Thioether and Ether Furofuran Lignans: Semisynthesis, Reaction Mechanism, and Inhibitory Effect against α-Glucosidase and Free Radicals
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Synthesis and Characterization of Thioether Furofuran Lignans
2.3. Synthesis and Characterization of Oether Furofuran Lignans
2.4. Investigation of Reaction Mechanism of Ether Furofuran Lignan Formation
2.5. Evaluation of α-Glucosidase Inhibition and Antioxidant Activity
2.6. Enzyme Kinetic Study
3. Materials and Methods
3.1. Chemicals
3.2. Synthetic Methods
3.2.1. Preparation of Starting Material (Samin 5)
3.2.2. Synthesis of Thioether and Ether Furofuran Lignans
3.3. α-Glucosidase Inhibitory Activity
3.4. Kinetic Study of α-Glucosidase Inhibition
3.5. DPPH Radical Scavenging
3.6. ABTS Radical Scavenging
3.7. X-ray Crystallographic Analysis
3.8. Computational Study
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Teles, H.L.; Hemerly, J.P.; Pauletti, P.M.; Pandolfi, J.R.C.; Araújo, A.R.; Valentini, S.R.; Young, M.C.M.; Bolzani, V.D.S.; Silva, D.H.S. Cytotoxic lignans from the stems of Styrax camporum (Styracaceae). Nat. Prod. Res. 2005, 19, 319–323. [Google Scholar] [CrossRef]
- Liang, Y.T.; Chen, J.; Jiao, R.; Peng, C.; Zuo, Y.; Lei, L.; Liu, Y.; Wang, X.; Ma, K.Y.; Huang, Y.; et al. Cholesterol-lowering activity of sesamin is associated with down-regulation on genes of sterol transporters involved in cholesterol absorption. J. Agric. Food Chem. 2015, 63, 2963–2969. [Google Scholar] [CrossRef]
- Marchand, P.A.; Lewis, N.G.; Zajicek, J. Oxygen insertion in Sesamumindicum furanofuran lignans. Diastereoselective synthesis of enzyme substrate analogues. Can. J. Chem. 1997, 75, 840–849. [Google Scholar] [CrossRef] [Green Version]
- Aldous, D.J.; Dalençon, A.J.; Steel, P.G. A general strategy for the diastereoselective synthesis of 2,6-diaryl-3,7-dioxabicyclo[3.3.0]octane lignans. J. Org. Chem. 2003, 68, 9159–9161. [Google Scholar] [CrossRef]
- Pohmakotr, M.; Pinsa, A.; Mophuang, T.; Tuchinda, P.; Prabpai, S.; Kongsaeree, P.; Reutrakul, V. General strategy for stereoselective synthesis of 1-substituted exo,endo-2,6-diaryl-3,7-dioxabicyclo[3.3.0]octanes: Total synthesis of (±)–gmelinol. J. Org. Chem. 2006, 71, 386–389. [Google Scholar] [CrossRef]
- Punirun, T.; Soorukram, D.; Kuhakarn, C.; Reutrakul, V.; Pohmakotr, M. Stereoselective synthesis of 1-fluoro-exo,exo-2,6-diaryl-3,7-dioxabicyclo[3.3.0]octanes: Synthesis of (±)-1-fluoromembrine. J. Org. Chem. 2015, 80, 7946–7960. [Google Scholar] [CrossRef]
- Huang, J.; Song, G.; Zhang, L.; Sun, Q.; Lu, X. A novel conversion of sesamolin to sesaminol by acidic cation exchange resin. Eur. J. Lipid. Sci. Technol. 2012, 114, 842–848. [Google Scholar] [CrossRef]
- Worawalai, W.; Khongchai, P.; Surachaitanawat, N.; Phuwapraisirisan, P. Synthesis of furofuran lignans as antidiabetic agents simultaneously achieved by inhibiting α-glucosidase and free radical. Arch. Pharm. Res. 2016, 39, 1370–1381. [Google Scholar] [CrossRef]
- Worawalai, W.; Phuwapraisirisan, P. Samin-derived flavonolignans, a new series of antidiabetic agents having dual inhibition against α-glucosidase and free radicals. Nat. Prod. Res. 2020, 34, 3169–3175. [Google Scholar] [CrossRef] [PubMed]
- Worawalai, W.; Doungwichitrkul, T.; Rangubpit, W.; Taweechat, P.; Sompornpisut, P.; Phuwapraisirisan, P. Furofuran lignans as a new series of antidiabetic agents exerting α–glucosidase inhibition and radical scarvenging: Semisynthesis, kinetic study and molecular modeling. Bioorg. Chem. 2019, 87, 783–793. [Google Scholar] [CrossRef] [PubMed]
- Larsen, C.H.; Ridgway, B.H.; Shaw, J.T.; Woerpel, K.A. A stereoelectronic model to explain the highly stereoselective reaction of nucleophiles with five-membered-ring oxocarbenium ions. J. Am. Chem. Soc. 1999, 121, 12208–12209. [Google Scholar] [CrossRef]
- Johansson, K.J.; Konradsson, P.; Trumpakaj, Z. Transglucosidation of methyl and ethyl D-glucofuranosides by alcoholysis. Carbohydr. Res. 2001, 332, 33–39. [Google Scholar] [CrossRef]
- Wujec, M.; Siwek, A.; Dzierzawska, J.; Rostkowski, M.; Kaminski, R.; Paneth, P. Influence of the solvent description on the predicted mechanism of SN2 reactions. J. Phys. Chem. B 2008, 112, 12414–12419. [Google Scholar] [CrossRef]
- Ramadhan, R.; Phuwapraisirisan, P. New arylalkanones from Horsfieldia macrobotrys, effective antidiabetic agents concomitantly inhibiting α-glucosidase and free radicals. Bioorg. Med. Chem. Lett. 2015, 25, 4529–4533. [Google Scholar] [CrossRef]
- Hirose, Y.; Ohta, E.; Kawai, Y.; Ohta, S. Dorsamin-A’s, glycerolipids carrying a dehydrophenylalanine ester moiety from the seed-eating larvae of the bruchid beetle Bruchidius dorsalis. J. Nat. Prod. 2013, 76, 554–558. [Google Scholar] [CrossRef]
- Bruker. SHELXTL XT, Program for Crystal Structure Solution; v. (2013)/1; Bruker AXS Inc.: Madison, WI, USA, 2014. [Google Scholar]
- Bruker. SHELXTL XLMP Program for Crystal Structure Refinement Multi-CPU; v. 2014/7; Bruker AXS Inc.: Madison, WI, USA, 2014. [Google Scholar]
- Parsons, S.; Flack, H.D.; Wagner, T. Use of intensity quotients and differences in absolute structure refinement. Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 2013, 69, 249–259. [Google Scholar] [CrossRef] [PubMed]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 09; Revision E.01; Gaussian, Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
Compound | α-Glucosidase Inhibitory Effect (IC50, mM) a | Radical Scavenging (SC50, mM) a | ||
---|---|---|---|---|
Maltase | Sucrase | DPPH | ABTS | |
2α-7a | >30 | >30 | >10 | >10 |
2α-7b | >30 | >30 | >10 | >10 |
2α-7c | >30 | >30 | >10 | >10 |
2α-7d | >30 | >30 | >10 | >10 |
2α-7e | >30 | >30 | >10 | >10 |
2α-7f | 14.7 ± 1.0 | 16.2 ± 0.9 | 0.93 ± 0.7 | 0.36 ± 0.5 |
2β-7f | 14.2 ± 0.8 | 15.9 ± 0.7 | 0.91 ± 0.3 | 0.29 ± 0.6 |
2α-7g | >30 | >30 | >10 | >10 |
2α-7h | >30 | >30 | >10 | >10 |
2α-7i | >30 | >30 | >10 | >10 |
2α-7j | >30 | >30 | >10 | >10 |
2α-7k | >30 | >30 | >10 | >10 |
2α-7l | >30 | >30 | >10 | >10 |
2α-7m | >30 | >30 | >10 | >10 |
2α-7n | >30 | >30 | >10 | >10 |
2α-7o | 11.8 ± 0.3 | 15.7 ± 0.7 | 0.87 ± 0.6 | 0.20 ± 0.5 |
2α-9b | >30 | >30 | >10 | >10 |
2α-9c | >30 | >30 | >10 | >10 |
2α-9d | >30 | >30 | >10 | >10 |
2α-9e | >30 | >30 | >10 | >10 |
2α-9f | >30 | >30 | >10 | >10 |
2α-9g | >30 | >30 | >10 | >10 |
2α-9h | >30 | >30 | >10 | >10 |
2α-9i | >30 | >30 | >10 | >10 |
2α-9j | >30 | >30 | >10 | >10 |
2α-9k | >30 | >30 | >10 | >10 |
2α-9l | >30 | >30 | >10 | >10 |
2α-9m | >30 | >30 | >10 | >10 |
acarbose® | 1.40 ± 0.2 | 3.20 ± 0.4 | ND b | ND |
BHT | ND | ND | 1.56 ± 0.5 | 0.14 ± 0.8 |
Compound | Maltase | Sucrase | ||||
---|---|---|---|---|---|---|
Ki (mM) | Ki′ (mM) | Inhibition Type | Ki (mM) | Ki′ (mM) | Inhibition Type | |
2α-7f | 0.06 ± 1.3 | 0.14 ± 1.1 | Mixed | 0.16 ± 1.7 | 0.20 ± 1.6 | Mixed |
2α-7o | 0.03 ± 0.9 | 0.05 ± 1.0 | Mixed | 0.37 ± 1.4 | - | Non- competitive |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Worawalai, W.; Surachaitanawat, N.; Khongchai, P.; Vchirawongkwin, V.; Aree, T.; Phuwapraisirisan, P. Thioether and Ether Furofuran Lignans: Semisynthesis, Reaction Mechanism, and Inhibitory Effect against α-Glucosidase and Free Radicals. Molecules 2022, 27, 9001. https://doi.org/10.3390/molecules27249001
Worawalai W, Surachaitanawat N, Khongchai P, Vchirawongkwin V, Aree T, Phuwapraisirisan P. Thioether and Ether Furofuran Lignans: Semisynthesis, Reaction Mechanism, and Inhibitory Effect against α-Glucosidase and Free Radicals. Molecules. 2022; 27(24):9001. https://doi.org/10.3390/molecules27249001
Chicago/Turabian StyleWorawalai, Wisuttaya, Nantaporn Surachaitanawat, Phonpimon Khongchai, Viwat Vchirawongkwin, Thammarat Aree, and Preecha Phuwapraisirisan. 2022. "Thioether and Ether Furofuran Lignans: Semisynthesis, Reaction Mechanism, and Inhibitory Effect against α-Glucosidase and Free Radicals" Molecules 27, no. 24: 9001. https://doi.org/10.3390/molecules27249001
APA StyleWorawalai, W., Surachaitanawat, N., Khongchai, P., Vchirawongkwin, V., Aree, T., & Phuwapraisirisan, P. (2022). Thioether and Ether Furofuran Lignans: Semisynthesis, Reaction Mechanism, and Inhibitory Effect against α-Glucosidase and Free Radicals. Molecules, 27(24), 9001. https://doi.org/10.3390/molecules27249001