Regulating the Electronic Structure of Freestanding Graphene on SiC by Ge/Sn Intercalation: A Theoretical Study
Abstract
:1. Introduction
2. Results and Discussion
2.1. Electronic Structure Modulation by Ge Intercalations
2.2. Electronic Structure Modulation by Sn Intercalations
2.3. Electronic Structure of Sn1-xGex Intercalations
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Berger, C.; Song, Z.; Li, X.; Wu, X.; Brown, N.; Naud, C.; Mayou, D.; Li, T.; Hass, J.; Marchenkov, A.N.; et al. Electronic confinement and coherence in patterned epitaxial graphene. Science 2003, 312, 1191–1196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hass, J.; Feng, R.; Li, T.; Li, X.; Zong, Z.; de Heer, W.A.; First, P.N.; Conrad, E.H.; Jeffrey, C.A.; Berger, C. High ordered graphene for two dimensional electronics. Appl. Phys. Lett. 2006, 89, 143106. [Google Scholar] [CrossRef] [Green Version]
- Ohta, T.; Bostwick, A.; Seyller, T.; Horn, K.; Rotenberg, E. Controlling the electronic structure of bilayer graphene. Science 2006, 313, 951. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allen, M.J.; Tung, V.C.; Kaner, R.B. Honeycomb carbon: A review of graphene. Chem. Rev. 2010, 110, 132–145. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Wu, Q.; Shi, G. Graphene based new energy materials. Energy Environ. Sci. 2011, 4, 1113. [Google Scholar] [CrossRef]
- Daniels, K.M.; Jadidi, M.M.; Sushkov, A.B.; Nath, A.; Boyd, A.K.; Sridhare, K.; Drew, H.D.; Murphy, T.E.; Myers-Ward, R.; Gaskill, D.K. Narrow plasmon resonances enabled by quasi-freestanding bilayer epitaxial graphene. 2D Mater. 2017, 4, 025034. [Google Scholar] [CrossRef] [Green Version]
- Koch, R.; Fryska, S.; Ostler, M.; Endlich, M.; Speck, F.; Hänsel, T.; Schaefer, J.; Seyller, T. Robust phonon-plasmon coupling in quasi-freestanding graphene on silicon carbide. Phys. Rev. Lett. 2016, 16, 106802. [Google Scholar] [CrossRef] [Green Version]
- Kopylov, S.; Tzalenchuk, A.; Kubatkin, S.; Fal’ko, V.I. Charge transfer between epitaxial graphene and silicon carbide. Appl. Phys. Lett. 2010, 97, 112109. [Google Scholar] [CrossRef] [Green Version]
- Emtsev, K.V.; Zakharov, A.A.; Coletti, C.; Forti, S.; Starke, U. Ambipolar doping in quasifree epitaxial graphene on SiC(0001) controlled by Ge intercalation. Phys. Rev. B 2011, 84, 125423. [Google Scholar] [CrossRef] [Green Version]
- Mallet, P.; Varchon, F.; Naud, C.; Maguad, L.; Berger, C.; Veuillen, J.Y. Electron states of mono-and bilayer graphene on SiC probed by scanning-tunneling microscopy. Phys. Rev. B 2007, 76, 041403. [Google Scholar] [CrossRef]
- Riedl, C.; Zakharov, A.A.; Starke, U. Precise in situ thickness analysis of epitaxial graphene layers on SiC(0001) using low energy electron diffraction and angle resolved ultraviolet photoelectron spectroscopy. App. Phys. Lett. 2008, 93, 033106. [Google Scholar] [CrossRef]
- Emtsev, K.V.; Speck, F.; Seyller, T.; Ley, L.; Riley, J.D. Interaction, growth, and ordering of epitaxial graphene on SiC(0001) surfaces: A comparative photoelectron spectroscopy study. Phys. Rev. B 2008, 77, 155303. [Google Scholar] [CrossRef] [Green Version]
- Guisinger, N.P.; Rutter, G.M.; Crain, J.N.; First, P.N.; Stroscio, J.A. Exposure of epitaxial graphene on SiC(0001) to atomic hydrogen. Nano Lett. 2009, 9, 1462–1466. [Google Scholar] [CrossRef] [PubMed]
- Riedl, C.; Coletti, C.; Iwasaki, T.; Zakharov, A.A.; Starke, U. Quasi-free-standing graphene on SiC obtained by hydrogen intercalation. Phys. Rev. Lett. 2009, 103, 246804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanabe, S.; Talamura, M.; Harada, Y.; Kageshima, H.; Hibino, H. Effects of hydrogen intercalation on transport properties of quasi-free-standing monolayer graphene. Jpn. J. Appl. Phys. 2014, 53, 04EN01. [Google Scholar] [CrossRef]
- Lee, B.; Han, S.; Kim, Y.S. First-principles study of preferential sites of hydrogen incorporated in epitaxial graphene on 6H-SiC(0001). Phys. Rev. B 2020, 81, 075432. [Google Scholar] [CrossRef]
- Kunc, J.; Rejhon, M.; Hlídek, P. Hydrogen intercalation of epitaxial graphene and buffer layer probed by mid-infrared absorption and Raman spectroscopy. AIP Adv. 2018, 045015. [Google Scholar] [CrossRef] [Green Version]
- Walter, A.L.; Jeon, K.J.; Bostwick, A.; Speck, F.; Ostler, M.; Seyller, T.; Moreschini, L.; Kim, Y.; Chang, Y.; Horn, K.; et al. Highly p-doped epitaxial graphene obtained by fluorine intercalation. Appl. Phys. Lett. 2011, 98, 184102. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, M.H., Jr.; Schumann, T.; Fromm, F.; Koch, R.; Ostler, M.; Ramsteiner, M.; Seyller, T.; Lopes, J.; Riechert, H. Formation of high-quality quasi-free-standing bilayer graphene on SiC(0001) by oxygen intercalation upon annealing in air. Carbon 2013, 52, 83–89. [Google Scholar] [CrossRef]
- Ostler, M.; Fromm, F.; Koch, R.J.; Wehrfritz, P.; Speck, F.; Vita, H.; Böttcher, S.; Horn, K.; Seyller, T. Buffer layer free graphene on SiC(0001) via interface oxidation in water vapor. Carbon 2014, 70, 258–265. [Google Scholar] [CrossRef]
- Bom, N.M.; Oliveira, M.H., Jr.; Soares, G.V.; Radtke, C.; Lopes, J.M.J.; Riechert, H. Synergistic effect of H2O and O2 on the decoupling of epitaxial monolayer graphene from SiC(0001) via thermal treatments. Carbon 2014, 78, 298–304. [Google Scholar] [CrossRef]
- Cheng, Y.C.; Zhu, Z.Y.; Schwingenschlogl, U. Cl-intercalated graphene on SiC: Influence of van der Waals forces. Europhys. Lett. 2013, 101, 27008. [Google Scholar] [CrossRef]
- Caffrey, N.M.; Armiento, R.; Yakimova, R.; Abrikosov, I.A. Charge neutrality in epitaxial graphene on 6H-SiC(0001) via nitrogen intercalation. Phys. Rev. B 2015, 92, 081409. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Zhou, G.; Li, J.; Wu, J.; Gu, B.; Duan, W. Lithium intercalation induced decoupling of epitaxial graphene on SiC(0001): Electronic property and dynamic process. J. Phys. Chem. C 2011, 115, 23992–23997. [Google Scholar] [CrossRef]
- Gierz, I.; Riedl, C.; Starke, U.; Ast, C.R.; Kern, K. Atomic hole doping of graphene. Nano Lett. 2008, 8, 4603–4607. [Google Scholar] [CrossRef] [Green Version]
- Starke, U.; Forti, S.; Emtsev, K.V.; Coletti, C. Engineering the electronic structure of epitaxial graphene by transfer doping and atomic intercalation. MRS Bull. 2012, 37, 1177–1186. [Google Scholar] [CrossRef]
- Kim, M.; Tringides, M.C.; Hershberger, M.T.; Chen, S.; Hupalo, M.; Thiel, P.; Wang, C.; Ho, K. Manipulation of Dirac cones in intercalated epitaxial graphene. Carbon 2017, 123, 93–98. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Chen, P.; Zhou, G.; Li, J.; Wu, J.; Gu, B.L.; Zhang, S.B.; Duan, W. Dirac Fermions in strongly bound graphene system. Phys. Rev. Lett. 2012, 109, 206802. [Google Scholar] [CrossRef] [Green Version]
- Gao, T.; Gao, Y.; Chang, C.; Chen, Y.; Liu, M.; Xie, S.; He, K.; Ma, X.; Zhang, Y.; Liu, Z. Atomic-scale morphology and electronic structure of manganese atomic layers underneath epitaxial graphene on SiC(0001). ACS Nano 2012, 6, 6562. [Google Scholar] [CrossRef]
- Upadhyay Kahaly, M.; Kaloni, T.P.; Schwingenschlögl, U. Pseudo Dirac dispersion in Mn-intercalated graphene on SiC. Chem. Phys. Lett. 2013, 578, 81. [Google Scholar] [CrossRef]
- Li, Y.; West, D.; Huang, H.; Li, J.; Zhang, S.B.; Duan, W. Theory of the Dirac half metal and quantum anomalous Hall effect in Mn-intercalated epitaxial graphene. Phys. Rev. B 2015, 92, 201403. [Google Scholar] [CrossRef] [Green Version]
- Sung, S.J.; Yang, J.W.; Lee, P.R.; Kim, J.G.; Ryu, M.T.; Park, H.M.; Lee, G.; Hwang, C.C.; Kim, K.S.; Chung, J. Spin-induced band modifications of graphene through intercalation of magnetic iron atoms. Nanoscale 2014, 6, 3824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, X.; Liang, G.; Sun, X.; Li, Y.; Yu, F.; Wei, L.; Cheng, X.; Sun, L.; Zhao, X. Charge-neutral epitaxial graphene on 6H-SiC(0001) via FeSi intercalation. Carbon 2020, 156, 187–193. [Google Scholar] [CrossRef]
- Luo, X.; Sun, X.; Li, Y.; Yu, F.; Sun, L.; Cheng, X.; Zhao, X. Theoretical prediction of eliminating the buffer layer and achieving charge neutrality for epitaxial graphene on 6H-SiC(0001) via boron compound intercalations. Carbon 2020, 161, 323–330. [Google Scholar] [CrossRef]
- Virojanadara, C.; Watcharinyanon, S.; Zakharov, A.A.; Johansson, L.I. Epitaxial graphene on 6 H-SiC and Li intercalation. Phys. Rev. B 2010, 82, 205402. [Google Scholar] [CrossRef] [Green Version]
- Bisti, F.; Profeta, G.; Vita, H.; Donarelli, M.; Perrozzi, F.; Sheverdyaeva, P.M.; Moras, P.; Horn, K.; Ottaviano, L. Electronic and geometric structure of graphene/SiC(0001) decoupled by lithium intercalation. Phys. Rev. B 2015, 91, 245411. [Google Scholar] [CrossRef] [Green Version]
- Sandin, A.; Jayasekera, T.; Rowe, J.E.; Kim, K.W.; Buongiorno Nardelli, M.; Dougherty, D.B. Multiple coexisting intercalation structures of sodium in epitaxial graphene-SiC interfaces. Phys. Rev. B 2012, 85, 125410. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.; Dugerjav, O.; Lkhagvasuren, A.; Seo, J.M. Origin of ambipolar graphene doping induced by the ordered Ge film intercalated on SiC(0001). Carbon 2016, 108, 154–164. [Google Scholar] [CrossRef]
- Li, L.; Zang, Y.; Lin, S.; Hu, J.; Han, Y.; Chu, Q.; Lei, Q.; Chen, H. Fabrication and characterization of SiC/Ge/graphene heterojunction with Ge micro-nano structure. Nanotechnology 2020, 31, 145202. [Google Scholar] [CrossRef]
- Deretzis, I.; La Magna, A. Ab initio study of Ge in epitaxial graphene on SiC(0001). Appl. Phys. Express 2011, 4, 125101. [Google Scholar] [CrossRef]
- Sirikumara, H.I.; Ballen, J.B.; Jayasekera, T. Ge cages at SiC/graphene interface: A first principle calculation. J. Crys. Growth 2014, 393, 145–149. [Google Scholar] [CrossRef]
- Kaloni, T.P.; Kahaly, M.U.; Cheng, Y.C.; Schwingenschlögl, U. Ge-intercalated graphene: The origin of the p-type to n-type transition. EPL Europhys. Lett. 2012, 99, 57002. [Google Scholar] [CrossRef]
- Kim, H.; Dugerjav, O.; Lkhagvasuren, A.; Seo, J.M. Charge neutrality of quasi-free-standing monolayer graphene induced by the intercalated Sn layer. J. Phys. D Appl. Phys. 2016, 49, 135307. [Google Scholar] [CrossRef]
- Niu, Y.R.; Zakharov, A.A.; Yakimova, R. Metal-dielectric transition in Sn-intercalated graphene on SiC(0001). Ultramicroscopy 2017, 183, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Mamiyev, Z.; Tegenkamp, C. Sn intercalation into the BL/SiC(0001) interface: A detailed SPA-LEED investigation. Surf. Interface 2022, 34, 102304. [Google Scholar] [CrossRef]
- Kim, H.; Dugerjav, O.; Lkhagvasuren, A.; Seo, J.M. Doping modulation of quasi-free-standing monolayer graphene formed on SiC(0001) through Sn1-xGex intercalation. Carbon 2019, 44, 549–556. [Google Scholar] [CrossRef]
- Straßer, C.; Ludbrook, B.M.; Levy, G.; Macdonald, A.J.; Burke, S.A.; Wehling, T.O.; Kern, K.; Damascelli, A.; Ast, C.R. Long-versus short-range scattering in doped epitaxial graphene. Nano Lett. 2015, 15, 2825–2829. [Google Scholar] [CrossRef]
- Baskin, Y.; Mayer, L. Lattice constants of graphite at low temperatures. Phys. Rev. 1955, 100, 544. [Google Scholar] [CrossRef]
- Maintz, S.; Deringer, V.L.; Tchougréeff, A.L.; Dronskowski, R. LOBSTER: A tool to extract chemical bonding from plane-wave based DFT. J. Comput. Chem. 2016, 37, 1030–1035. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Huang, L.; Tringides, M.C.; Evans, J.W.; Han, Y. Thermodynamic preference for atom adsorption on versus intercalation into multilayer graphene. J. Phys. Chem. Lett. 2020, 11, 9725. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metaks and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169. [Google Scholar] [CrossRef] [PubMed]
- Kresse, G.; Joubert, D. Form ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys Rev. B 1996, 77, 3865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tkatchenko, A.; Scheffler, M. Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. Phys. Rev. Lett. 2009, 102, 073005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Kim, M.; Chen, L.; Ho, K.; Tringides, M.; Wang, C.; Wang, S. Manipulation of electronic property of epitaxial graphene on SiC substrate by Pb intercalation. Phys. Rev. B 2021, 103, 085403. [Google Scholar] [CrossRef]
- Kotsakidis, J.C.; Grubišić-Čabo, A.; Yin, Y.; Tadich, A.; Myers-Ward, R.L.; Dejarld, M.; Pavunny, S.P.; Currie, M.; Daniels, K.M.; Liu, C.; et al. Freestanding n-doped graphene via intercalation of calcium and magnesium into the buffer layer-SiC(0001) interface. Chem. Mater. 2020, 32, 6464–6482. [Google Scholar] [CrossRef]
Ge Coverage | 7/8 BL | 6/8 BL | 5/8 BL | 4/8 BL | 3/8 ML | 2/8 ML | 2/8 ML | 1/8 ML | 1/8 ML | 1/16 ML | 1/16 ML |
---|---|---|---|---|---|---|---|---|---|---|---|
Ge location | - | - | - | - | - | T + T | T + H | T | H | T | H |
Ef | 0.42 | 0.18 | 0.26 | 0.29 | 0.68 | 0.20 | 0.19 | −1.68 | −1.62 | −3.38 | −3.33 |
EI | −3.01 | −1.10 | −1.29 | −1.15 | −2.03 | −0.40 | −0.38 | 1.68 | 1.62 | 3.38 | 3.33 |
Bond | Length (Å) | ICOHP |
---|---|---|
Ge1—-Ge2 | 2.47 | −3.74 |
Ge1—Ge3 | 2.72 | −2.48 |
Ge1—Ge4 | 2.47 | −3.74 |
Ge2—Ge3 | 3.18 | −0.49 |
Ge3—Ge4 | 3.38 | −0.49 |
Ge2—Ge4 | 3.59 | −0.08 |
Sn Coverage | 7/8 BL | 6/8 BL | 5/8 BL | 4/8 BL | 3/8 ML | 2/8 ML | 2/8 ML | 1/8 ML | 1/8 ML | 1/16 ML | 1/16 ML |
---|---|---|---|---|---|---|---|---|---|---|---|
Sn location | - | - | - | - | - | T + T | T + H | T | H | T | H |
Ef | 0.28 | 0.04 | 0.06 | 0.12 | 0.66 | 0.66 | 0.62 | 0.27 | 0.27 | −4.38 | −4.35 |
EI | −1.92 | −0.21 | −0.30 | −0.48 | −1.98 | −1.32 | −1.24 | −0.27 | −0.27 | 4.38 | 4.35 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, X.; Liang, G.; Li, Y.; Yu, F.; Zhao, X. Regulating the Electronic Structure of Freestanding Graphene on SiC by Ge/Sn Intercalation: A Theoretical Study. Molecules 2022, 27, 9004. https://doi.org/10.3390/molecules27249004
Luo X, Liang G, Li Y, Yu F, Zhao X. Regulating the Electronic Structure of Freestanding Graphene on SiC by Ge/Sn Intercalation: A Theoretical Study. Molecules. 2022; 27(24):9004. https://doi.org/10.3390/molecules27249004
Chicago/Turabian StyleLuo, Xingyun, Guojun Liang, Yanlu Li, Fapeng Yu, and Xian Zhao. 2022. "Regulating the Electronic Structure of Freestanding Graphene on SiC by Ge/Sn Intercalation: A Theoretical Study" Molecules 27, no. 24: 9004. https://doi.org/10.3390/molecules27249004
APA StyleLuo, X., Liang, G., Li, Y., Yu, F., & Zhao, X. (2022). Regulating the Electronic Structure of Freestanding Graphene on SiC by Ge/Sn Intercalation: A Theoretical Study. Molecules, 27(24), 9004. https://doi.org/10.3390/molecules27249004