effects of pretreatment and spray drying on the physicochemical properties and probiotics viability of Moringa (Moringa oleifera Lam) leaf juice powder. J. Food Process Preserv. 2019, 43, 15. [Google Scholar] [CrossRef] [Green Version]
- Choi, Y.; Lee, S.; Chun, J.; Lee, H.; Lee, J. Influence of heat treatment on the antioxidant activities and polyphenolic compounds of Shiitake (Lentinus edodes) mushroom. Food Chem. 2006, 99, 381–387. [Google Scholar] [CrossRef]
- Im, S.E.; Nam, T.G.; Lee, H.; Han, M.W.; Heo, H.J.; Koo, S.I.; Lee, C.Y.; Kim, D.O. Anthocyanins in the ripe fruits of Rubus coreanus Miguel and their protective effect on neuronal PC-12 cells. Food Chem. 2013, 139, 604–610. [Google Scholar] [CrossRef]
- Kamble, S.S.; Gacche, R.N. Evaluation of anti-breast cancer, anti-angiogenic and antioxidant properties of selected medicinal plants. Eur. J. Integr. Med. 2019, 25, 13–19. [Google Scholar] [CrossRef]
- Ardestani, S.B.; Sahari, M.A.; Barzegar, M. Effect of Extraction and Processing Conditions on Anthocyanins of Barberry. J. Food Process Preserv. 2016, 40, 1407–1420. [Google Scholar] [CrossRef]
- Acosta-Quezada, P.G.; Raigón, M.D.; Riofrío-Cuenca, T.; García-Martínez, M.D.; Plazas, M.; Burneo, J.I.; Figueroa, J.G.; Vilanova, S.; Prohens, J. Diversity for chemical composition in a collection of different varietal types of tree tomato (Solanum betaceum Cav.), an Andean exotic fruit. Food Chem. 2015, 169, 327–335. [Google Scholar] [CrossRef]
- Alamed, J.; Chaiyasit, W.; McClements, D.J.; Decker, E.A. Relationships between free radical scavenging and antioxidant activity in foods. J. Agric. Food Chem. 2009, 57, 2969–2976. [Google Scholar] [CrossRef]
Experiment No. | Std Order | Run Order | Pt Type | Blocks | Temperature (°C) | Flow (g/mL) | Carrier (%) |
---|---|---|---|---|---|---|---|
1 | 1 | 1 | 2 | 1 | 110 | 1 | 5 |
2 | 13 | 2 | 0 | 1 | 135 | 3 | 5 |
3 | 7 | 3 | 2 | 1 | 110 | 3 | 10 |
4 | 2 | 4 | 2 | 1 | 160 | 1 | 5 |
5 | 12 | 5 | 2 | 1 | 135 | 5 | 10 |
6 | 10 | 6 | 2 | 1 | 135 | 5 | 0 |
7 | 9 | 7 | 2 | 1 | 135 | 1 | 0 |
8 | 14 | 8 | 0 | 1 | 135 | 3 | 5 |
9 | 5 | 9 | 2 | 1 | 110 | 3 | 0 |
10 | 3 | 10 | 2 | 1 | 110 | 5 | 5 |
11 | 8 | 11 | 2 | 1 | 160 | 3 | 10 |
12 | 11 | 12 | 2 | 1 | 135 | 1 | 10 |
13 | 4 | 13 | 2 | 1 | 160 | 5 | 5 |
14 | 15 | 14 | 0 | 1 | 135 | 3 | 5 |
15 | 6 | 15 | 2 | 1 | 160 | 3 | 0 |
Condition | Total Phenolic Content | Antioxidant Activity | Total phenolics, Flavonoids, and Carotenoids | Anticancer Activity Activity | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Gallic Acid | Caffeic Acid | Chlorogenic Acid | Ferulic Acid | Rutin | Kaempferol rutinoside | Kaempferol | CUPRAC | FRAP | PM | F-C | TF | TCC | MDA-MB-231 | MCF-7 | M-3M | |
110-1-5 | 0.023 ± 0.0034 de | 0.08 ± 0.022 gh | 4.58 ± 1.0 c | 0.018 ± 0.011 def | 0.032 ± 0.008 de | 2.62 ± 0.65 defg | 0.003 ± 0.0007 e | 21.52 ± 1.11 ef | 60.49 ± 3.23 d | 13.82 ± 0.94 bcde | 28.21 ± 1.44 bcd | 8.28 ± 0.46 c | 2.27 ± 0.06 ef | 2.79 ± 1.52 a | 0.56 ± 0.16 a | 0.42 ± 0.36 b |
110-3-10 | 0.024 ± 0.0014 de | 0.14 ± 0.0041 h | 3.19 ± 0.13 ef | 0.009 ± 0.0032 f | 0.025 ± 0.0017 e | 1.86 ± 0.11 h | 0.004 ± 0.0006 e | 17.48 ± 0.71 g | 43.98 ± 2.77 g | 12.32 ± 1.57 cde | 17.74 ± 2.19 efg | 6.56 ± 0.09 e | 2.09 ± 0.05 fg | 4.77 ± 1.79 a | 0.63 ± 0.05 a | 0 ± 0 b |
110-3-0 | 0.030 ± 0.0019 cd | 0.071 ± 0.010 ef | 6.59 ± 0.36 ab | 0.022 ± 0.011 cdef | 0.046 ± 0.0032 bc | 3.38 ± 0.13 bc | 0.004 ± 0.0004 e | 31.64 ± 1.03 ab | 80.37 ± 3.53 b | 20.76 ± 0.86 a | 33.24 ± 3.40 ab | 11.83 ± 0.29 b | 3.47 ± 0.06 b | 3.28 ± 0.35 a | 0.11 ± 0.01 a | 0.49 ± 0.23 b |
110-5-5 | 0.025 ± 0.0039 de | 0.078 ± 0.010 h | 4.39 ± 0.34 cd | 0.014 ± 0.070 ef | 0.031 ± 0.0053 de | 2.55 ± 0.23 defg | 0.003 ± 0.0007 e | 23.76 ± 0.62 cd | 56.90 ± 1.57 d | 17.08 ± 1.54 ab | 24.76 ± 3.58 cde | 8.52 ± 0.16 c | 2.77 ± 0.05 c | 2.64 ± 0.66 a | 0.1 ± 0.01 a | 0.17 ± 0.01 b |
135-3-5 | 0.027 ± 0.0035 de | 0.12 ± 0.021 fg | 5.84 ± 0.82 b | 0.024 ± 0.0061 bcdef | 0.040 ± 0.0067 cd | 3.06 ± 0.49 cde | 0.004 ± 0.0015 de | 22.28 ± 0.99 de | 50.74 ± 1.43 ef | 16.27 ± 0.92 bc | 38.72 ± 2.35 a | 8.78 ± 0.47 c | 2.78 ± 0.14 c | 2.05 ± 0.27 a | 0.49 ± 0.2 a | 0.4 ± 0.15 b |
135-5-10 | 0.040 ± 0.035 e | 0.22 ± 0.039 bc | 3.48 ± 0.53 def | 0.028 ± 0.0059 abcdef | 0.035 ± 0.0054 de | 2.44 ± 0.37 efgh | 0.004 ± 0.0012 de | 19.38 ± 0.40 fg | 45.80 ± 1.42 fg | 10.02 ± 1.20 ef | 26.20 ± 3.21 bcd | 7.36 ± 0.38 d | 2.33 ± 0.09 de | 6.83 ± 2.04 a | 0.11 ± 0.01 a | 0.16 ± 0.14 b |
135-5-0 | 0.036 ± 0.0022 bc | 0.17 ± 0.0075 de | 7.11 ± 0.32 a | 0.031 ± 0.0091 abcde | 0.052 ± 0.0054 ab | 3.83 ± 0.22 ab | 0.007 ± 0.0017 cd | 29.75 ± 0.85 b | 72.72 ± 2.39 c | 15.62 ± 0.70 bc | 27.31 ± 1.34 bcd | 11.22 ± 0.20 b | 3.42 ± 0.16 b | 5.52 ± 1.31 a | 0.16 ± 0.02 a | 0.29 ± 0.05 b |
135-1-0 | 0.041 ± 0.0009 ab | 0.13 ± 0.0074 ef | 5.77 ± 0.37 b | 0.041 ± 0.016 abc | 0.053 ± 0.0041 ab | 4.10 ± 0.20 a | 0.008 ± 0.0008 c | 31.12 ± 1.28 ab | 76.39 ± 1.61 bc | 10.92 ± 0.55 def | 29.20 ± 2.92 bc | 11.44 ± 0.19 b | 3.38 ± 0.06 b | 3.78 ± 0.12 a | 0.18 ± 0.07 a | 0.19 ± 0.02 b |
135-1-10 | 0.027 ± 0.0032 de | 0.23 ± 0.033 bc | 3.28 ± 0.43 ef | 0.027 ± 0.0068 abcdef | 0.033 ± 0.0051 de | 2.24 ± 0.33 fgh | 0.024 ± 0.0041 a | 20.42 ± 0.32 ef | 43.47 ± 4.39 g | 7.79 ± 0.99 f | 21.06 ± 1.77 def | 6.79 ± 0.27 de | 2.32 ± 0.11 def | 6.82 ± 0.11 a | 0.25 ± 0.06 a | 0.26 ± 0.07 b |
160-1-5 | 0.045 ± 0.011 a | 0.25 ± 0.028 b | 4.51 ± 0.55 c | 0.042 ± 0.012 ab | 0.046 ± 0.006 bc | 3.11 ± 0.38 cd | 0.010 ± 0.0013 bc | 25.37 ± 1.89 c | 58.35 ± 2.47 d | 14.60 ± 0.50 bcd | 12.91 ± 0.42 gh | 8.84 ± 0.26 c | 1.95 ± 0.19 g | 7.67 ± 6.87 a | 0.48 ± 0.6 a | 0.55 ± 0.48 b |
160-3-10 | 0.020 ± 0.0023 e | 0.19 ± 0.031 cd | 3.01 ± 0.51 f | 0.028 ± 0.009 abedef | 0.030 ± 0.006 de | 2.06 ± 0.39 gh | 0.003 ± 0.0009 e | 19.44 ± 0.64 fg | 43.14 ± 2.04 g | 10.84 ± 1.38 def | 9.96 ± 0.64 h | 6.50 ± 0.35 e | 1.98 ± 0.17 g | 2.19 ± 0.46 a | 0.2 ± 0.03 a | 32.47 ± 55.64 ab |
160-5-5 | 0.021 ± 0.0006 e | 0.24 ± 0.013 b | 4.10 ± 0.28 cde | 0.035 ± 0.014 abcd | 0.039 ± 0.0033 cd | 2.82 ± 0.17 cdef | 0.003 ± 0.0005 e | 21.99 ± 2.13 ef | 55.37 ± 3.82 de | 14.76 ± 1.94 bcd | 15.40 ± 1.62 fgh | 8.98 ± 0.75 c | 2.54 ± 0.10 cd | 1.42 ± 1.29 a | 0.19 ± 0.06 a | 0.73 ± 0.17 b |
160-3-0 | 0.043 ± 0.0044 ab | 0.36 ± 0.019 a | 5.62 ± 0.30 b | 0.045 ± 0.011 a | 0.058 ± 0.005 a | 4.03 ± 0.20 a | 0.012 ± 0.0008 b | 32.72 ± 1.09 a | 91.05 ± 3.23 a | 21.44 ± 1.01 a | 22.15 ± 4.16 cdef | 13.23 ± 0.32 a | 4.71 ± 0.20 a | 4.86 ± 2.37 a | 0.16 ± 0.05 a | 149.79 ± 143.15 a |
Regression Coefficients | Total Phenolic Content | Antioxidant Activity | Total Phenolics, Flavonoids, and Carotenoids | Anticancer Activity | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Gallic Acid | Caffeic Acid | Chlorogenic Acid | Ferulic Acid | Rutin | Kaempferol rutinoside | Kaempferol | CUPRAC | FRAP | PM | F−C | TF | TCC | MDA−MB−231 | MCF−7 | M−3M | |
Intercept | ||||||||||||||||
X10 | −0.00737 | 0.0516 | −2.55 | −0.0042 | −0.01018 | −0.894 | −0.00952 | 30.4 | 240.2 | 69.0 | −273.3 | 10.83 | −1.86 | 70.0 | 3.66 | −1.12 |
Linear | ||||||||||||||||
X1 | 0.000113 * | −0.001 ** | 0.0484 | 0.000083 *** | 0.000203 * | 0.01834 * | 0.000132 | −0.077 | −2.47 | −0.969 | 4.751 ** | −0.016 | 0.058 | −1.213 * | −0.0433 * | 0.0065 * |
X2 | 0.001149 * | 0.00055 | 0.056 | −0.000629 ** | 0.000161 | −0.0022 | 0.000108 | 3.54 | −3.15 | 8.24 * | 5.18 | 0.354 | 0.462 | 7.15 | −0.425 ** | 0.267 |
X3 | 0.000161 ** | 0.00231 | −0.0531 ** | −0.000175 *** | −0.000218 *** | −0.0187 *** | 0.000235 | −2.52 *** | −4.09 *** | 0.716 *** | 0.12 ** | −0.437 *** | 0.058 ** | −2.88 | 0.1123 ** | 0.261 |
Square | ||||||||||||||||
X12 | 0 | 0.000005 | −0.000184 * | 0 | −0.000001 | −0.000062 * | 0 | 0.000686 | 0.00966 * | 0.00380 * | −0.01886 *** | 0.000162 | −0.000158 | 0.00551 | 0.000135 | 0.000004 |
X22 | 0.000063 | 0.000212 | −0.0062 | 0.000099 ** | 0.000022 | 0.00156 | 0.000068 | 0.069 | 0.250 | −0.894 ** | −1.654 ** | −0.0566 | −0.0747 | −0.276 | 0.01168 | −0.0981 ** |
X32 | 0.000013 | 0.000136 | −0.00020 | 0.000011 * | 0.000014 | 0.00055 | 0.000015 | 0.1045 ** | 0.3142 * | −0.0921 * | −0.2465 * | 0.0260 | 0.01525 | −0.0523 | 0.00319 | −0.00991 * |
Two−way interaction | ||||||||||||||||
X12 | −0.000013 * | −.000003 | −0.0001 | −0.000001 | −0.000003 | −0.00015 | −0.000003 | −0.0316 * | 0.0031 | −0.0155 | 0.0297 | −0.00050 | 0.00045 | −0.0537 | 0.002408 * | 0.00232 |
X13 | −0.000003 | −0.000022 | 0.00016 | −0.000001 | −0.000001 | −0.00008 | −0.000002 | 0.00176 | −0.0230 | −0.00432 | 0.0066 | −0.00292 | −0.00270 | 0.0237 | −0.000825 * | −0.001185 |
X23 | 0.000012 | −0.000375 | 0.003 | 0.000018 | 0.00002 | 0.003 * | −0.000047 | 0.0083 | 0.150 | 0.0080 | 0.176 | 0.0197 | −0.0007 | 0.230 | −0.00373 | −0.00359 |
R2 | 0.94 | 0.88 | 0.86 | 0.99 | 0.95 | 0.97 | 0.82 | 0.98 | 0.96 | 0.95 | 0.96 | 0.97 | 0.87 | 0.84 | 0.95 | 0.71 |
F value (model) | 9.12 * | 4.33 | 3.42 | 70.57 *** | 10.14 ** | 17.98 ** | 2.46 | 34.05 ** | 16.44 *** | 10.76 ** | 13.10 ** | 20.22 ** | 3.75 | 2.86 | 10.55 ** | 4.76 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Q.; Hamid, N.; Liu, Y.; Kam, R.; Kantono, K.; Wang, K.; Lu, J. Bioactive Components and Anticancer Activities of Spray-Dried New Zealand Tamarillo Powder. Molecules 2022, 27, 2687. https://doi.org/10.3390/molecules27092687
Liu Q, Hamid N, Liu Y, Kam R, Kantono K, Wang K, Lu J. Bioactive Components and Anticancer Activities of Spray-Dried New Zealand Tamarillo Powder. Molecules. 2022; 27(9):2687. https://doi.org/10.3390/molecules27092687
Chicago/Turabian StyleLiu, Qian, Nazimah Hamid, Ye Liu, Rothman Kam, Kevin Kantono, Kelvin Wang, and Jun Lu. 2022. "Bioactive Components and Anticancer Activities of Spray-Dried New Zealand Tamarillo Powder" Molecules 27, no. 9: 2687. https://doi.org/10.3390/molecules27092687