Microwave- and Ultrasound-Assisted Extraction of Cannabinoids and Terpenes from Cannabis Using Response Surface Methodology
Abstract
:1. Introduction
2. Results
2.1. Preliminary Ultrasound-Assisted Extraction and Microwave-Assisted Extraction Data
2.2. Effect of Ultrasound-Assisted and Microwave-Assisted Extraction Parameters on Cannabis Oil Yield
2.3. Effect of Ultrasound-Assisted and Microwave-Assisted Extraction Parameters on Cannabinoids
2.4. Effect of Ultrasound-Assisted and Microwave-Assisted Extraction Parameters on the Total Terpenes
2.5. Model Fitting for Ultrasound-Assisted and Microwave-Assisted Extraction Systems
2.6. Optimal Experimental Conditions for Ultrasound-Assisted and Microwave-Assisted Extraction Systems for Cannabis
2.7. Verification of Models for Ultrasound-Assisted and Microwave-Assisted Extraction Systems for Cannabis
2.8. Principal Component Analysis for Ultrasound-Assisted and Microwave-Assisted Extraction Systems for Cannabis
3. Materials and Methods
3.1. Sample Preparation
3.2. Reagents
3.3. Extraction Procedures
3.3.1. Ultrasound-Assisted Extraction
3.3.2. Microwave-Assisted Extraction
3.4. Calculation of Extraction Yield and Efficiency
3.5. Cannabinoid Analyses by LC-MS/MS
3.6. Terpene Analysis
3.7. Experimental Design
3.8. Statistical Analysis
3.9. Model Verification
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Atkins, P.L. Sample processing and preparation considerations for solid cannabis products. J. AOAC Int. 2019, 102, 427–433. [Google Scholar] [CrossRef]
- Addo, P.W.; Brousseau, V.D.; Morello, V.; MacPherson, S.; Paris, M.; Lefsrud, M. Cannabis chemistry, post-harvest processing methods and secondary metabolite profiling: A review. Ind. Crops Prod. 2021, 170, 113743. [Google Scholar] [CrossRef]
- Das, P.C.; Roger, V.A.; Tabil, L.G.; Baik, O.-D. Postharvest Operations of Cannabis and Their Effect on Cannabinoid Content: A Review. Bioengineering 2022, 9, 364. [Google Scholar] [CrossRef]
- Namdar, D.; Mazuz, M.; Ion, A.; Koltai, H. Variation in the compositions of cannabinoid and terpenoids in Cannabis sativa derived from inflorescence position along the stem and extraction methods. Ind. Crops Prod. 2018, 113, 376–382. [Google Scholar] [CrossRef]
- Al Bakain, R.Z.; Al-Degs, Y.S.; Cizdziel, J.V.; Elsohly, M.A. Comprehensive chromatographic profiling of cannabis from 23 USA States marketed for medical purposes. Acta Chromatogr. 2020, 33, 78–90. [Google Scholar] [CrossRef]
- Rodriguez Garcia, S.L.; Raghavan, V. Green extraction techniques from fruit and vegetable waste to obtain bioactive compounds—A review. Critr. Rev. Food Sci. Nutr. 2022, 62, 6446–6466. [Google Scholar] [CrossRef]
- Ubeed, H.M.S.A.; Bhuyan, D.J.; Alsherbiny, M.A.; Basu, A.; Vuong, Q.V. A comprehensive review on the techniques for extraction of bioactive compounds from medicinal cannabis. Molecules 2022, 27, 604. [Google Scholar] [CrossRef]
- Yang, Y.; Kayan, B.; Bozer, N.; Pate, B.; Baker, C.; Gizir, A.M. Terpene degradation and extraction from basil and oregano leaves using subcritical water. J. Chromatogr. A 2007, 1152, 262–267. [Google Scholar] [CrossRef]
- Brighenti, V.; Pellati, F.; Steinbach, M.; Maran, D.; Benvenuti, S. Development of a new extraction technique and HPLC method for the analysis of non-psychoactive cannabinoids in fibre-type Cannabis sativa L. (hemp). J. Pharma. Biomed. Anal. 2017, 143, 228–236. [Google Scholar] [CrossRef]
- Lucchesi, M.E.; Chemat, F.; Smadja, J. Solvent-free microwave extraction of essential oil from aromatic herbs: Comparison with conventional hydro-distillation. J. Chromatogr. A 2004, 1043, 323–327. [Google Scholar] [CrossRef]
- Lucchesi, M.E.; Smadja, J.; Bradshaw, S.; Louw, W.; Chemat, F. Solvent free microwave extraction of Elletaria cardamomum L.: A multivariate study of a new technique for the extraction of essential oil. J. Food Eng. 2007, 79, 1079–1086. [Google Scholar] [CrossRef]
- Chemat, F.; Rombaut, N.; Sicaire, A.-G.; Meullemiestre, A.; Fabiano-Tixier, A.-S.; Abert-Vian, M. Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrason. Sonochem. 2017, 34, 540–560. [Google Scholar] [CrossRef]
- Chemat, S.; Lagha, A.; AitAmar, H.; Bartels, P.V.; Chemat, F. Comparison of conventional and ultrasound-assisted extraction of carvone and limonene from caraway seeds. Flavour Frag. J. 2004, 19, 188–195. [Google Scholar] [CrossRef]
- Chandrasekaran, S.; Ramanathan, S.; Basak, T. Microwave food processing—A review. Food Res. Int. 2013, 52, 243–261. [Google Scholar] [CrossRef]
- Rodríguez García, S.L.; Raghavan, V. Microwave-assisted extraction of phenolic compounds from broccoli (Brassica oleracea) stems, leaves, and florets: Optimization, characterization, and comparison with maceration extraction. Prog. Nutr. 2022, 2, 011. [Google Scholar] [CrossRef]
- Routray, W.; Orsat, V. Microwave-assisted extraction of flavonoids: A review. Food Bioprocess Technol. 2012, 5, 409–424. [Google Scholar] [CrossRef]
- Luque-Garcıa, J.; de Castro, M.L. Focused microwave-assisted Soxhlet extraction: Devices and applications. Talanta 2004, 64, 571–577. [Google Scholar] [CrossRef]
- Stashenko, E.E.; Jaramillo, B.E.; Martınez, J.R. Analysis of volatile secondary metabolites from Colombian Xylopia aromatica (Lamarck) by different extraction and headspace methods and gas chromatography. J. Chromatogr. A 2004, 1025, 105–113. [Google Scholar] [CrossRef]
- Chang, C.-W.; Yen, C.-C.; Wu, M.-T.; Hsu, M.-C.; Wu, Y.-T. Microwave-assisted extraction of cannabinoids in hemp nut using response surface methodology: Optimization and comparative study. Molecules 2017, 22, 1894. [Google Scholar] [CrossRef] [Green Version]
- Darvishzadeh, P.; Orsat, V. Microwave-assisted extraction of antioxidant compounds from Russian olive leaves and flowers: Optimization, HPLC characterization and comparison with other methods. J. Appl. Res. Med. Arom. Plant 2022, 27, 100368. [Google Scholar] [CrossRef]
- Krishnaswamy, K.; Orsat, V.; Gariépy, Y.; Thangavel, K. Optimization of microwave-assisted extraction of phenolic antioxidants from grape seeds (Vitis vinifera). Food Biopro. Technol. 2013, 6, 441–455. [Google Scholar] [CrossRef]
- Yolmeh, M.; Najafi, M.B.H.; Farhoosh, R. Optimisation of ultrasound-assisted extraction of natural pigment from annatto seeds by response surface methodology (RSM). Food Chem. 2014, 155, 319–324. [Google Scholar] [CrossRef]
- Moradi, N.; Rahimi, M.; Moeini, A.; Parsamoghadam, M.A. Impact of ultrasound on oil yield and content of functional food ingredients at the oil extraction from sunflower. Sep. Sci. Technol. 2018, 53, 261–276. [Google Scholar] [CrossRef]
- Vilkhu, K.; Mawson, R.; Simons, L.; Bates, D. Applications and opportunities for ultrasound assisted extraction in the food industry—A review. Innov. Food Sci. Emerg. 2008, 9, 161–169. [Google Scholar] [CrossRef]
- Ji, J.-B.; Lu, X.-H.; Cai, M.-Q.; Xu, Z.-C. Improvement of leaching process of geniposide with ultrasound. Ultrason. Sonochem. 2006, 13, 455–462. [Google Scholar] [CrossRef]
- Rastogi, N.K. Opportunities and challenges in application of ultrasound in food processing. Crit. Rev. Food Sci. Nutr. 2011, 51, 705–722. [Google Scholar] [CrossRef]
- Azmir, J.; Zaidul, I.; Rahman, M.; Sharif, K.; Mohamed, A.; Sahena, F.; Jahurul, M.; Ghafoor, K.; Norulaini, N.; Omar, A. Techniques for extraction of bioactive compounds from plant materials: A review. J. Food Eng. 2013, 117, 426–436. [Google Scholar] [CrossRef]
- Azwanida, N. A review on the extraction methods use in medicinal plants, principle, strength and limitation. Med. Arom. Plant 2015, 4, 1–6. [Google Scholar]
- Irakli, M.; Chatzopoulou, P.; Ekateriniadou, L. Optimization of ultrasound-assisted extraction of phenolic compounds: Oleuropein, phenolic acids, phenolic alcohols and flavonoids from olive leaves and evaluation of its antioxidant activities. Ind. Crops Prod. 2018, 124, 382–388. [Google Scholar] [CrossRef]
- Sharma, N.; Orsat, V. Optimization of extraction parameters for preparation of Cicer arietinumn-based beverage using Response Surface Methodology. J. Food Process. Preserv. 2022, 46, e16428. [Google Scholar] [CrossRef]
- Zakaria, F.; Tan, J.-K.; Faudzi, S.M.M.; Rahman, M.B.A.; Ashari, S.E. Ultrasound-assisted extraction conditions optimisation using response surface methodology from Mitragyna speciosa (Korth.) Havil leaves. Ultrason. Sonochem. 2021, 81, 105851. [Google Scholar] [CrossRef] [PubMed]
- Sulaiman, I.S.C.; Basri, M.; Masoumi, H.R.F.; Chee, W.J.; Ashari, S.E.; Ismail, M. Effects of temperature, time, and solvent ratio on the extraction of phenolic compounds and the anti-radical activity of Clinacanthus nutans Lindau leaves by response surface methodology. Chem. Cent. J. 2017, 11, 54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serea, D.; Condurache, N.N.; Aprodu, I.; Constantin, O.E.; Bahrim, G.-E.; Stănciuc, N.; Stanciu, S.; Rapeanu, G. Thermal stability and inhibitory action of red grape skin phytochemicals against enzymes associated with metabolic syndrome. Antioxidants 2022, 11, 118. [Google Scholar] [CrossRef] [PubMed]
- Onyebuchi, C.; Kavaz, D. Effect of extraction temperature and solvent type on the bioactive potential of Ocimum gratissimum L. extracts. Sci. Rep. 2020, 10, 21760. [Google Scholar] [CrossRef] [PubMed]
- Tahir, M.N.; Shahbazi, F.; Rondeau-Gagné, S.; Trant, J.F. The biosynthesis of the cannabinoids. J. Cannabis Res. 2021, 3, 7. [Google Scholar] [CrossRef]
- Sousa, G.; Trifunovska, M.; Antunes, M.; Miranda, I.; Moldão, M.; Alves, V.; Vidrih, R.; Lopes, P.A.; Aparicio, L.; Neves, M. Optimization of ultrasound-assisted extraction of bioactive compounds from Pelvetia canaliculata to sunflower oil. Foods 2021, 10, 1732. [Google Scholar] [CrossRef]
- Agarwal, C.; Máthé, K.; Hofmann, T.; Csóka, L. Ultrasound-Assisted Extraction of Cannabinoids from Cannabis Sativa L. Optimized by Response Surface Methodology. J. Food Sci. 2018, 83, 700–710. [Google Scholar] [CrossRef]
- Albero, B.; Tadeo, J.L.; Pérez, R.A. Ultrasound-assisted extraction of organic contaminants. TrAC Trends Anal. Chem. 2019, 118, 739–750. [Google Scholar] [CrossRef]
- Ashour, M.; Wink, M.; Gershenzon, J. Biochemistry of terpenoids: Monoterpenes, sesquiterpenes and diterpenes. Ann. Plant Rev. 2018, 40, 258–303. [Google Scholar] [CrossRef]
- Surendran, S.; Qassadi, F.; Surendran, G.; Lilley, D.; Heinrich, M. Myrcene—What are the potential health benefits of this flavouring and aroma agent? Front. Nutr. 2021, 8, 1–14. [Google Scholar] [CrossRef]
- Vieira, A.J.; Beserra, F.P.; Souza, M.; Totti, B.; Rozza, A. Limonene: Aroma of innovation in health and disease. Chemico-Biol. Interact. 2018, 283, 97–106. [Google Scholar] [CrossRef] [PubMed]
- Sommano, S.R.; Chittasupho, C.; Ruksiriwanich, W.; Jantrawut, P. The cannabis terpenes. Molecules 2020, 25, 5792. [Google Scholar] [CrossRef]
- Beattie, J.R.; Esmonde-White, F.W. Exploration of principal component analysis: Deriving principal component analysis visually using spectra. App. Spectro. 2021, 75, 361–375. [Google Scholar] [CrossRef] [PubMed]
- Addo, P.W.; Taylor, N.; MacPherson, S.; Raghavan, V.; Orsat, V.; Lefsrud, M. Impact of pre-freezing and microwaves on drying behavior and terpenes in hops (Humulus lupulus). J. Appl. Res. Med. Aromat. Plant 2022, 31, 1–11. [Google Scholar] [CrossRef]
- Dey, S.; Rathod, V.K. Ultrasound assisted extraction of β-carotene from Spirulina platensis. Ultrason. Sonochem. 2013, 20, 271–276. [Google Scholar] [CrossRef]
- McRae, G.; Melanson, J.E. Quantitative determination and validation of 17 cannabinoids in cannabis and hemp using liquid chromatography-tandem mass spectrometry. Anal. Bioanal. Chem. 2020, 412, 7381–7393. [Google Scholar] [CrossRef] [PubMed]
- Meija, J.; McRae, G.; Miles, C.O.; Melanson, J.E. Thermal stability of cannabinoids in dried cannabis: A kinetic study. Anal. Bioanal. Chem. 2021, 414, 377–384. [Google Scholar] [CrossRef]
Metabolite | Concentration (g 100 g Dry Matter−1) |
---|---|
Tetrahydrocannabinol (Δ9-THC) | 0.17 ± 0.11 |
Tetrahydrocannabinolic acid (THCA) | 17.92 ± 6.24 |
Cannabidiolic acid (CBDA) | 0.04 ± 0.03 |
Cannabigerol (CBG) | 0.09 ± 0.05 |
Cannabigerolic acid (CBGA) | 0.27 ± 0.18 |
Cannabinolic acid (CBNA) | 0.02 ± 0.01 |
Cannabichromenic acid (CBCA) | 0.38 ± 0.25 |
Tetrahydrocannabivarin (THCV) | 0.01 ± 0 |
Tetrahydrocannabivarin acid (THCVA) | 1.01 ± 0.4 |
Total THC | 15.87 ± 0.56 |
Total CBG | 0.32 ± 0.02 |
Independent Variables | Response/Dependent Variables (g 100 g Dry Matter−1) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
X1 | X2 | X3 | X4 | THC | THCA | Total THC | CBG | CBGA | Total CBGA | THCVA | CBCA | Total Terpenes | Yield |
1/0 | 20 | 60 | 50 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1/5 | 10 | 40 | 40 | 0.44 | 17.06 | 15.4 | 0.08 | 0.23 | 0.29 | 0.80 | 0.09 | 0.98 | 21.80 |
1/5 | 10 | 40 | 60 | 0.47 | 18.4 | 16.61 | 0.08 | 0.23 | 0.28 | 0.87 | 0.09 | 0.93 | 23.42 |
1/5 | 10 | 80 | 40 | 0.57 | 19.34 | 17.53 | 0.09 | 0.24 | 0.31 | 0.96 | 0.10 | 0.99 | 24.49 |
1/5 | 10 | 80 | 60 | 0.59 | 20.21 | 18.31 | 0.1 | 0.26 | 0.33 | 0.99 | 0.11 | 0.97 | 25.63 |
1/5 | 30 | 40 | 40 | 0.55 | 20.36 | 18.4 | 0.09 | 0.27 | 0.33 | 1.16 | 0.12 | 0.96 | 24.41 |
1/5 | 30 | 40 | 60 | 0.57 | 22.58 | 20.38 | 0.11 | 0.23 | 0.32 | 1.18 | 0.12 | 0.92 | 25.4 |
1/5 | 30 | 80 | 40 | 0.59 | 24.24 | 21.85 | 0.12 | 0.25 | 0.34 | 1.29 | 0.11 | 0.89 | 25.99 |
1/5 | 30 | 80 | 60 | 0.61 | 25.22 | 22.73 | 0.12 | 0.24 | 0.33 | 1.32 | 0.11 | 0.99 | 26.11 |
1/10 | 0 | 60 | 50 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1/10 | 20 | 20 | 50 | 0.63 | 26.14 | 23.55 | 0.13 | 0.24 | 0.34 | 1.31 | 0.13 | 1.01 | 26.35 |
1/10 | 20 | 60 | 30 | 0.66 | 26.34 | 23.75 | 0.14 | 0.35 | 0.44 | 1.37 | 0.15 | 1 | 26.5 |
1/10 | 20 | 60 | 50 | 0.74 | 26.4 | 22.04 | 0.15 | 0.36 | 0.44 | 1.42 | 0.13 | 1.05 | 26.9 |
1/10 | 20 | 60 | 50 | 0.79 | 26.31 | 24.74 | 0.15 | 0.4 | 0.47 | 1.47 | 0.15 | 1.04 | 27.53 |
1/10 | 20 | 60 | 50 | 0.72 | 26.44 | 22.93 | 0.16 | 0.37 | 0.45 | 1.48 | 0.14 | 1.05 | 27.22 |
1/10 | 20 | 60 | 50 | 0.77 | 26.67 | 20.58 | 0.15 | 0.37 | 0.4 | 1.42 | 0.12 | 1.05 | 26.58 |
1/10 | 20 | 60 | 50 | 0.78 | 25.66 | 23.29 | 0.16 | 0.39 | 0.48 | 1.43 | 0.14 | 1.03 | 26.5 |
1/10 | 20 | 60 | 50 | 0.77 | 26.05 | 23.52 | 0.15 | 0.39 | 0.47 | 1.41 | 0.14 | 1.05 | 26.9 |
1/10 | 20 | 60 | 50 | 0.73 | 26.53 | 23 | 0.15 | 0.37 | 0.45 | 1.47 | 0.14 | 1.03 | 27.44 |
1/10 | 20 | 60 | 70 | 0.84 | 26.3 | 23.91 | 0.16 | 0.38 | 0.49 | 1.62 | 0.14 | 1.17 | 27.85 |
1/10 | 20 | 100 | 50 | 0.80 | 25.82 | 23.44 | 0.16 | 0.37 | 0.48 | 1.6 | 0.13 | 1.11 | 27.13 |
1/10 | 40 | 60 | 50 | 0.79 | 26.1 | 23.68 | 0.15 | 0.36 | 0.47 | 1.63 | 0.14 | 1.1 | 26.81 |
1/15 | 10 | 40 | 40 | 0.89 | 27.15 | 24.7 | 0.17 | 0.47 | 0.58 | 1.64 | 0.14 | 1.28 | 27.96 |
1/15 | 10 | 40 | 60 | 0.91 | 27.77 | 25.27 | 0.16 | 0.47 | 0.58 | 1.68 | 0.24 | 1.22 | 28.57 |
1/15 | 10 | 80 | 40 | 0.93 | 27.95 | 25.45 | 0.17 | 0.45 | 0.56 | 1.73 | 0.14 | 1.19 | 28.71 |
1/15 | 10 | 80 | 60 | 0.96 | 28.43 | 25.89 | 0.17 | 0.48 | 0.6 | 1.76 | 0.15 | 1.05 | 29.25 |
1/15 | 30 | 40 | 40 | 0.93 | 28.12 | 25.59 | 0.18 | 0.49 | 0.6 | 1.75 | 0.16 | 1.12 | 28.91 |
1/15 | 30 | 40 | 60 | 0.97 | 28.21 | 25.7 | 0.18 | 0.44 | 0.57 | 1.79 | 0.17 | 1.12 | 29.38 |
1/15 | 30 | 80 | 40 | 1.14 | 28.45 | 26.1 | 0.18 | 0.45 | 0.57 | 1.81 | 0.17 | 1.16 | 29.52 |
1/15 | 30 | 80 | 60 | 1.15 | 28.74 | 26.35 | 0.19 | 0.47 | 0.6 | 1.88 | 0.19 | 1.12 | 29.86 |
1/20 | 20 | 60 | 50 | 1.22 | 29.19 | 26.82 | 0.2 | 0.55 | 0.68 | 2.05 | 0.21 | 1.6 | 30.63 |
Independent Variables | Response/Dependent Variables (g 100 g Dry Matter−1) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
X1 | X2 | X4 | THC | THCA | Total THC | CBG | CBGA | Total CBGA | THCVA | CBCA | Total Terpenes | Yield |
1/1.59 | 20 | 50 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1/5 | 10 | 40 | 0.39 | 13.17 | 11.94 | 0.06 | 0.19 | 0.23 | 0.70 | 0.24 | 0.73 | 16.64 |
1/5 | 10 | 60 | 1.32 | 16.12 | 15.45 | 0.09 | 0.24 | 0.30 | 0.87 | 0.33 | 0.79 | 19.18 |
1/5 | 30 | 40 | 0.45 | 11.95 | 10.93 | 0.06 | 0.18 | 0.21 | 0.67 | 0.25 | 0.73 | 16.35 |
1/5 | 30 | 60 | 0.63 | 13.42 | 12.40 | 0.07 | 0.20 | 0.24 | 0.73 | 0.24 | 0.69 | 14.72 |
1/10 | 3 | 50 | 0.44 | 15.29 | 13.85 | 0.08 | 0.22 | 0.27 | 0.83 | 0.30 | 0.92 | 23.97 |
1/10 | 20 | 33 | 0.38 | 16.68 | 15.01 | 0.08 | 0.25 | 0.30 | 0.91 | 0.31 | 0.97 | 22.01 |
1/10 | 20 | 50 | 0.56 | 17.16 | 15.60 | 0.09 | 0.25 | 0.30 | 0.93 | 0.32 | 1.02 | 24.13 |
1/10 | 20 | 50 | 0.61 | 14.48 | 13.31 | 0.07 | 0.20 | 0.25 | 0.80 | 0.29 | 0.90 | 23.42 |
1/10 | 20 | 50 | 0.74 | 19.56 | 17.90 | 0.10 | 0.28 | 0.35 | 1.10 | 0.39 | 0.67 | 24.05 |
1/10 | 20 | 50 | 0.46 | 12.81 | 11.70 | 0.06 | 0.19 | 0.23 | 0.71 | 0.25 | 0.98 | 23.81 |
1/10 | 20 | 50 | 0.71 | 21.03 | 19.16 | 0.10 | 0.30 | 0.37 | 1.20 | 0.42 | 1.07 | 23.66 |
1/10 | 20 | 50 | 0.53 | 18.05 | 16.36 | 0.08 | 0.26 | 0.31 | 1.00 | 0.35 | 0.97 | 24.61 |
1/10 | 20 | 67 | 1.10 | 14.16 | 13.52 | 0.08 | 0.21 | 0.27 | 0.79 | 0.28 | 0.83 | 24.05 |
1/10 | 37 | 50 | 0.78 | 15.04 | 13.96 | 0.08 | 0.23 | 0.28 | 0.87 | 0.30 | 0.96 | 25.00 |
1/15 | 10 | 40 | 0.35 | 16.48 | 14.80 | 0.08 | 0.23 | 0.28 | 0.90 | 0.32 | 0.37 | 25.36 |
1/15 | 10 | 60 | 0.83 | 18.18 | 16.78 | 0.09 | 0.27 | 0.33 | 1.03 | 0.35 | 0.89 | 23.70 |
1/15 | 30 | 40 | 0.56 | 22.42 | 20.22 | 0.11 | 0.32 | 0.39 | 1.27 | 0.45 | 0.96 | 24.76 |
1/15 | 30 | 60 | 1.11 | 25.26 | 23.27 | 0.13 | 0.39 | 0.47 | 1.43 | 0.50 | 1.00 | 24.40 |
1/18.41 | 20 | 50 | 0.39 | 18.00 | 16.18 | 0.09 | 0.26 | 0.32 | 1.04 | 0.35 | 1.12 | 24.56 |
Response/Dependent Variables | Regression Model Effect Parameters | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Intercept | Linear | Interaction | Quadratic | |||||||||||||
β0 | β1 | β2 | β3 | β4 | β12 | β13 | β23 | β14 | β24 | β34 | β11 | β22 | β33 | β44 | ||
THC | Coefficient | 0.76 | 0.25 | 0.1 | 0.05 | 0.02 | 0.02 | 0.01 | 0.01 | 0.001 | −0.001 | −0.002 | −0.01 | −0.07 | 0.01 | 0.02 |
p value | <0.0001 * | <0.0001 * | 0.01 * | 0.11 | 0.43 | 0.66 | 0.79 | 0.82 | 0.99 | 0.99 | 0.96 | 0.65 | 0.02 * | 0.59 | 0.38 | |
THCA | Coefficient | 26.29 | 4.82 | 2.99 | 0.51 | 0.28 | −0.95 | −0.52 | 0.11 | −0.25 | 0.02 | −0.1 | −2.17 | −2.56 | 0.68 | 0.76 |
p value | <0.0001 * | 0.0001 * | 0.01 * | 0.59 | 0.77 | 0.42 | 0.66 | 0.92 | 0.83 | 0.99 | 0.93 | 0.02 * | 0.01 * | 0.44 | 0.39 | |
Total THC | Coefficient | 22.87 | 4.48 | 2.72 | 0.50 | 0.27 | −0.82 | −0.44 | 0.11 | −0.22 | 0.01 | −0.01 | −1.68 | −2.07 | 0.84 | 0.93 |
p value | <0.0001 * | <0.0001 * | 0.01 * | 0.57 | 0.76 | 0.45 | 0.68 | 0.92 | 0.84 | 0.99 | 0.93 | 0.05 | 0.02 * | 0.3 | 0.26 | |
CBG | Coefficient | 0.15 | 0.04 | 0.02 | 0.01 | 0.003 | −0.002 | −0.003 | 0.001 | −0.002 | 0.002 | 0.001 | −0.01 | −0.02 | 0.001 | 0.003 |
p value | <0.0001 * | <0.0001 * | 0.01 * | 0.17 | 0.52 | 0.73 | 0.57 | 0.91 | 0.73 | 0.73 | 0.91 | 0.02 * | 0.01 * | 0.76 | 0.54 | |
CBGA | Coefficient | 0.38 | 0.12 | 0.03 | 0.01 | 0.001 | −0.003 | −0.003 | −0.003 | 0.002 | −0.01 | 0.01 | −0.01 | −0.04 | −0.01 | 0.01 |
p value | <0.0001 * | <0.0001 * | 0.05 | 0.45 | 0.93 | 0.86 | 0.86 | 0.86 | 0.92 | 0.66 | 0.61 | 0.32 | 0.01 * | 0.65 | 0.52 | |
Total CBG | Coefficient | 0.45 | 0.15 | 0.04 | 0.02 | 0.01 | −0.01 | −0.01 | −0.003 | 0.003 | −0.004 | 0.01 | −0.01 | −0.04 | 0.004 | 0.02 |
p value | <0.0001 * | <0.0001 * | 0.02 * | 0.4 | 0.76 | 0.8 | 0.8 | 0.89 | 0.89 | 0.84 | 0.71 | 0.42 | 0.03 * | 0.80 | 0.29 | |
THCVA | Coefficient | 1.44 | 0.4 | 0.21 | 0.06 | 0.03 | −0.06 | −0.01 | −0.002 | 0.002 | −0.001 | −0.001 | −0.07 | −0.12 | 0.04 | 0.05 |
p value | <0.0001 * | <0.0001 * | 0.01 * | 0.23 | 0.48 | 0.35 | 0.81 | 0.98 | 0.98 | 0.99 | 0.99 | 0.14 | 0.01 * | 0.39 | 0.28 | |
CBCA | Coefficient | 0.14 | 0.04 | 0.02 | −0.002 | 0.01 | −0.003 | −0.004 | 0.004 | 0.01 | −0.01 | −0.004 | −0.003 | −0.01 | 0.002 | 0.01 |
p value | <0.0001 * | <0.0001 * | 0.03 * | 0.75 | 0.41 | 0.69 | 0.58 | 0.58 | 0.31 | 0.48 | 0.58 | 0.53 | 0.05 * | 0.68 | 0.3 | |
Total terpenes | Coefficient | 1.04 | 0.2 | 0.08 | 0.001 | 0.004 | −0.01 | −0.02 | 0.02 | −0.01 | 0.02 | 0.003 | −0.03 | −0.09 | 0.03 | 0.04 |
p value | <0.0001 * | 0.0021 * | 0.17 | 0.98 | 0.95 | 0.92 | 0.81 | 0.82 | 0.83 | 0.79 | 0.96 | 0.55 | 0.08 | 0.5 | 0.43 | |
Yield | Coefficient | 27.01 | 4.01 | 2.64 | 0.47 | 0.36 | −0.21 | −0.29 | −0.18 | −0.12 | −0.12 | −0.1 | −1.89 | −2.37 | 0.96 | 1.07 |
p value | <0.0001 * | 0.0045 * | 0.04 * | 0.70 | 0.77 | 0.89 | 0.85 | 0.9 | 0.94 | 0.93 | 0.95 | 0.11 | 0.05 * | 0.4 | 0.35 |
Response/Dependent Variables | Regression Model Effect Parameters | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Intercept | Linear | Interaction | Quadratic | ||||||||
β0 | β1 | β2 | β3 | β12 | β13 | β23 | β11 | β22 | β33 | ||
THC | Coefficient | 0.6 | 0.05 | 0.03 | 0.25 | 0.14 | −0.01 | −0.09 | −0.1 | 0.04 | 0.09 |
p value | <0.0001 * | 0.33 | 0.55 | <0.0001 * | 0.06 | 0.88 | 0.23 | 0.07 | 0.40 | 0.1 | |
THCA | Coefficient | 17.05 | 4.24 | 0.64 | 0.35 | 2.12 | 0.02 | −0.04 | −2.01 | 0.17 | 0.26 |
p value | <0.0001 * | 0.002 * | 0.53 | 0.73 | 0.13 | 0.99 | 0.97 | 0.06 | 0.86 | 0.79 | |
Total THC | Coefficient | 15.55 | 3.78 | 0.59 | 0.55 | 2.00 | 0.01 | −0.12 | −1.87 | 0.19 | 0.32 |
p value | <0.0001 * | 0.002 * | 0.53 | 0.55 | 0.12 | 0.93 | 0.92 | 0.06 | 0.83 | 0.73 | |
CBG | Coefficient | 0.08 | 0.02 | 0.003 | 0.01 | 0.01 | −0.001 | −0.001 | −0.01 | 0.003 | 0.003 |
p value | <0.0001 * | 0.002 * | 0.48 | 0.32 | 0.11 | 0.85 | 0.85 | 0.07 | 0.57 | 0.57 | |
CBGA | Coefficient | 0.24 | 0.06 | 0.01 | 0.01 | 0.03 | 0.01 | 0.002 | −0.03 | 0.01 | 0.01 |
p value | <0.0001 * | 0.002 * | 0.40 | 0.58 | 0.12 | 0.80 | 1 | 0.07 | 0.73 | 0.64 | |
Total CBG | Coefficient | 0.30 | 0.08 | 0.01 | 0.01 | 0.04 | 0.004 | −0.001 | −0.04 | 0.01 | 0.01 |
p value | <0.0001 * | 0.001 * | 0.45 | 0.46 | 0.1 | 0.87 | 0.96 | 0.06 | 0.76 | 0.61 | |
THCVA | Coefficient | 0.95 | 0.25 | 0.05 | 0.02 | 0.12 | 0.01 | −0.01 | −0.11 | 0.01 | 0.01 |
p value | <0.0001 * | 0.001 * | 0.39 | 0.68 | 0.13 | 0.92 | 0.89 | 0.07 | 0.86 | 0.86 | |
CBCA | Coefficient | 0.33 | 0.08 | 0.01 | 0.01 | 0.05 | 0.003 | −0.01 | −0.04 | 0.005 | 0.003 |
p value | <0.0001 * | 0.002 * | 0.47 | 0.69 | 0.11 | 0.9 | 0.7 | 0.06 | 0.81 | 0.89 | |
Total terpenes | Coefficient | 0.94 | 0.16 | 0.05 | 0.03 | 0.1 | 0.07 | −0.07 | −0.14 | −0.003 | −0.02 |
p value | <0.0001 * | 0.02 * | 0.42 | 0.68 | 0.22 | 0.40 | 0.37 | 0.03 * | 0.96 | 0.77 | |
Yield | Coefficient | 23.92 | 5.32 | −0.21 | 0.17 | 0.61 | −0.37 | −0.36 | −3.92 | 0.39 | −0.12 |
p value | <0.0001 * | <0.0001 * | 0.73 | 0.78 | 0.46 | 0.65 | 0.66 | <0.0001 * | 0.52 | 0.84 |
Response | Source | df | SS | MS | F Ratio | Prob > F | Lack-of-Fit | R2 | Adj. R2 |
---|---|---|---|---|---|---|---|---|---|
Ultrasound-assisted extraction using model B (sample (g) solvent (g)−1, duty cycle (%), and extraction temperature (°C) as independent parameters) | |||||||||
THC | Model | 9 | 1.57 | 0.17 | 5.57 | 0.001 * | 0.79 | 0.70 | 0.58 |
Error | 21 | 0.66 | 0.03 | ||||||
THCA | Model | 9 | 750.49 | 83.39 | 2.32 | 0.05 (0.005 *) | 0.77 (0.33) | 0.51 | 0.28 |
Error | 21 | 755.83 | 35.99 | ||||||
Total THC | Model | 9 | 637.95 | 70.88 | 2.49 | 0.04 * | 0.74 | 0.52 | 0.31 |
Error | 21 | 598.79 | 28.51 | ||||||
CBG | Model | 9 | 0.05 | 0.01 | 4.67 | 0.002 * | 0.98 | 0.67 | 0.52 |
Error | 21 | 0.02 | 0.00 | ||||||
CBGA | Model | 9 | 0.36 | 0.04 | 5.68 | 0.001 * | 0.82 | 0.71 | 0.58 |
Error | 21 | 0.15 | 0.01 | ||||||
Total CBG | Model | 9 | 0.53 | 0.06 | 5.81 | 0.0004 * | 0.83 | 0.71 | 0.59 |
Error | 21 | 0.22 | 0.01 | ||||||
THCVA | Model | 9 | 4.23 | 0.47 | 4.10 | 0.004 * | 0.89 | 0.64 | 0.48 |
Error | 21 | 2.41 | 0.11 | ||||||
CBCA | Model | 9 | 0.04 | 0.00 | 3.56 | 0.008 * | 0.66 | 0.60 | 0.43 |
Error | 21 | 0.03 | 0.00 | ||||||
Total terpenes | Model | 9 | 1.13 | 0.13 | 1.68 | 0.16 (0.02 *) | 0.18 (0.05) | 0.62 | 0.47 |
Error | 21 | 1.56 | 0.07 | ||||||
Yield | Model | 9 | 582.84 | 64.76 | 1.52 | 0.20 (0.04 *) | 0.37 (0.06) | 0.69 | 0.44 |
Error | 21 | 893.61 | 42.55 | ||||||
Microwave-assisted extraction using model F (sample (g) solvent (g)−1 and extraction temperature (°C) as independent parameters) | |||||||||
THC | Model | 5 | 1.16 | 0.23 | 5.28 | 0.01 * | 0.22 | 0.65 | 0.53 |
Error | 14 | 0.62 | 0.04 | ||||||
THCA | Model | 5 | 310.11 | 62.02 | 4.99 | 0.01 * | 0.1 | 0.64 | 0.51 |
Error | 14 | 174.18 | 12.44 | ||||||
Total THC | Model | 5 | 253.77 | 50.75 | 4.81 | 0.01 * | 0.09 | 0.63 | 0.5 |
Error | 14 | 147.7 | 10.55 | ||||||
CBG | Model | 5 | 0.01 | 0 | 4.67 | 0.01 * | 0.12 | 0.63 | 0.49 |
Error | 14 | 0 | 0 | ||||||
CBGA | Model | 5 | 0.07 | 0.01 | 4.59 | 0.01 * | 0.08 | 0.62 | 0.49 |
Error | 14 | 0.04 | 0.00 | ||||||
Total CBG | Model | 5 | 0.1 | 0.02 | 4.91 | 0.01 * | 0.11 | 0.64 | 0.51 |
Error | 14 | 0.06 | 0 | ||||||
THCVA | Model | 5 | 1.03 | 0.21 | 5.21 | 0.01 * | 0.14 | 0.65 | 0.53 |
Error | 14 | 0.56 | 0.04 | ||||||
CBCA | Model | 5 | 0.12 | 0.02 | 4.67 | 0.01 * | 0.15 | 0.63 | 0.49 |
Error | 14 | 0.07 | 0.01 | ||||||
Total terpenes | Model | 5 | 0.66 | 0.13 | 2.96 | 0.04 * | 0.05 | 0.51 | 0.34 |
Error | 14 | 0.63 | 0.04 | ||||||
Yield | Model | 5 | 616.93 | 123.4 | 30.46 | <0.001 * | <0.001 * | 0.92 | 0.89 |
Error | 14 | 56.71 | 4.05 |
Extraction Method | Ultrasound-Assisted Extraction | Microwave-Assisted Extraction |
---|---|---|
Desirability | 0.83 | 0.75 |
Sample (g) solvent (40 mL)−1 | 2.1 | 2.19 |
Sample (g) solvent (g)−1 | 1/15 | 1/14.43 |
Duty Cycle (%) | 80 | NA |
Extraction temperature (°C) | 60 | 60 |
Extraction time (min) | 30 | 30 |
Concentration of cannabinoids and total terpenes (g 100 g dry matter−1) | ||
THC | 1.06 | 0.92 |
THCA | 28.52 | 19.95 |
Total THC | 26 | 18.42 |
CBG | 0.18 | 0.1 |
CBGA | 0.48 | 0.3 |
Total CBG | 0.6 | 0.37 |
THCVA | 1.86 | 1.13 |
CBCA | 0.17 | 0.39 |
Total terpenes | 1.2 | 1.03 |
Extraction yield | 29.81 | 25.52 |
Dilution Factor | Approximate Initial Mass of Biomass (g) |
---|---|
Cannabinoid analysis | |
5000-fold | 10 |
3000-fold | 6 |
1500-fold | 3 |
1000-fold | 2 |
Terpene analysis | |
1000-fold | 10 |
500-fold | 6 |
200-fold | 3 |
100-fold | 2 |
Retention Time (min) | Rate (°C min−1) | Target Value (°C) | Hold Time (min) |
---|---|---|---|
2.0 | 0.0 | 65.0 | 2.0 |
8.0 | 10.0 | 125.0 | 0.0 |
18.3 | 15.0 | 250.0 | 2.0 |
25.0 | 30.0 | 300.0 | 5.0 |
25.0 | Stop Time |
Ultrasound-Assisted Extraction | ||||||
---|---|---|---|---|---|---|
Independent variables | Symbol | Coded levels | ||||
−2 | −1 | 0 | +1 | +2 | ||
Sample (g) solvent (mL)−1 | X1 | 0/40 | 6.31/40 | 3.16/40 | 2.1/40 | 1.58/40 |
Sample (g) solvent (g)−1 | X1 | 1/0 | 1/5 | 1/10 | 1/15 | 1/20 |
Extraction time (min) | X2 | 0 | 10 | 20 | 30 | 40 |
Duty cycle (%) | X3 | 20 | 40 | 60 | 80 | 100 |
Extraction temperature (°C) | X4 | 30 | 40 | 50 | 60 | 70 |
Microwave-assisted extraction | ||||||
Independent variables | Symbol | Coded levels | ||||
−1.682 | −1 | 0 | +1 | +1.682 | ||
Sample (g) solvent (mL)−1 | X1 | 19.84/40 | 6.31/40 | 3.16/40 | 2.1/40 | 1.71/40 |
Sample (g) solvent (g)−1 | X1 | 1/1.59 | 1/5 | 1/10 | 1/15 | 1/18.41 |
Extraction time (min) | X2 | 3.18 | 10 | 20 | 30 | 36.82 |
Extraction temperature (°C) | X4 | 33.18 | 40 | 50 | 60 | 66.82 |
Model | Multiple Regression Equation | Equation No. |
---|---|---|
Ultrasound-assisted extraction | ||
Model A | Yj = β0 + β1X1 + β2X2 + β3X3 + β4X4 + β11X1X1 + β22X2X2 + β33X3X3 + β44X4X4 + β12X1X2 + β13X1X3 + β14X1X4 + β23X2X3 + β24X2X4 + β34X3X4 | 4 |
Model B | Yj = β0 + β1X1 + β3X3 + β4X4 + β11X1X1 + β33X3X3 + β44X4X4 + β13X1X3 + β14X1X4 + β34X3X4 | 5 |
Model C | Yj = β0 + β1X1 + β2X2 + β4X4 + β11X1X1 + β22X2X2 + β44X4X4 + β12X1X2 + β14X1X4 + β24X2X4 | 6 |
Model D | Yj = β0 + β1X1 + β2X2 + β3X3 + β11X1X1 + β22X2X2 + β33X3X3 + β12X1X2 + β13X1X3 + β23X2X3 | 7 |
Microwave-assisted extraction | ||
Model E | Yj = β0 + β1X1 + β2X2 + β4X4 + β11X1X1 + β22X2X2 + β44X4X4 + β12X1X2 + β14X1X4 + β24X2X4 | 8 |
Model F | Yj = β0 + β1X1 + β4X4 + β11X1X1 + β44X4X4 + β14X1X4 | 9 |
Model G | Yj = β0 + β1X1 + β2X2 + β11X1X1 + β22X2X2 + β12X1X2 | 10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Addo, P.W.; Sagili, S.U.K.R.; Bilodeau, S.E.; Gladu-Gallant, F.-A.; MacKenzie, D.A.; Bates, J.; McRae, G.; MacPherson, S.; Paris, M.; Raghavan, V.; et al. Microwave- and Ultrasound-Assisted Extraction of Cannabinoids and Terpenes from Cannabis Using Response Surface Methodology. Molecules 2022, 27, 8803. https://doi.org/10.3390/molecules27248803
Addo PW, Sagili SUKR, Bilodeau SE, Gladu-Gallant F-A, MacKenzie DA, Bates J, McRae G, MacPherson S, Paris M, Raghavan V, et al. Microwave- and Ultrasound-Assisted Extraction of Cannabinoids and Terpenes from Cannabis Using Response Surface Methodology. Molecules. 2022; 27(24):8803. https://doi.org/10.3390/molecules27248803
Chicago/Turabian StyleAddo, Philip Wiredu, Sai Uday Kumar Reddy Sagili, Samuel Eichhorn Bilodeau, Frederick-Alexandre Gladu-Gallant, Douglas A. MacKenzie, Jennifer Bates, Garnet McRae, Sarah MacPherson, Maxime Paris, Vijaya Raghavan, and et al. 2022. "Microwave- and Ultrasound-Assisted Extraction of Cannabinoids and Terpenes from Cannabis Using Response Surface Methodology" Molecules 27, no. 24: 8803. https://doi.org/10.3390/molecules27248803
APA StyleAddo, P. W., Sagili, S. U. K. R., Bilodeau, S. E., Gladu-Gallant, F. -A., MacKenzie, D. A., Bates, J., McRae, G., MacPherson, S., Paris, M., Raghavan, V., Orsat, V., & Lefsrud, M. (2022). Microwave- and Ultrasound-Assisted Extraction of Cannabinoids and Terpenes from Cannabis Using Response Surface Methodology. Molecules, 27(24), 8803. https://doi.org/10.3390/molecules27248803