Chemical Analysis and Antimicrobial Activity of Moringa oleifera Lam. Leaves and Seeds
Abstract
:1. Introduction
2. Results
2.1. NMR Analysis of M. oleifera Polar Extracts
2.2. GC-MS Analysis of M. oleifera Apolar Extracts
2.3. Antimicrobial Activity
3. Discussion
4. Materials and Methods
4.1. Chemicals and Solvents
4.2. Plant Material
4.3. Metabolite Extraction
4.4. 1H-NMR Analysis
4.5. GC-MS Analysis
4.6. Antimicrobial Activity Assay
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Anwar, F.; Latif, S.; Ashraf, M.; Gilani, A.H. Moringa oleifera: A food plant with multiple medicinal uses. Phytother. Res. 2007, 21, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Rani, E.A.; Arumugam, T. Moringa oleifera (Lam)-A nutritional powerhouse. J. Crop Weed 2017, 13, 238–246. [Google Scholar]
- Chaudhary, K.; Chaurasia, S. Neutraceutical Properties of Moringa oleifera: A Review. Eur. J. Pharm. Med. Res. 2017, 4, 646–655. [Google Scholar]
- Palada, M.C. Moringa (Moringa oleifera Lam.): A versatile tree crop with horticultural potential in the subtropical United States. HortScience 1996, 31, 794–797. [Google Scholar] [CrossRef] [Green Version]
- Anzano, A.; Ammar, M.; Papaianni, M.; Grauso, L.; Sabbah, M.; Capparelli, R.; Lanzotti, V. Moringa oleifera Lam.: A Phytochemical and Pharmacological Overview. Horticulturae 2021, 7, 409. [Google Scholar] [CrossRef]
- Abdulsalam, S.; Gital, A.A.; Misau, I.M.; Suleiman, M.S. Water clarification using Moringa oleifera seed coagulant: Maiduguri raw water as a case study. J. Food Agric. Environ. 2007, 5, 302–306. [Google Scholar]
- Shakour ZT, A.; Radwa, H.; Elshamy, A.I.; El Gendy AE, N.G.; Wessjohann, L.A.; Farag, M.A. Dissection of Moringa oleifera leaf metabolome in context of its different extracts, origin and in relationship to its biological effects as analysed using molecular networking and chemometrics. Food Chem. 2023, 399, 133948. [Google Scholar] [CrossRef]
- Panda, S.; Kar, A.; Sharma, P.; Sharma, A. Cardioprotective potential of N,α-l-rhamnopyranosyl vincosamide, an indole alkaloid, isolated from the leaves of Moringa oleifera in isoproterenol induced cardiotoxic rats: In Vivo and in vitro studies. Bioorganic Med. Chem. Lett. 2013, 23, 959–962. [Google Scholar] [CrossRef]
- Kooltheat, N.; Pankla Sranujit, R.; Chumark, P.; Potup, P.; Laytragoon-Lewin, N.; Usuwanthim, K. An ethyl acetate fraction of Moringa oleifera Lam. inhibits human macrophage cytokine production induced by cigarette smoke. Nutrients 2014, 6, 697–710. [Google Scholar] [CrossRef] [Green Version]
- Dangi, S.Y.; Jolly, C.I.; Narayanan, S. Antihypertensive activity of the total alkaloids from the leaves of Moringa oleifera. Pharm. Biol. 2002, 40, 144–148. [Google Scholar] [CrossRef]
- Araújo, L.C.C.; Aguiar, J.S.; Napoleão, T.H.; Mota, F.V.B.; Barros, A.L.S.; Moura, M.C.; Coriolano, M.C.; Coelho, L.C.B.B.; Silva, T.G.; Paiva, P.M.G. Evaluation of cytotoxic and anti-inflammatory activities of extracts and lectins from Moringa oleifera seeds. PLoS ONE 2013, 8, e81973. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Y.; Chen, G.; Guo, M. Correlations between phytochemical fingerprints of Moringa oleifera leaf extracts and their antioxidant activities revealed by chemometric analysis. Phytochem. Anal. 2021, 32, 698–709. [Google Scholar] [CrossRef] [PubMed]
- Khalafalla, M.M.; Abdellatef, E.; Dafalla, H.M.; Nassrallah, A.A.; Aboul-Enein, K.M.; Lightfoot, D.A.; El-Deeb, F.E.; El-Shemy, H.A. Active principle from Moringa oleifera Lam leaves effective against two leukemias and a hepatocarcinoma. Afr. J. Biotechnol. 2010, 9, 8467–8471. [Google Scholar] [CrossRef]
- Tiloke, C.; Anand, K.; Gengan, R.M.; Chuturgoon, A.A. Moringa oleifera and their phytonanoparticles: Potential antiproliferative agents against cancer. Biomed. Pharmacother. 2018, 108, 457–466. [Google Scholar] [CrossRef]
- Almatrafi, M.M.; Vergara-Jimenez, M.; Murillo, A.G.; Norris, G.H.; Blesso, C.N.; Fernandez, M.L. Moringa leaves prevent hepatic lipid accumulation and inflammation in guinea pigs by reducing the expression of genes involved in lipid metabolism. Int. J. Mol. Sci. 2017, 18, 1330. [Google Scholar] [CrossRef] [Green Version]
- Richter, N.; Siddhuraju, P.; Becker, K. Evaluation of nutritional quality of moringa (Moringa oleifera Lam.) leaves as an alternative protein source for Nile tilapia (Oreochromis niloticus L.). Aquaculture 2003, 217, 599–611. [Google Scholar] [CrossRef]
- Abd Rani, N.Z.; Kumolosasi, E.; Jasamai, M.; Jamal, J.A.; Lam, K.W.; Husain, K. In Vitro anti-allergic activity of Moringa oleifera Lam. extracts and their isolated compounds. BMC Complement. Altern. Med. 2019, 19, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Xiong, Y.; Riaz Rajoka, M.S.; Zhang, M.X.; He, Z. Isolation and identification of two new compounds from the seeds of Moringa oleifera and their antiviral and anti-inflammatory activities. Nat. Prod. Res. 2020, 36, 974–983. [Google Scholar] [CrossRef]
- Sumner, L.W.; Mendes, P.; Dixon, R.A. Plant metabolomics: Large-scale phytochemistry in the functional genomics era. Phytochemistry 2003, 62, 817–836. [Google Scholar] [CrossRef] [Green Version]
- Mahmud, I.; Kamal, C.; Arezue, B. Tissue-specific metabolic profile study of Moringa oleifera L. using nuclear magnetic resonance spectroscopy. Plant Tissue Cult. Biotechnol. 2014, 24, 77–86. [Google Scholar] [CrossRef] [Green Version]
- Dinesha, B.L.; Nidoni, U.; Ramachandra, C.T.; Naik, N.; Sankalpa, K.B. Effect of extraction methods on physicochemical, nutritional, antinutritional, antioxidant and antimicrobial activity of Moringa (Moringa oleifera Lam.) seed kernel oil. J. Appl. Nat. Sci. 2018, 10, 287–295. [Google Scholar] [CrossRef] [Green Version]
- Lalas, S.; Gortzi, O.; Athanasiadis, V.; Tsaknis, J.; Chinou, I. Determination of Antimicrobial Activity and Resistance to Oxidation of Moringa peregrina Seed Oil. Molecules 2012, 17, 2330–2334. [Google Scholar] [CrossRef] [PubMed]
- Moyo, B.; Masika, P.J.; Muchenje, V. Antimicrobial activities of Moringa oleifera Lam leaf Extracts. Afr. J. Biotechnol. 2011, 11, 2797–2802. [Google Scholar] [CrossRef]
- Jabeen, R.; Shahid, M.; Jamil, A.; Ashraf, M. Microscopic evaluation of the antimicrobial activity of seed extracts of Moringa oleifera. Pak. J. Bot. 2008, 40, 1349–1358. [Google Scholar]
- Oluduro, A.O. Evaluation of Antimicrobial properties and nutritional potentials of Moringa oleifera Lam. leaf in South-Western Nigeria. Malays. J. Microbiol. 2012, 8, 59–67. [Google Scholar] [CrossRef]
- Ndhlala, A.R.; Mulaudzi, R.; Ncube, B.; Abdelgadir, H.A.; Du Plooy, C.P.; Van Staden, J. Antioxidant, antimicrobial and phytochemical variations in thirteen Moringa oleifera Lam. cultivars. Molecules 2014, 19, 10480–10494. [Google Scholar] [CrossRef] [Green Version]
- Saadabi, A.M.; Abu Zaid, I.E. An in vitro antimicrobial activity of Moringa oleifera L. against different groups of microorganisms. Aust. J. Basic Appl. Sci. 2011, 5, 129–134. [Google Scholar]
- Ruttarattanamongkol, K.; Petrasch, A. Antimicrobial activities of Moringa oleifera seed and seed oil residue and oxidative stability of its cold pressed oil compared with extra virgin olive oil. Songklanakarin J. Sci. Technol. 2015, 37, 587–594. [Google Scholar]
- Kodicek, E.; Worden, A.N. The effect of unsaturated fatty acids on Lactobacillus helveticus and other Gram-positive microorganisms. Biochem. J. 1945, 39, 78–85. [Google Scholar] [CrossRef] [Green Version]
- Galbraith, H.; Miller, T.B.; Paton, A.M.; Thompson, J.K. Antibacterial activity of long chain fatty acids and the reversal with calcium, magnesium, ergocalciferol and cholesterol. J. Appl. Bacteriol. 1971, 34, 803–813. [Google Scholar] [CrossRef]
- Desbois, A.P.; Smith, V.J. Antibacterial free fatty acids: Activities, mechanisms of action and biotechnological potential. Appl. Microbiol. Biotechnol. 2010, 85, 1629–1642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Churchward, C.P.; Alany, R.G.; Snyder, L.A.S. Alternative antimicrobials: The properties of fatty acids and monoglycerides. Crit. Rev. Microbiol. 2018, 44, 561–570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Falco, B.; Grauso, L.; Fiore, A.; Bonanomi, G.; Lanzotti, V. Metabolomics and chemometrics of seven aromatic plants: Carob, eucalyptus, laurel, mint, myrtle, rosemary and strawberry tree. Phytochem. Anal. 2022, 33, 696–709. [Google Scholar] [CrossRef] [PubMed]
- Lanzotti, V.; Anzano, A.; Grauso, L.; Zotti, M.; Sacco, A.; Senatore, M.; Moreno, M.; Diano, M.; Parente, M.; Esposito, S.; et al. NMR metabolomics and chemometrics of lettuce, Lactuca sativa L., under different foliar organic fertilization treatments. Plants 2022, 11, 2164. [Google Scholar] [CrossRef]
- Grauso, L.; Emrick, S.; Bonanomi, G.; Lanzotti, V. Metabolomics of the alimurgic plants Taraxacum officinale, Papaver rhoeas and Urtica dioica by combined NMR and GC–MS analysis. Phytochem. Anal. 2019, 30, 535–546. [Google Scholar] [CrossRef]
- Grauso, L.; Zotti, M.; Sun, W.; de Falco, B.; Lanzotti, V.; Bonanomi, G. Spectroscopic and multivariate data-based method to assess the metabolomic fingerprint of Mediterranean plants. Phytochem. Anal. 2019, 30, 572–581. [Google Scholar] [CrossRef]
- Romanelli, A.; Moggio, L.; Montella, R.C.; Campiglia, P.; Iannaccone, M.; Capuano, F.; Pedone, C.; Capparelli, R. Peptides from Royal Jelly: Studies on the antimicrobial activity of jelleins, jelleins analogs and synergy with temporins. J. Pept. Sci. 2011, 17, 348–352. [Google Scholar] [CrossRef]
Compound | Assignment | 1H (ppm) | Multiplicity (J in Hz) | Leaves | Seeds |
---|---|---|---|---|---|
Organic acids | |||||
Citric acid (CI) | α,γ-CH2 | 2.50 ** | d (15.0, 15.0) | x | x |
α’,γ’-CH2 | 2.68 ** | d | |||
Fumaric acid (FU) | α-CH | 6.61 * | s | x | |
Malic acid (MA) | β’-CH2 | 2.43 | dd (15.7, 8.9) | x | x |
β-CH | 2.78 | dd (15.7, 3.7) | |||
α-CH | 4.33 * | dd (8.9, 3.7) | |||
Succinic acid (SU) | α-CH2 | 2.42 ** | s | x | x |
Acetic acid (AC) | α-CH3 | 1.96 * | s | x | x |
Amino acids | |||||
Alanine (Ala) | β-CH3 | 1.51 * | d (7.0) | x | x |
Asparagine (Asn) | β-CH | 2.84 | dd (17.4, 3.8) | x | x |
2.98 * | dd (4.0, 13.0) | ||||
Isoleucine (Ile) | δ-CH3 | 0.93 | t (7.0) | x | x |
γ’-CH3 | 1.05 * | d (7.0) | |||
γ-aminobutyrate (GABA) | β-CH2 | 1.92 | m | x | x |
α-CH2 | 2.34 | t (7.0) | |||
γ-CH2 | 3.04 * | t (7.0) | |||
Leucine (Leu) | δ-CH3 | 1.01 * | d (7.0) | x | x |
Glutamic acid (Glu) | β, β’-CH | 2.08, 2.16 * | m | x | |
Phenylalanine (Phe) | CH-4 | 7.35 | t (7.0) | x | x |
CH-2,6 | 7.45 * | m | |||
Threonine (Thr) | γ-CH3 | 1.36 * | d (7.0) | x | x |
Tryptophane (Trp) | CH | 7.74 * | d (7.5) | x | |
Tyrosine (Tyr) | CH-3,5 | 6.86 ** | d (7.0) | x | x |
CH-6,8 | 7.10 ** | d (7.0) | |||
Valine (Val) | γ’-CH3 | 1.03 | d (7.0) | x | x |
γ-CH3 | 1.08 * | d (7.0) | |||
Carbohydrates | |||||
β-Glucose (β-Glc) | CH-1 | 4.60 * | d (8.0) | x | x |
α-Glucose (α-Glc) | CH-1 | 5.21 * | d (4.0) | x | x |
Sucrose (Suc) | Glc CH-1 | 5.43 * | d (3.8) | x | x |
Fru CH-3′ | 4.20 | d (8.5) | |||
myo-Inositol (Myo) | CH-4 | 3.34 * | t (9.5) | x | x |
CH-2,5 | 3.58 ** | ||||
CH-3,6 | 3.66 ** | ||||
Other compounds | |||||
Adenosine (Adn) | CH-2 | 8.25 | s | x | x |
CH-8 | 8.36 * | s | |||
Caffeic acid (Caf) | α-CH | 6.42 * | d (16.0) | x | |
Flavonoids (Fla) | CH | 6.53 * | x | ||
Choline (Cho) | N(CH3)3+ | 3.24 * | s | x | x |
Ethanolamine (Eta) | β-CH2 | 3.15 * | bt (7.0) | x | |
Glucomoringin (GMor) | CH3 | 1.19 | d | x | x |
Glc CH-1 | 4.33 | d (8.0) | |||
Rha CH-1 | 5.57 * | d (2.0) | |||
Glucosinolates (GSin) | Rha CH-1 | 5.55 * | d (2.0) | x | |
Rha CH-1 | 5.53 * | d (2.0) | |||
Quercetin (Que) | CH | 7.65 * | x | ||
Trigonelline (Tri) | CH-4 | 8.12 | t | x | x |
CH-3,5 | 8.88 | t | |||
CH-1 | 9.17 * | s |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anzano, A.; de Falco, B.; Ammar, M.; Ricciardelli, A.; Grauso, L.; Sabbah, M.; Capparelli, R.; Lanzotti, V. Chemical Analysis and Antimicrobial Activity of Moringa oleifera Lam. Leaves and Seeds. Molecules 2022, 27, 8920. https://doi.org/10.3390/molecules27248920
Anzano A, de Falco B, Ammar M, Ricciardelli A, Grauso L, Sabbah M, Capparelli R, Lanzotti V. Chemical Analysis and Antimicrobial Activity of Moringa oleifera Lam. Leaves and Seeds. Molecules. 2022; 27(24):8920. https://doi.org/10.3390/molecules27248920
Chicago/Turabian StyleAnzano, Attilio, Bruna de Falco, Mohammad Ammar, Annarita Ricciardelli, Laura Grauso, Mohammed Sabbah, Rosanna Capparelli, and Virginia Lanzotti. 2022. "Chemical Analysis and Antimicrobial Activity of Moringa oleifera Lam. Leaves and Seeds" Molecules 27, no. 24: 8920. https://doi.org/10.3390/molecules27248920
APA StyleAnzano, A., de Falco, B., Ammar, M., Ricciardelli, A., Grauso, L., Sabbah, M., Capparelli, R., & Lanzotti, V. (2022). Chemical Analysis and Antimicrobial Activity of Moringa oleifera Lam. Leaves and Seeds. Molecules, 27(24), 8920. https://doi.org/10.3390/molecules27248920