Controlling of Mycobacterium by Natural Degradant-Combination Models for Sequestering Mycolic Acids in Karish Cheese
Abstract
:1. Introduction
2. Results and Discussion
2.1. Mycolic Acid Degradation Efficiency by Organic Acids in PBS
2.2. Mycolic Acid Degradation Efficiency by Fruit and LAB Extracts in PBS Buffer
2.3. Mycolic Acid Degradation Efficiency by Acid Quadri-Mix and Extract Quadri-Mix in Karish Cheese
2.4. Organic Acid Portfolio of Individual and Mixed Extracts Determined by HPLC
2.5. Sensorial Properties of Extract Quadri-Mix-Fortified Karish Cheese
3. Materials and Methods
3.1. Chemical and Reagents
3.2. Preparation of Standards
3.3. Examination of Organic Acid Compounds in Fruit Extracts by HPLC
3.4. Probiotic Culture Cell-Free Supernatant Preparation
3.5. Assessment of Mycolic Acid Degradation in PBS Buffer
3.6. Determination of Mycolic Acid Degradation Using HPLC
3.6.1. Mycolic Acid Derivatization
3.6.2. Chromatographic Analysis
3.7. Evaluation of Degradation Effect of Acid Quadri-Mix and Quadri-Mix Extract in Karish Cheese
3.8. Sensory Evaluation of Extract Quadri-Mix-Fortified Karish Cheese
3.9. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Global Tuberclosis Reports; World Health Organization: Geneva, Switzerland, 2020; ISBN 978-92-4-001313-1.
- Lemmer, Y.; Kalombo, L.; Pietersen, R.D.; Jones, A.T.; Semete-Makokotlela, B.; Van Wyngaardt, S.; Ramalapa, B.; Stoltz, A.C.; Baker, B.; Verschoor, J.A.; et al. Mycolic acids, a promising mycobacterial ligand for targeting of nanoencapsulated drugs in tuberculosis. J. Control. Release 2015, 211, 94–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiodini, R.J.; Chamberlin, W.M.; Sarosiek, J.; McCallum, R.W. Crohn’s disease and the mycobacterioses: A quarter century later. Causation or simple association? Crit. Rev. Microbiol. 2012, 38, 52–93. [Google Scholar] [CrossRef] [PubMed]
- Marrakchi, H.; Lanéelle, M.A.; Daffé, M. Mycolic acids: Structures, biosynthesis, and beyond. Chem. biol. 2014, 21, 67–85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sani, M.; Houben, E.N.; Geurtsen, J.; Pierson, J.; de Punder, K.; van Zon, M.; Wever, B.; Piersma, S.R.; Jiménez, C.R.; Daffe´, M.; et al. Direct visualization by cryo-EM of the mycobacterial capsular layer: A labile structure containing ESX-1-secreted proteins. PLoS Pathog. 2010, 6, e1000794. [Google Scholar] [CrossRef] [Green Version]
- Hett, E.C.; Rubin, E.J. Bacterial growth and cell division: A mycobacterial perspective Microbiol. Mol. Biol. Rev. 2008, 72, 126–156. [Google Scholar] [CrossRef] [Green Version]
- El Baaboua, A.; El Maadoudi, M.; Bouyahya, A.; Belmehdi, O.; Kounnoun, A.; Zahli, R.; Abrini, J. Evaluation of Antimicrobial Activity of Four Organic Acids Used in Chicks Feed to Control Salmonella typhimurium: Suggestion of Amendment in the Search Standard. Int. J. Microbiol. 2018, 2018, 7352593. [Google Scholar] [CrossRef] [Green Version]
- Sieniawska, E.; Sawicki, R.; Truszkiewicz, W.; Marchev, A.S.; Georgiev, M.I. Usnic acid treatment changes the composition of Mycobacterium tuberculosis cell envelope and alters bacterial redox status. Msystems. 2021, 6, e00097-21. [Google Scholar] [CrossRef]
- Anyasi, T.A.; Jideani, A.I.; Mchau, G.R. Effect of organic acid pretreatment on some physical, functional and antioxidant properties of flour obtained from three unripe banana cultivars. Food Chem. 2015, 172, 515–522. [Google Scholar] [CrossRef]
- Ciriminna, C.R.; Meneguzzo, F.; Delisi, R.; Pagliaro, M. Citric acid: Emerging applications of key biotechnology industrial product. Chem. Cent. J. 2017, 11, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Ameen, S.M.; Caruso, G. Lactic Acid in the Food Industry; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Scelza, M.F.; Pierro, V.; Scelza, P.; Pereira, M. Effect of three different time periods of irrigation with EDTA-T, EDTA, and citric acid on smear layer removal. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2004, 98, 499–503. [Google Scholar] [CrossRef]
- Abou Donia, S.A. Feta and Related Cheeses; Ellis Horwood Limited: Chichester, UK, 1991. [Google Scholar]
- Hanifian, S. Survival of Mycobacterium avium subsp. paratuberculosis in ultra-filtered white cheese. Lett. Appl. Microbiol. 2014, 58, 466–471. [Google Scholar] [CrossRef]
- Serraino, A.; Bonilauri, P.; Giacometti, F.; Ricchi, M.; Cammi, G.; Piva, S.; Arrigoni, N. Investigation into Mycobacterium avium ssp. paratuberculosis in pasteurized milk in Italy. J. Dairy Sci. 2017, 100, 118–123. [Google Scholar]
- Allam, M.G.M.; Darwish, A.M.G.; Ayad, E.H.E.; Shokery, E.S.; Darwish, S.M. Lactococcus species for conventional Karish cheese conservation. LWT 2017, 79, 625e631. [Google Scholar] [CrossRef]
- Sandoval-Montemayor, N.E.; García, A.; Elizondo-Treviño, E.; Garza-González, E.; Alvarez, L.; del Rayo Camacho-Corona, M. Chemical composition of hexane extract of Citrus aurantifolia and anti-Mycobacterium tuberculosis activity of some of its constituents. Molecules 2012, 17, 11173–11184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fahim, J.; Ahmed, M.; Arai, M.; Kamel, M. Anti-dormant mycobacterial activity of Melissa officinalis L. (Lemon balm). J. Adv. Biomed. Pharm. Sci. 2021, 4, 95–97. [Google Scholar]
- Su, L.C.; Xie, Z.; Zhang, Y.; Nguyen, K.T.; Yang, J. Study on the antimicrobial properties of citrate-based biodegradable polymers. Front. Bioeng. Biotechnol. 2014, 2, 23. [Google Scholar] [CrossRef] [PubMed]
- Kundukad, B.; Udayakumar, G.; Grela, E.; Kaur, D.; Rice, S.S.; Kjelleberg, S.; Doyle, P.S. Weak acids as an alternative antimicrobial therapy. Biofilm 2020, 2, 100019. [Google Scholar] [CrossRef]
- Abu-Ghazaleh, B. Effects of ascorbic acid, citric acid, lactic acid, NaCl, potassium sorbate and Thymus vulgaris extract on Staphylococcus aureus and Escherichia coli. Afr. J. Microbiol. Res. 2013, 7, 7–12. [Google Scholar]
- Mani-López, E.; García, H.S.; López-Malo, A. Organic acids as antimicrobials to control Salmonella in meat and poultry products. Food Res. Intern. 2012, 45, 713–721. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Q.; Li, P.; Wang, Y.; Li, S.; Gao, M.; Song, Y. Enhanced lipid production by addition of malic acid in fermentation of recombinant Mucor circinelloides Mc-MT-2. Sci. Rep. 2021, 11, 1–9. [Google Scholar] [CrossRef]
- Buchanan, R.L.; Golden, M.H. Interaction of citric acid concentration and pH on the kinetics of Listeria monocytogenes inactivation. J. Food Prot. 1994, 57, 567–570. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Abarrategui, C.; Figueroa-Espi, V.; Lugo-Alvarez, M.B.; Pereira, C.D.; Garay, H.; Barbosa, J.A.; Otero-Gonzalez, A.J. The intrinsic antimicrobial activity of citric acid-coated manganese ferrite nanoparticles is enhanced after conjugation with the antifungal peptide Cm-p5. Int. J. Nanomedicine. 2016, 11, 3849. [Google Scholar] [PubMed] [Green Version]
- Burel, C.; Kala, A.; Purevdorj-Gage, L. Impact of pH on citric acid antimicrobial activity against Gram-negative bacteria. Lett. Appl. Microbiol. 2021, 72, 332–340. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.; Shen, Y.; Shen, X.; Jiang, X.; Huang, D.; Yan, Y. Chitosan derivatives withdual-antibacterial functional groups for antimicrobial finishing of cotton fabrics. Carbohydr. Polym. 2011, 85, 221–227. [Google Scholar] [CrossRef]
- In, Y.W.; Kim, J.J.; Kim, H.J.; Oh, S.W. Antimicrobial activities of acetic acid, citric acid and lactic acid against Shigella species. J. Food Saf. 2013, 33, 79–85. [Google Scholar] [CrossRef]
- Gill, A.O.; Delaquis, P.; Russo, P.; Holley, R. Evaluation of anti-listerial action of cilantro oil on vacuum packed ham. Int. J. Food Microbiol. 2002, 73, 83–92. [Google Scholar] [CrossRef] [PubMed]
- Park, K.M.; Yoon, S.G.; Choi, T.H.; Kim, H.J.; Park, K.J.; Koo, M. The bactericidal effect of a combination of food-grade compounds and their application as alternative antibacterial agents for food contact surfaces. Foods 2020, 9, 59. [Google Scholar] [CrossRef] [Green Version]
- Carocho, M.; Barros, L.; Calhelha, R.C.; Ćirić, A.; Soković, M.; Santos-Buelga, C.; Morales, P.; Ferreira, I.C. Melissa officinalis L. decoctions as functional beverages: A bioactive approach and chemical characterization. J. Funct. Foods. 2015, 6, 2240–2248. [Google Scholar]
- Caleja, C.; Barros, L.; Barreira, J.C.; Ciric, A.; Sokovic, M.; Calhelha, R.C.; Beatriz, M.; Oliveira, P.P.; Ferreira, I.C. Suitability of lemon balm (Melissa officinalis L.) extract rich in rosmarinic acid as a potential enhancer of functional properties in cupcakes. Food Chem. 2018, 1, 67–74. [Google Scholar] [CrossRef] [Green Version]
- Behera, S.; Khetrapal, P.; Punia, S.K.; Agrawal, D.; Khandelwal, M.; Lohar, J. Evaluation of Antibacterial Activity of Three Selected Fruit Juices on Clinical Endodontic Bacterial Strains. J. Pharm. Bioallied. Sci. 2017, 9, S217–S221. [Google Scholar] [CrossRef]
- Malaviya, A.; Mishra, N. Antimicrobial activity of tropical fruits. Biol. Forum Int. J. 2011, 3, 1–4. [Google Scholar]
- Rhodes, P.L.; Mitchell, J.W.; Wilson, M.W.; Melton, L.D. Antilisterial activity of grape juice and grape extracts derived from Vitis vinifera variety Ribier. Int. J. Food Microbiol. 2006, 107, 281–286. [Google Scholar] [CrossRef] [PubMed]
- Kralik, P.; Babak, V.; Dziedzinska, R. The impact of the antimicrobial compounds produced by lactic acid bacteria on the growth performance of Mycobacterium avium subsp. paratuberculosis. Front. Microbiol. 2018, 9, 638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guilford, J.M.; Pezzuto, J.M. Wine and health: A review. Am. J. Enol. Vitic. 2011, 211, 94–104. [Google Scholar] [CrossRef] [Green Version]
- Lianou, A.; Koutsoumanis, K.; Sofos, J. Organic acids and other chemical treatments for microbial decontamination of food. In Microbial Decontamination in the Food Industry; Elsevier: Amsterdam, The Netherlands, 2012; pp. 592–664. [Google Scholar]
- Izco, J.M.; Tormo, M.; Jimenez-Flores, R. Development of a CE method to analyze organic acids in dairy products: Application to study the metabolism of heat-shocked spores. J. Agric. Food Chem. 2002, 50, 1765–1773. [Google Scholar] [CrossRef]
- Buyuktuncel, E. The Importance of Fresh Consumption of Citrus Juices. Curr. Adv. Carbohydr. Chem. Biochem. 2021, 6, 1–11. [Google Scholar]
- Zhang, D.; Zhang, Y.; Lin, K.; Wang, B.; Shi, X.; Cheng, W. Comparison of sugars, organic acids and aroma components of five table grapes in Xinjiang. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2021; Volume 792, p. 012029. [Google Scholar]
- Yang, S.; Meng, Z.; Li, Y.; Chen, R.; Yang, Y.; Zhao, Z. Evaluation of physiological characteristics, soluble sugars, organic acids and volatile compounds in ‘Orin’apples (Malus domestica) at different ripening stages. Molecules 2021, 26, 807. [Google Scholar] [CrossRef]
- Chen, H.; Ju, H.; Wang, Y.; Du, G.; Yan, X.; Cui, Y.; Yue, T. Antifungal activity and mode of action of Lactic acid bacteria isolated from Kefir against Penicillium expansum. Food Control 2021, 130, 108274. [Google Scholar] [CrossRef]
- Kumar, V.; Sharma, A.; Bhardwaj, R.; Thukral, A.K. Analysis of organic acids of tricarboxylic acid cycle in plants using GC-MS, and system modeling. J. Anal. Sci. Technol. 2017, 8, 20. [Google Scholar] [CrossRef]
- Zheng, J.; Huang, C.; Yang, B.; Kallio, H. Regulation of phytochemicals in fruits and berries by environmental variation—Sugars and organic acids. J. Food Biochem. 2019, 43, e12642. [Google Scholar] [CrossRef]
- Moradi, M.; Molaei, R.; Guimarães, J.T. A review on preparation and chemical analysis of postbiotics from lactic acid bacteria. Enzyme Microb. Technol. 2021, 143, 109722. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S. Stability of Proteins and Organic Acids in Production of Milk Protein Concentrate (MPC) and Milk Protein Isolate (MPI) and Effect of Temperature and Time on Functional Properties of MPC and MPI. Ph.D. Thesis, University of Idaho, Moscow, ID, USA, 2021. [Google Scholar]
- Søltoft-Jensen, J.; Hansen, F. New chemical and biochemical hurdles. In Emerging Technologies for Food Processing; Elsevier: Amsterdam, The Netherlands, 2015; pp. 387–416. [Google Scholar]
- Caballero, B.; Trugo, L.; Finglas, P. Encyclopedia of Food Sciences and Nutrition; Elsevier: Amsterdam, The Netherlands, 2003; pp. 1–10. [Google Scholar]
- Tarse, D.T.; Rick, M.Z. Fortification Effects in Preparation of Fresh Cheese (Quesoblanco, Gybna beyda & Halloumi) of Zebu Cow Milk Using Citric Acid Solution, Gambella, Godere Woreda, Ethiopia. Bioprocess Eng. 2021, 5, 28. [Google Scholar]
- Dalman, L.H. The Solubility of Citric and Tartaric Acids in Water. J. Am. Chem. Soc. 1937, 59, 2547–2549. [Google Scholar] [CrossRef]
- Fox, P.F.; Guinee, T.P.; Cogan, T.M.; McSweeney, P.L. Fundamentals of Cheese Science; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Esmaeilzadeh, P.; Ehsani, M.R.; Mizani, M.; Givianrad, M.H. Characterization of a traditional ripened cheese, Kurdish Kope: Lipolysis, lactate metabolism, the release profile of volatile compounds, and correlations with sensory characteristics. J. Food Sci. 2021, 86, 3303–3321. [Google Scholar] [CrossRef]
- Smith, J.; Hong-Shum, L. Food Additives Data Book; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Hassan, A.N.; Frank, J.F.; El Soda, M. Observation of bacterial exopolysaccaride in dairy products using cryo-scaning electron microscope. Int. Dairy J. 2003, 13, 755–762. [Google Scholar] [CrossRef]
- Tormo, M.; Izco, J. Alternative reversed-phase high-performance liquid chromatography method to analyse organic acids in dairy products. J. Chromatogr. 2004, 1033, 305–310. [Google Scholar] [CrossRef]
- Lucey, J.A. formation, structural properties, and rheology of acid-coagulated milk gels. In Cheese: Chemistry. Physics and Microbiology; Academic Press: Cambridge, MA, USA, 2017; Volume 1, pp. 179–197. [Google Scholar]
- Robles-Rodríguez, C.E.; Szymańska, E.; Huppertz, T.; Özkan, L. Dynamic modeling of milk acidification: An empirical approach. Food Bioprod. Process. 2021, 128, 41–51. [Google Scholar] [CrossRef]
- Mudgil, D.; Barak, S. Dairy-based functional beverages. In Milk-Based Beverages: The Science of Beverages; Woodhead Publishing: Cambridge, UK, 2019; Volume 9, pp. 67–93. [Google Scholar]
- Hamad, G.M.; Abdelmotilib, N.M.; Abdel-Fattah, A.M.; Zeitoun, A.M. Anti-Escherichia coli O157:H7 as Natural Preservative to Control and Prevent Food Contamination in Meat and Fish Products. Pak. J. Biol. Sci. 2020, 23, 674–684. [Google Scholar] [CrossRef]
- Violeta, N.O.U.R.; Trandafir, I.; Ionica, M.E. HPLC organic acid analysis in different citrus juices under reversed phase conditions. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 2010, 38, 44–48. [Google Scholar]
- Hamad, G.M.; Abdelmotilib, N.M.; Darwish, A.M.; Zeitoun, A.M. Commercial probiotic cell-free supernatants for inhibition of Clostridium perfringens poultry meat infection in Egypt. Anaerobe 2020, 62, 102181. [Google Scholar] [CrossRef]
- Brugnera, M.F.; Miyata, M.; Leite, C.Q.F.; Zanoni, M.V.B. Sensitive voltammetric sensor for fast detection of mycolic acids present in mycobacteria. Int. J. Electrochem. Sci. 2013, 8, 6591–6602. [Google Scholar]
- Sartain, M.J.; Dick, D.L.; Rithner, C.D.; Crick, D.C.; Belisle, J.T. Lipidomic analyses of Mycobacterium tuberculosis based on accurate mass measurements and the novel “Mtb LipidDB”. J. Lipid Res. 2011, 52, 861–872. [Google Scholar] [CrossRef] [Green Version]
- Abou-Donia, S.A. Origin, History and Manufacturing Process of Egyptian Dairy Products: An Overview. Alex. J. Food Sci. Tech. 2008, 5, 51–62. [Google Scholar]
- Wood, J.E.; Gill, B.D.; Longstaff, W.; Crawford, R.A.; Indyk, H.E.; Kissling, R.C.; Matuszek, A. Dairy product quality using screening of aroma compounds by selected ion flow tube—mass spectrometry: A chemometric approach. Int. Dairy J. 2021, 121, 105107. [Google Scholar] [CrossRef]
Matrix | OA (%) | MA (µg/mL) | Residual MAs (µg/mL) | Degradation% | ||||
---|---|---|---|---|---|---|---|---|
0 h | 6 h | 12 h | 24 h | 48 h | ||||
PBS + OAs (−Ve control) | 1.00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1.50 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
2.00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
PBS + MAs (+Ve control) | 0.00 | 50.00 ± 0.26 a | 50.00 ± 0.66 a | 50.00 ± 0.32 a | 50.00 ± 0.70 a | 49.99 ± 0.26 a | 49.99 ± 0.15 a | 0 |
Citric acid +PBS + MAs | 1.00 | 50.00 ± 0.47 a | 50.00 ± 0.16 a | 25.0 ± 0.34 de | 13.5 ± 0.96 c | 7.25 ± 0.47 c | 4.26 ± 7 c | 91.5 ± 0.87 cd |
1.50 | 20.0 ± 0.48 g | 10.7 ± 0.44 ij | 6.12 ± 036 cd | 3.17 ± 0.60 n | 93.6 ± 0.59 c | |||
2.00 | 15.0 ± 0.70 h | 8.23 ± 0.23 j | 5.13 ± 0.31 e | 2.14 ± 0.19 ef | 95.7 ± 0.47 ab | |||
Malic acid + PBS + MAs | 1.00 | 30.0 ± 0.18 b | 16.3 ± 0.80 b | 9.12 ± 0.78 b | 5.17 ± 0.06 b | 89.7 ± 0.17 d | ||
1.50 | 27.0 ± 0.29 c | 13.5 ± 0.60 c | 6.92 ± 0.11 cd | 3.45 ± 0.60 d | 93.1 ± 0.50 c | |||
2.00 | 24.0 ± 0.95 de | 12.6 ± 0.60 d | 5.94 ± 0.71 d | 2.81 ± 0.60 e | 94.4 ± 0.36 b | |||
Tartaric acid + PBS + MAs | 1.00 | 29.0 ± 0.66 b | 14.3 ± 0.67 bc | 7.53 ± 0.82 c | 5.32 ± 0.47 b | 89.4 ± 0.74 d | ||
1.50 | 26.0 ± 0.32 d | 13.0 ± 0.50 d | 5.71 ± 0.81 d | 3.52 ± 0.50 d | 93.0 ± 0.60 c | |||
2.00 | 23.0 ± 0.69 f | 11.8 ± 0.87 d | 4.89 ± 0.12 l | 2.95 ± 0.61 cd | 94.1 ± 0.74 b | |||
Lactic acid + PBS + MAs | 1.00 | 28.0 ± 0.87 bc | 13.1 ± 0.42 c | 6.63 ± 0.69 cd | 3.15 ± 0.80 d | 93.7 ± 0.12 c | ||
1.50 | 25.0 ± 0.70 de | 11.6 ± 0.36 e | 4.74 ± 0.73 e | 2.53 ± 0.17 e | 94.9 ± 0.58 b | |||
2.00 | 20.0 ± 0.43 g | 9.13 ± 0.83 f | 3.92 ± 0.60 f | 2.21 ± 0.39 ef | 95.6 ± 0.80 b | |||
OA quadric mix + PBS + MAs | 1.00 | 20.0 ± 0.60 g | 9.53 ± 0.20 f | 4.23 ± 036 e | 2.06 ± 0.28 f | 95.98 ± 0.53 ab | ||
1.50 | 15.0 ± 0.74 h | 6.76 ± 0.60 g | 3.16 ± 0.48 fg | 1.61 ± 0.1 0 g | 96.8 ± 0.44 a | |||
2.00 | 10.0 ± 0.42 i | 4.81 ± 0.36 h | 2.32 ± 0.40 g | 1.35 ± 0.64 h | 97.3 ± 0.60 a |
Matrix | OA (%) | MA (µg/mL) | Residual MAs (µg/mL) | Degradation% | ||||
---|---|---|---|---|---|---|---|---|
0 h | 6 h | 12 h | 24 h | 48 h | ||||
PBS + FEs (−Ve control) | 1.00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1.50 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
2.00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
PBS + MAs (+Ve control) | 0.00 | 50.0 ± 0.07 a | 50.0 ± 0.32 a | 50.0 ± 0.37 a | 50.0 ± 0.47 a | 50.0 ± 0.69 a | 50.0 ± 0.38 a | 0 |
Lemon + PBS + MAs | 1.00 | 50.0 ± 0.55 a | 50.0 ± 0.67 a | 18.0 ± 0.22 e | 10.3 ± 0.02 d | 4.96 ± 0.71 cd | 2.52 ± 0.71 d | 95.0 ± 0.72 bc |
1.50 | 14.0 ± 0.22 f | 7.14 ± 0.67 e | 3.16 ± 0.56 i | 1.96 ± 0.64 e | 96.1 ± 0.60 b | |||
2.00 | 9.00 ± 0.51 e | 4.36 ± 0.77 h | 2.24 ± 0.13 j | 1.34 ± 0.12 f | 97.3 ± 0.17 ab | |||
Apple + PBS + MAs | 1.00 | 29.0 ± 0.66 b | 14.8 ± 0.39 b | 7.53 ± 0.34 b | 4.13 ± 0.21 b | 91.7 ± 0.07 e | ||
1.50 | 26.0 ± 0.28 c | 12.6 ± 0.27 c | 6.51 ± 0.12 b | 3.67 ± 0.63 bc | 92.7 ± 0.22 d | |||
2.00 | 22.0 ± 0.37 d | 10.7 ± 0.11 d | 5.46 ± 0.82 c | 2.85 ± 0.19 d | 94.3 ± 0.20 bc | |||
Grape + PBS + MAs | 1.00 | 27.0 ± 0.23 c | 14.3 ± 0.22 b | 6.93 ± 0.63 b | 3.87 ± 0.02 bc | 92.36 ± 0.30 d | ||
1.50 | 24.0 ± 0.802 d | 11.6 ± 67 c | 5.95 ± 0.33 c | 2.78 ± 0.27 d | 94.4 ± 0.37 bc | |||
2.00 | 20.0 ± 0.22 e | 9.83 ± 0.73 d | 4.76 ± 0.17 d | 2.26 ± 0.37 de | 95.5 ± 0.61 b | |||
CFS of (L. acidophilus) + PBS + MAs | 1.00 | 23.0 ± 0.22 d | 11.1 ± 0. 23 cd | 6.05 ± 0.57 c | 3.19 ± 0.41 c | 93.6 ± 0.22 c | ||
1.50 | 18.0 ± 0.73 e | 9.26 ± 0.63 d | 4.13 ± 0.13 d | 2.27 ± 0.18 de | 95.5 ± 0.27 b | |||
2.00 | 14.0 ± 0.62 f | 6.75 ± 0.82 e | 3.36 ± 0.52 f | 1.92 ± 0.37 e | 96.2 ± 0.92 b | |||
Extract quadri mix + PBS + MAs | 1.00 | 15.0 ± 0.22 f | 6.92 ± 0.46 e | 3.61 ± 0.40 e | 1.42 ± 0.41 f | 97.2 ± 0.20 ab | ||
1.50 | 10.0 ± 0.74 g | 5.13 ± 0.76 f | 2.23 ± 0.71 g | 0.95 ± 0.55 g | 98.1 ± 0.47 a | |||
2.00 | 6.00 ± 0.12 h | 3.16 ± 0.82 i | 1.71 ± 0.63 h | 0.41 ± 0.22 h | 99.2 ± 0.32 a |
Matrix | OA (%) | MA (µg/mL) | Residual MAs (µg/mL) | Degradation% | ||||
---|---|---|---|---|---|---|---|---|
0 h | 6 h | 12 h | 24 h | 48 h | ||||
Acid quadri-mix (citric, malic, tartaric, and lactic) + Karish cheese (-Ve control) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Extract quadri-mix (lemon, apple, grape, and L. acidophilus) + Karish cheese (−Ve control) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Karish cheese + MAs (+Ve control) | 0 | 50.0 ± 0.22 a | 50.0 ± 0.51 a | 49.9 ± 0.02 a | 49.0 ± 0.12 a | 48.5 ± 0.41 a | 48.0 ± 0.74 a | 0 |
Acid quadri-mix + Karish cheese + MAs | 1.00 | 50.00 ± 0.91 a | 50.00 ± 0.71 a | 19.00 ± 0.66 b | 9.03 ± 0.63 b | 3.92 ± 0.57 b | 1.85 ± 0.12 b | 96.30 ± 0.84 c |
1.50 | 14.00 ± 0.32 c | 7.21 ± 0.54 c | 3.04 ± 0.31 bc | 1.36 ± 0.36 b | 97.28 ± 0.02 b | |||
2.00 | 9.00 ± 0.41 d | 4.87 ± 0.73 e | 2.53 ± 0.87 c | 0.98 ± 0.81 c | 98.04 ± 0.22 ab | |||
Extract quadri-mix + Karish cheese + MAs | 1.00 | 13.00 ± 0.25 c | 5.13 ± 0.91 d | 2.36 ± 0.12 c | 1.04 ± 0.47 bc | 97.92 ± 0.17 b | ||
1.50 | 9.00 ± 0.71 d | 7.75 ± 0.32 c | 4.92 ± 0.42 b | 0.73 ± 0.15 c | 98.54 ± 0.78 a | |||
2.00 | 4.00 ± 0.80 e | 2.18 ± 0.45 f | 1.05 ± 0.36 d | 0.25 ± 0.62 d | 99.50 ± 0.54 a |
Treatment/Group | Sensorial Scores Mean ± (SD) | |||||
---|---|---|---|---|---|---|
Color | Odor | Taste | Texture | Appearance | Overall Acceptance | |
Control | 8.7 ± 0.64 a | 8.5 ± 0.82 a | 8.4 ± 0.80 a | 8.6 ± 0.67 a | 8.7 ± 0.64 a | 8.6 ± 0.64 a |
T1 Mix extract (1 g) (1g extract quadri-mix/100 g Karish cheese) | 8.6 ± 0.80 a | 8.4 ± 0.82 a | 8.2 ± 0.90 a | 8.6 ± 0.66 a | 8.3 ± 1.28 a | 8.5 ± 0.77 a |
T2 Mix extract (1.5 g) (1.5 g extract quadri-mix/100 g Karish cheese) | 8.8 ± 0.40 a | 8.7 ± 0.60 a | 8.7 ± 0.64 a | 8.8 ± 0.40 a | 8.6 ± 0.80 a | 8.5 ± 0.78 a |
T3 Mix extract (2 g) (2 g extract quadri-mix/100 g Karish cheese) | 8.8 ± 0.60 a | 8.9 ± 0.30 a | 8.9 ± 0.30 a | 9.0 ± 0.00 a | 8.9 ± 0.31 a | 8.8 ± 0.20 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamad, G.; Saad, M.A.; Talat, D.; Hassan, S.; Shalabi, O.M.A.K.; Salama, A.M.; Abou-Alella, S.; Esatbeyoglu, T.; Mehany, T. Controlling of Mycobacterium by Natural Degradant-Combination Models for Sequestering Mycolic Acids in Karish Cheese. Molecules 2022, 27, 8946. https://doi.org/10.3390/molecules27248946
Hamad G, Saad MA, Talat D, Hassan S, Shalabi OMAK, Salama AM, Abou-Alella S, Esatbeyoglu T, Mehany T. Controlling of Mycobacterium by Natural Degradant-Combination Models for Sequestering Mycolic Acids in Karish Cheese. Molecules. 2022; 27(24):8946. https://doi.org/10.3390/molecules27248946
Chicago/Turabian StyleHamad, Gamal, Marwa A. Saad, Dalia Talat, Sabria Hassan, Ola M. A. K. Shalabi, Abeer M. Salama, Sarah Abou-Alella, Tuba Esatbeyoglu, and Taha Mehany. 2022. "Controlling of Mycobacterium by Natural Degradant-Combination Models for Sequestering Mycolic Acids in Karish Cheese" Molecules 27, no. 24: 8946. https://doi.org/10.3390/molecules27248946
APA StyleHamad, G., Saad, M. A., Talat, D., Hassan, S., Shalabi, O. M. A. K., Salama, A. M., Abou-Alella, S., Esatbeyoglu, T., & Mehany, T. (2022). Controlling of Mycobacterium by Natural Degradant-Combination Models for Sequestering Mycolic Acids in Karish Cheese. Molecules, 27(24), 8946. https://doi.org/10.3390/molecules27248946